Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SystemZSelectionDAGInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZTargetMachine.h"
     15 #include "llvm/CodeGen/SelectionDAG.h"
     16 
     17 using namespace llvm;
     18 
     19 #define DEBUG_TYPE "systemz-selectiondag-info"
     20 
     21 // Decide whether it is best to use a loop or straight-line code for
     22 // a block operation of Size bytes with source address Src and destination
     23 // address Dest.  Sequence is the opcode to use for straight-line code
     24 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
     25 // Return the chain for the completed operation.
     26 static SDValue emitMemMem(SelectionDAG &DAG, SDLoc DL, unsigned Sequence,
     27                           unsigned Loop, SDValue Chain, SDValue Dst,
     28                           SDValue Src, uint64_t Size) {
     29   EVT PtrVT = Src.getValueType();
     30   // The heuristic we use is to prefer loops for anything that would
     31   // require 7 or more MVCs.  With these kinds of sizes there isn't
     32   // much to choose between straight-line code and looping code,
     33   // since the time will be dominated by the MVCs themselves.
     34   // However, the loop has 4 or 5 instructions (depending on whether
     35   // the base addresses can be proved equal), so there doesn't seem
     36   // much point using a loop for 5 * 256 bytes or fewer.  Anything in
     37   // the range (5 * 256, 6 * 256) will need another instruction after
     38   // the loop, so it doesn't seem worth using a loop then either.
     39   // The next value up, 6 * 256, can be implemented in the same
     40   // number of straight-line MVCs as 6 * 256 - 1.
     41   if (Size > 6 * 256)
     42     return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
     43                        DAG.getConstant(Size, DL, PtrVT),
     44                        DAG.getConstant(Size / 256, DL, PtrVT));
     45   return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
     46                      DAG.getConstant(Size, DL, PtrVT));
     47 }
     48 
     49 SDValue SystemZSelectionDAGInfo::
     50 EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
     51                         SDValue Dst, SDValue Src, SDValue Size, unsigned Align,
     52                         bool IsVolatile, bool AlwaysInline,
     53                         MachinePointerInfo DstPtrInfo,
     54                         MachinePointerInfo SrcPtrInfo) const {
     55   if (IsVolatile)
     56     return SDValue();
     57 
     58   if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
     59     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
     60                       Chain, Dst, Src, CSize->getZExtValue());
     61   return SDValue();
     62 }
     63 
     64 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
     65 // Chain, Dst, ByteVal and Size.  These cases are expected to use
     66 // MVI, MVHHI, MVHI and MVGHI respectively.
     67 static SDValue memsetStore(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
     68                            SDValue Dst, uint64_t ByteVal, uint64_t Size,
     69                            unsigned Align,
     70                            MachinePointerInfo DstPtrInfo) {
     71   uint64_t StoreVal = ByteVal;
     72   for (unsigned I = 1; I < Size; ++I)
     73     StoreVal |= ByteVal << (I * 8);
     74   return DAG.getStore(Chain, DL,
     75                       DAG.getConstant(StoreVal, DL,
     76                                       MVT::getIntegerVT(Size * 8)),
     77                       Dst, DstPtrInfo, false, false, Align);
     78 }
     79 
     80 SDValue SystemZSelectionDAGInfo::
     81 EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
     82                         SDValue Dst, SDValue Byte, SDValue Size,
     83                         unsigned Align, bool IsVolatile,
     84                         MachinePointerInfo DstPtrInfo) const {
     85   EVT PtrVT = Dst.getValueType();
     86 
     87   if (IsVolatile)
     88     return SDValue();
     89 
     90   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
     91     uint64_t Bytes = CSize->getZExtValue();
     92     if (Bytes == 0)
     93       return SDValue();
     94     if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
     95       // Handle cases that can be done using at most two of
     96       // MVI, MVHI, MVHHI and MVGHI.  The latter two can only be
     97       // used if ByteVal is all zeros or all ones; in other casees,
     98       // we can move at most 2 halfwords.
     99       uint64_t ByteVal = CByte->getZExtValue();
    100       if (ByteVal == 0 || ByteVal == 255 ?
    101           Bytes <= 16 && countPopulation(Bytes) <= 2 :
    102           Bytes <= 4) {
    103         unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
    104         unsigned Size2 = Bytes - Size1;
    105         SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
    106                                      Align, DstPtrInfo);
    107         if (Size2 == 0)
    108           return Chain1;
    109         Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    110                           DAG.getConstant(Size1, DL, PtrVT));
    111         DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
    112         SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
    113                                      std::min(Align, Size1), DstPtrInfo);
    114         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
    115       }
    116     } else {
    117       // Handle one and two bytes using STC.
    118       if (Bytes <= 2) {
    119         SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
    120                                       false, false, Align);
    121         if (Bytes == 1)
    122           return Chain1;
    123         SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    124                                    DAG.getConstant(1, DL, PtrVT));
    125         SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
    126                                       DstPtrInfo.getWithOffset(1),
    127                                       false, false, 1);
    128         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
    129       }
    130     }
    131     assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
    132 
    133     // Handle the special case of a memset of 0, which can use XC.
    134     auto *CByte = dyn_cast<ConstantSDNode>(Byte);
    135     if (CByte && CByte->getZExtValue() == 0)
    136       return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
    137                         Chain, Dst, Dst, Bytes);
    138 
    139     // Copy the byte to the first location and then use MVC to copy
    140     // it to the rest.
    141     Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
    142                          false, false, Align);
    143     SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
    144                                    DAG.getConstant(1, DL, PtrVT));
    145     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
    146                       Chain, DstPlus1, Dst, Bytes - 1);
    147   }
    148   return SDValue();
    149 }
    150 
    151 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
    152 // deciding whether to use a loop or straight-line code.
    153 static SDValue emitCLC(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    154                        SDValue Src1, SDValue Src2, uint64_t Size) {
    155   SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
    156   EVT PtrVT = Src1.getValueType();
    157   // A two-CLC sequence is a clear win over a loop, not least because it
    158   // needs only one branch.  A three-CLC sequence needs the same number
    159   // of branches as a loop (i.e. 2), but is shorter.  That brings us to
    160   // lengths greater than 768 bytes.  It seems relatively likely that
    161   // a difference will be found within the first 768 bytes, so we just
    162   // optimize for the smallest number of branch instructions, in order
    163   // to avoid polluting the prediction buffer too much.  A loop only ever
    164   // needs 2 branches, whereas a straight-line sequence would need 3 or more.
    165   if (Size > 3 * 256)
    166     return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
    167                        DAG.getConstant(Size, DL, PtrVT),
    168                        DAG.getConstant(Size / 256, DL, PtrVT));
    169   return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
    170                      DAG.getConstant(Size, DL, PtrVT));
    171 }
    172 
    173 // Convert the current CC value into an integer that is 0 if CC == 0,
    174 // less than zero if CC == 1 and greater than zero if CC >= 2.
    175 // The sequence starts with IPM, which puts CC into bits 29 and 28
    176 // of an integer and clears bits 30 and 31.
    177 static SDValue addIPMSequence(SDLoc DL, SDValue Glue, SelectionDAG &DAG) {
    178   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
    179   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
    180                             DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
    181   SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL,
    182                              DAG.getConstant(31, DL, MVT::i32));
    183   return ROTL;
    184 }
    185 
    186 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    187 EmitTargetCodeForMemcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    188                         SDValue Src1, SDValue Src2, SDValue Size,
    189                         MachinePointerInfo Op1PtrInfo,
    190                         MachinePointerInfo Op2PtrInfo) const {
    191   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
    192     uint64_t Bytes = CSize->getZExtValue();
    193     assert(Bytes > 0 && "Caller should have handled 0-size case");
    194     Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes);
    195     SDValue Glue = Chain.getValue(1);
    196     return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
    197   }
    198   return std::make_pair(SDValue(), SDValue());
    199 }
    200 
    201 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    202 EmitTargetCodeForMemchr(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    203                         SDValue Src, SDValue Char, SDValue Length,
    204                         MachinePointerInfo SrcPtrInfo) const {
    205   // Use SRST to find the character.  End is its address on success.
    206   EVT PtrVT = Src.getValueType();
    207   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
    208   Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
    209   Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
    210   Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
    211                      DAG.getConstant(255, DL, MVT::i32));
    212   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
    213   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
    214                             Limit, Src, Char);
    215   Chain = End.getValue(1);
    216   SDValue Glue = End.getValue(2);
    217 
    218   // Now select between End and null, depending on whether the character
    219   // was found.
    220   SDValue Ops[] = {End, DAG.getConstant(0, DL, PtrVT),
    221                    DAG.getConstant(SystemZ::CCMASK_SRST, DL, MVT::i32),
    222                    DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32),
    223                    Glue};
    224   VTs = DAG.getVTList(PtrVT, MVT::Glue);
    225   End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
    226   return std::make_pair(End, Chain);
    227 }
    228 
    229 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    230 EmitTargetCodeForStrcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    231                         SDValue Dest, SDValue Src,
    232                         MachinePointerInfo DestPtrInfo,
    233                         MachinePointerInfo SrcPtrInfo, bool isStpcpy) const {
    234   SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
    235   SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
    236                                 DAG.getConstant(0, DL, MVT::i32));
    237   return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
    238 }
    239 
    240 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    241 EmitTargetCodeForStrcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    242                         SDValue Src1, SDValue Src2,
    243                         MachinePointerInfo Op1PtrInfo,
    244                         MachinePointerInfo Op2PtrInfo) const {
    245   SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue);
    246   SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2,
    247                                DAG.getConstant(0, DL, MVT::i32));
    248   Chain = Unused.getValue(1);
    249   SDValue Glue = Chain.getValue(2);
    250   return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
    251 }
    252 
    253 // Search from Src for a null character, stopping once Src reaches Limit.
    254 // Return a pair of values, the first being the number of nonnull characters
    255 // and the second being the out chain.
    256 //
    257 // This can be used for strlen by setting Limit to 0.
    258 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, SDLoc DL,
    259                                                     SDValue Chain, SDValue Src,
    260                                                     SDValue Limit) {
    261   EVT PtrVT = Src.getValueType();
    262   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
    263   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
    264                             Limit, Src, DAG.getConstant(0, DL, MVT::i32));
    265   Chain = End.getValue(1);
    266   SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
    267   return std::make_pair(Len, Chain);
    268 }
    269 
    270 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    271 EmitTargetCodeForStrlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    272                         SDValue Src, MachinePointerInfo SrcPtrInfo) const {
    273   EVT PtrVT = Src.getValueType();
    274   return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT));
    275 }
    276 
    277 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
    278 EmitTargetCodeForStrnlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
    279                          SDValue Src, SDValue MaxLength,
    280                          MachinePointerInfo SrcPtrInfo) const {
    281   EVT PtrVT = Src.getValueType();
    282   MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
    283   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
    284   return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
    285 }
    286