1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZSelectionDAGInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZTargetMachine.h" 15 #include "llvm/CodeGen/SelectionDAG.h" 16 17 using namespace llvm; 18 19 #define DEBUG_TYPE "systemz-selectiondag-info" 20 21 // Decide whether it is best to use a loop or straight-line code for 22 // a block operation of Size bytes with source address Src and destination 23 // address Dest. Sequence is the opcode to use for straight-line code 24 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP). 25 // Return the chain for the completed operation. 26 static SDValue emitMemMem(SelectionDAG &DAG, SDLoc DL, unsigned Sequence, 27 unsigned Loop, SDValue Chain, SDValue Dst, 28 SDValue Src, uint64_t Size) { 29 EVT PtrVT = Src.getValueType(); 30 // The heuristic we use is to prefer loops for anything that would 31 // require 7 or more MVCs. With these kinds of sizes there isn't 32 // much to choose between straight-line code and looping code, 33 // since the time will be dominated by the MVCs themselves. 34 // However, the loop has 4 or 5 instructions (depending on whether 35 // the base addresses can be proved equal), so there doesn't seem 36 // much point using a loop for 5 * 256 bytes or fewer. Anything in 37 // the range (5 * 256, 6 * 256) will need another instruction after 38 // the loop, so it doesn't seem worth using a loop then either. 39 // The next value up, 6 * 256, can be implemented in the same 40 // number of straight-line MVCs as 6 * 256 - 1. 41 if (Size > 6 * 256) 42 return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src, 43 DAG.getConstant(Size, DL, PtrVT), 44 DAG.getConstant(Size / 256, DL, PtrVT)); 45 return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src, 46 DAG.getConstant(Size, DL, PtrVT)); 47 } 48 49 SDValue SystemZSelectionDAGInfo:: 50 EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 51 SDValue Dst, SDValue Src, SDValue Size, unsigned Align, 52 bool IsVolatile, bool AlwaysInline, 53 MachinePointerInfo DstPtrInfo, 54 MachinePointerInfo SrcPtrInfo) const { 55 if (IsVolatile) 56 return SDValue(); 57 58 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) 59 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP, 60 Chain, Dst, Src, CSize->getZExtValue()); 61 return SDValue(); 62 } 63 64 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by 65 // Chain, Dst, ByteVal and Size. These cases are expected to use 66 // MVI, MVHHI, MVHI and MVGHI respectively. 67 static SDValue memsetStore(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 68 SDValue Dst, uint64_t ByteVal, uint64_t Size, 69 unsigned Align, 70 MachinePointerInfo DstPtrInfo) { 71 uint64_t StoreVal = ByteVal; 72 for (unsigned I = 1; I < Size; ++I) 73 StoreVal |= ByteVal << (I * 8); 74 return DAG.getStore(Chain, DL, 75 DAG.getConstant(StoreVal, DL, 76 MVT::getIntegerVT(Size * 8)), 77 Dst, DstPtrInfo, false, false, Align); 78 } 79 80 SDValue SystemZSelectionDAGInfo:: 81 EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 82 SDValue Dst, SDValue Byte, SDValue Size, 83 unsigned Align, bool IsVolatile, 84 MachinePointerInfo DstPtrInfo) const { 85 EVT PtrVT = Dst.getValueType(); 86 87 if (IsVolatile) 88 return SDValue(); 89 90 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) { 91 uint64_t Bytes = CSize->getZExtValue(); 92 if (Bytes == 0) 93 return SDValue(); 94 if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) { 95 // Handle cases that can be done using at most two of 96 // MVI, MVHI, MVHHI and MVGHI. The latter two can only be 97 // used if ByteVal is all zeros or all ones; in other casees, 98 // we can move at most 2 halfwords. 99 uint64_t ByteVal = CByte->getZExtValue(); 100 if (ByteVal == 0 || ByteVal == 255 ? 101 Bytes <= 16 && countPopulation(Bytes) <= 2 : 102 Bytes <= 4) { 103 unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes); 104 unsigned Size2 = Bytes - Size1; 105 SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1, 106 Align, DstPtrInfo); 107 if (Size2 == 0) 108 return Chain1; 109 Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 110 DAG.getConstant(Size1, DL, PtrVT)); 111 DstPtrInfo = DstPtrInfo.getWithOffset(Size1); 112 SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2, 113 std::min(Align, Size1), DstPtrInfo); 114 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2); 115 } 116 } else { 117 // Handle one and two bytes using STC. 118 if (Bytes <= 2) { 119 SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, 120 false, false, Align); 121 if (Bytes == 1) 122 return Chain1; 123 SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 124 DAG.getConstant(1, DL, PtrVT)); 125 SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2, 126 DstPtrInfo.getWithOffset(1), 127 false, false, 1); 128 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2); 129 } 130 } 131 assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already"); 132 133 // Handle the special case of a memset of 0, which can use XC. 134 auto *CByte = dyn_cast<ConstantSDNode>(Byte); 135 if (CByte && CByte->getZExtValue() == 0) 136 return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP, 137 Chain, Dst, Dst, Bytes); 138 139 // Copy the byte to the first location and then use MVC to copy 140 // it to the rest. 141 Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, 142 false, false, Align); 143 SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 144 DAG.getConstant(1, DL, PtrVT)); 145 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP, 146 Chain, DstPlus1, Dst, Bytes - 1); 147 } 148 return SDValue(); 149 } 150 151 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size), 152 // deciding whether to use a loop or straight-line code. 153 static SDValue emitCLC(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 154 SDValue Src1, SDValue Src2, uint64_t Size) { 155 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 156 EVT PtrVT = Src1.getValueType(); 157 // A two-CLC sequence is a clear win over a loop, not least because it 158 // needs only one branch. A three-CLC sequence needs the same number 159 // of branches as a loop (i.e. 2), but is shorter. That brings us to 160 // lengths greater than 768 bytes. It seems relatively likely that 161 // a difference will be found within the first 768 bytes, so we just 162 // optimize for the smallest number of branch instructions, in order 163 // to avoid polluting the prediction buffer too much. A loop only ever 164 // needs 2 branches, whereas a straight-line sequence would need 3 or more. 165 if (Size > 3 * 256) 166 return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2, 167 DAG.getConstant(Size, DL, PtrVT), 168 DAG.getConstant(Size / 256, DL, PtrVT)); 169 return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2, 170 DAG.getConstant(Size, DL, PtrVT)); 171 } 172 173 // Convert the current CC value into an integer that is 0 if CC == 0, 174 // less than zero if CC == 1 and greater than zero if CC >= 2. 175 // The sequence starts with IPM, which puts CC into bits 29 and 28 176 // of an integer and clears bits 30 and 31. 177 static SDValue addIPMSequence(SDLoc DL, SDValue Glue, SelectionDAG &DAG) { 178 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 179 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 180 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 181 SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL, 182 DAG.getConstant(31, DL, MVT::i32)); 183 return ROTL; 184 } 185 186 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: 187 EmitTargetCodeForMemcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 188 SDValue Src1, SDValue Src2, SDValue Size, 189 MachinePointerInfo Op1PtrInfo, 190 MachinePointerInfo Op2PtrInfo) const { 191 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) { 192 uint64_t Bytes = CSize->getZExtValue(); 193 assert(Bytes > 0 && "Caller should have handled 0-size case"); 194 Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes); 195 SDValue Glue = Chain.getValue(1); 196 return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain); 197 } 198 return std::make_pair(SDValue(), SDValue()); 199 } 200 201 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: 202 EmitTargetCodeForMemchr(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 203 SDValue Src, SDValue Char, SDValue Length, 204 MachinePointerInfo SrcPtrInfo) const { 205 // Use SRST to find the character. End is its address on success. 206 EVT PtrVT = Src.getValueType(); 207 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue); 208 Length = DAG.getZExtOrTrunc(Length, DL, PtrVT); 209 Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32); 210 Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char, 211 DAG.getConstant(255, DL, MVT::i32)); 212 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length); 213 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain, 214 Limit, Src, Char); 215 Chain = End.getValue(1); 216 SDValue Glue = End.getValue(2); 217 218 // Now select between End and null, depending on whether the character 219 // was found. 220 SDValue Ops[] = {End, DAG.getConstant(0, DL, PtrVT), 221 DAG.getConstant(SystemZ::CCMASK_SRST, DL, MVT::i32), 222 DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32), 223 Glue}; 224 VTs = DAG.getVTList(PtrVT, MVT::Glue); 225 End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 226 return std::make_pair(End, Chain); 227 } 228 229 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: 230 EmitTargetCodeForStrcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 231 SDValue Dest, SDValue Src, 232 MachinePointerInfo DestPtrInfo, 233 MachinePointerInfo SrcPtrInfo, bool isStpcpy) const { 234 SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other); 235 SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src, 236 DAG.getConstant(0, DL, MVT::i32)); 237 return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1)); 238 } 239 240 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: 241 EmitTargetCodeForStrcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 242 SDValue Src1, SDValue Src2, 243 MachinePointerInfo Op1PtrInfo, 244 MachinePointerInfo Op2PtrInfo) const { 245 SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue); 246 SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2, 247 DAG.getConstant(0, DL, MVT::i32)); 248 Chain = Unused.getValue(1); 249 SDValue Glue = Chain.getValue(2); 250 return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain); 251 } 252 253 // Search from Src for a null character, stopping once Src reaches Limit. 254 // Return a pair of values, the first being the number of nonnull characters 255 // and the second being the out chain. 256 // 257 // This can be used for strlen by setting Limit to 0. 258 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, SDLoc DL, 259 SDValue Chain, SDValue Src, 260 SDValue Limit) { 261 EVT PtrVT = Src.getValueType(); 262 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue); 263 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain, 264 Limit, Src, DAG.getConstant(0, DL, MVT::i32)); 265 Chain = End.getValue(1); 266 SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src); 267 return std::make_pair(Len, Chain); 268 } 269 270 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: 271 EmitTargetCodeForStrlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 272 SDValue Src, MachinePointerInfo SrcPtrInfo) const { 273 EVT PtrVT = Src.getValueType(); 274 return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT)); 275 } 276 277 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: 278 EmitTargetCodeForStrnlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain, 279 SDValue Src, SDValue MaxLength, 280 MachinePointerInfo SrcPtrInfo) const { 281 EVT PtrVT = Src.getValueType(); 282 MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT); 283 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength); 284 return getBoundedStrlen(DAG, DL, Chain, Src, Limit); 285 } 286