Home | History | Annotate | Download | only in Utils
      1 //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Define several functions to decode x86 specific shuffle semantics into a
     11 // generic vector mask.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "X86ShuffleDecode.h"
     16 #include "llvm/IR/Constants.h"
     17 #include "llvm/CodeGen/MachineValueType.h"
     18 
     19 //===----------------------------------------------------------------------===//
     20 //  Vector Mask Decoding
     21 //===----------------------------------------------------------------------===//
     22 
     23 namespace llvm {
     24 
     25 void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
     26   // Defaults the copying the dest value.
     27   ShuffleMask.push_back(0);
     28   ShuffleMask.push_back(1);
     29   ShuffleMask.push_back(2);
     30   ShuffleMask.push_back(3);
     31 
     32   // Decode the immediate.
     33   unsigned ZMask = Imm & 15;
     34   unsigned CountD = (Imm >> 4) & 3;
     35   unsigned CountS = (Imm >> 6) & 3;
     36 
     37   // CountS selects which input element to use.
     38   unsigned InVal = 4 + CountS;
     39   // CountD specifies which element of destination to update.
     40   ShuffleMask[CountD] = InVal;
     41   // ZMask zaps values, potentially overriding the CountD elt.
     42   if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
     43   if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
     44   if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
     45   if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
     46 }
     47 
     48 // <3,1> or <6,7,2,3>
     49 void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
     50   for (unsigned i = NElts / 2; i != NElts; ++i)
     51     ShuffleMask.push_back(NElts + i);
     52 
     53   for (unsigned i = NElts / 2; i != NElts; ++i)
     54     ShuffleMask.push_back(i);
     55 }
     56 
     57 // <0,2> or <0,1,4,5>
     58 void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
     59   for (unsigned i = 0; i != NElts / 2; ++i)
     60     ShuffleMask.push_back(i);
     61 
     62   for (unsigned i = 0; i != NElts / 2; ++i)
     63     ShuffleMask.push_back(NElts + i);
     64 }
     65 
     66 void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
     67   unsigned NumElts = VT.getVectorNumElements();
     68   for (int i = 0, e = NumElts / 2; i < e; ++i) {
     69     ShuffleMask.push_back(2 * i);
     70     ShuffleMask.push_back(2 * i);
     71   }
     72 }
     73 
     74 void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
     75   unsigned NumElts = VT.getVectorNumElements();
     76   for (int i = 0, e = NumElts / 2; i < e; ++i) {
     77     ShuffleMask.push_back(2 * i + 1);
     78     ShuffleMask.push_back(2 * i + 1);
     79   }
     80 }
     81 
     82 void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
     83   unsigned VectorSizeInBits = VT.getSizeInBits();
     84   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
     85   unsigned NumElts = VT.getVectorNumElements();
     86   unsigned NumLanes = VectorSizeInBits / 128;
     87   unsigned NumLaneElts = NumElts / NumLanes;
     88   unsigned NumLaneSubElts = 64 / ScalarSizeInBits;
     89 
     90   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
     91     for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts)
     92       for (unsigned s = 0; s != NumLaneSubElts; s++)
     93         ShuffleMask.push_back(l + s);
     94 }
     95 
     96 void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
     97   unsigned VectorSizeInBits = VT.getSizeInBits();
     98   unsigned NumElts = VectorSizeInBits / 8;
     99   unsigned NumLanes = VectorSizeInBits / 128;
    100   unsigned NumLaneElts = NumElts / NumLanes;
    101 
    102   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
    103     for (unsigned i = 0; i < NumLaneElts; ++i) {
    104       int M = SM_SentinelZero;
    105       if (i >= Imm) M = i - Imm + l;
    106       ShuffleMask.push_back(M);
    107     }
    108 }
    109 
    110 void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
    111   unsigned VectorSizeInBits = VT.getSizeInBits();
    112   unsigned NumElts = VectorSizeInBits / 8;
    113   unsigned NumLanes = VectorSizeInBits / 128;
    114   unsigned NumLaneElts = NumElts / NumLanes;
    115 
    116   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
    117     for (unsigned i = 0; i < NumLaneElts; ++i) {
    118       unsigned Base = i + Imm;
    119       int M = Base + l;
    120       if (Base >= NumLaneElts) M = SM_SentinelZero;
    121       ShuffleMask.push_back(M);
    122     }
    123 }
    124 
    125 void DecodePALIGNRMask(MVT VT, unsigned Imm,
    126                        SmallVectorImpl<int> &ShuffleMask) {
    127   unsigned NumElts = VT.getVectorNumElements();
    128   unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8);
    129 
    130   unsigned NumLanes = VT.getSizeInBits() / 128;
    131   unsigned NumLaneElts = NumElts / NumLanes;
    132 
    133   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
    134     for (unsigned i = 0; i != NumLaneElts; ++i) {
    135       unsigned Base = i + Offset;
    136       // if i+offset is out of this lane then we actually need the other source
    137       if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
    138       ShuffleMask.push_back(Base + l);
    139     }
    140   }
    141 }
    142 
    143 /// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*.
    144 /// VT indicates the type of the vector allowing it to handle different
    145 /// datatypes and vector widths.
    146 void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
    147   unsigned NumElts = VT.getVectorNumElements();
    148 
    149   unsigned NumLanes = VT.getSizeInBits() / 128;
    150   if (NumLanes == 0) NumLanes = 1;  // Handle MMX
    151   unsigned NumLaneElts = NumElts / NumLanes;
    152 
    153   unsigned NewImm = Imm;
    154   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
    155     for (unsigned i = 0; i != NumLaneElts; ++i) {
    156       ShuffleMask.push_back(NewImm % NumLaneElts + l);
    157       NewImm /= NumLaneElts;
    158     }
    159     if (NumLaneElts == 4) NewImm = Imm; // reload imm
    160   }
    161 }
    162 
    163 void DecodePSHUFHWMask(MVT VT, unsigned Imm,
    164                        SmallVectorImpl<int> &ShuffleMask) {
    165   unsigned NumElts = VT.getVectorNumElements();
    166 
    167   for (unsigned l = 0; l != NumElts; l += 8) {
    168     unsigned NewImm = Imm;
    169     for (unsigned i = 0, e = 4; i != e; ++i) {
    170       ShuffleMask.push_back(l + i);
    171     }
    172     for (unsigned i = 4, e = 8; i != e; ++i) {
    173       ShuffleMask.push_back(l + 4 + (NewImm & 3));
    174       NewImm >>= 2;
    175     }
    176   }
    177 }
    178 
    179 void DecodePSHUFLWMask(MVT VT, unsigned Imm,
    180                        SmallVectorImpl<int> &ShuffleMask) {
    181   unsigned NumElts = VT.getVectorNumElements();
    182 
    183   for (unsigned l = 0; l != NumElts; l += 8) {
    184     unsigned NewImm = Imm;
    185     for (unsigned i = 0, e = 4; i != e; ++i) {
    186       ShuffleMask.push_back(l + (NewImm & 3));
    187       NewImm >>= 2;
    188     }
    189     for (unsigned i = 4, e = 8; i != e; ++i) {
    190       ShuffleMask.push_back(l + i);
    191     }
    192   }
    193 }
    194 
    195 void DecodePSWAPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
    196   unsigned NumElts = VT.getVectorNumElements();
    197   unsigned NumHalfElts = NumElts / 2;
    198 
    199   for (unsigned l = 0; l != NumHalfElts; ++l)
    200     ShuffleMask.push_back(l + NumHalfElts);
    201   for (unsigned h = 0; h != NumHalfElts; ++h)
    202     ShuffleMask.push_back(h);
    203 }
    204 
    205 /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
    206 /// the type of the vector allowing it to handle different datatypes and vector
    207 /// widths.
    208 void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
    209   unsigned NumElts = VT.getVectorNumElements();
    210 
    211   unsigned NumLanes = VT.getSizeInBits() / 128;
    212   unsigned NumLaneElts = NumElts / NumLanes;
    213 
    214   unsigned NewImm = Imm;
    215   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
    216     // each half of a lane comes from different source
    217     for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
    218       for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
    219         ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
    220         NewImm /= NumLaneElts;
    221       }
    222     }
    223     if (NumLaneElts == 4) NewImm = Imm; // reload imm
    224   }
    225 }
    226 
    227 /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
    228 /// and punpckh*. VT indicates the type of the vector allowing it to handle
    229 /// different datatypes and vector widths.
    230 void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
    231   unsigned NumElts = VT.getVectorNumElements();
    232 
    233   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
    234   // independently on 128-bit lanes.
    235   unsigned NumLanes = VT.getSizeInBits() / 128;
    236   if (NumLanes == 0) NumLanes = 1;  // Handle MMX
    237   unsigned NumLaneElts = NumElts / NumLanes;
    238 
    239   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
    240     for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
    241       ShuffleMask.push_back(i);           // Reads from dest/src1
    242       ShuffleMask.push_back(i + NumElts); // Reads from src/src2
    243     }
    244   }
    245 }
    246 
    247 /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
    248 /// and punpckl*. VT indicates the type of the vector allowing it to handle
    249 /// different datatypes and vector widths.
    250 void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
    251   unsigned NumElts = VT.getVectorNumElements();
    252 
    253   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
    254   // independently on 128-bit lanes.
    255   unsigned NumLanes = VT.getSizeInBits() / 128;
    256   if (NumLanes == 0 ) NumLanes = 1;  // Handle MMX
    257   unsigned NumLaneElts = NumElts / NumLanes;
    258 
    259   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
    260     for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
    261       ShuffleMask.push_back(i);           // Reads from dest/src1
    262       ShuffleMask.push_back(i + NumElts); // Reads from src/src2
    263     }
    264   }
    265 }
    266 
    267 /// \brief Decode a shuffle packed values at 128-bit granularity
    268 /// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2)
    269 /// immediate mask into a shuffle mask.
    270 void decodeVSHUF64x2FamilyMask(MVT VT, unsigned Imm,
    271                         SmallVectorImpl<int> &ShuffleMask) {
    272   unsigned NumLanes = VT.getSizeInBits() / 128;
    273   unsigned NumElementsInLane = 128 / VT.getScalarSizeInBits();
    274   unsigned ControlBitsMask = NumLanes - 1;
    275   unsigned NumControlBits  = NumLanes / 2;
    276 
    277   for (unsigned l = 0; l != NumLanes; ++l) {
    278     unsigned LaneMask = (Imm >> (l * NumControlBits)) & ControlBitsMask;
    279     // We actually need the other source.
    280     if (l >= NumLanes / 2)
    281       LaneMask += NumLanes;
    282     for (unsigned i = 0; i != NumElementsInLane; ++i)
    283       ShuffleMask.push_back(LaneMask * NumElementsInLane + i);
    284   }
    285 }
    286 
    287 void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
    288                           SmallVectorImpl<int> &ShuffleMask) {
    289   unsigned HalfSize = VT.getVectorNumElements() / 2;
    290 
    291   for (unsigned l = 0; l != 2; ++l) {
    292     unsigned HalfMask = Imm >> (l * 4);
    293     unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
    294     for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
    295       ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i);
    296   }
    297 }
    298 
    299 void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
    300   Type *MaskTy = C->getType();
    301   // It is not an error for the PSHUFB mask to not be a vector of i8 because the
    302   // constant pool uniques constants by their bit representation.
    303   // e.g. the following take up the same space in the constant pool:
    304   //   i128 -170141183420855150465331762880109871104
    305   //
    306   //   <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
    307   //
    308   //   <4 x i32> <i32 -2147483648, i32 -2147483648,
    309   //              i32 -2147483648, i32 -2147483648>
    310 
    311   unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
    312 
    313   if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512.
    314     return;
    315 
    316   // This is a straightforward byte vector.
    317   if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) {
    318     int NumElements = MaskTy->getVectorNumElements();
    319     ShuffleMask.reserve(NumElements);
    320 
    321     for (int i = 0; i < NumElements; ++i) {
    322       // For AVX vectors with 32 bytes the base of the shuffle is the 16-byte
    323       // lane of the vector we're inside.
    324       int Base = i < 16 ? 0 : 16;
    325       Constant *COp = C->getAggregateElement(i);
    326       if (!COp) {
    327         ShuffleMask.clear();
    328         return;
    329       } else if (isa<UndefValue>(COp)) {
    330         ShuffleMask.push_back(SM_SentinelUndef);
    331         continue;
    332       }
    333       uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
    334       // If the high bit (7) of the byte is set, the element is zeroed.
    335       if (Element & (1 << 7))
    336         ShuffleMask.push_back(SM_SentinelZero);
    337       else {
    338         // Only the least significant 4 bits of the byte are used.
    339         int Index = Base + (Element & 0xf);
    340         ShuffleMask.push_back(Index);
    341       }
    342     }
    343   }
    344   // TODO: Handle funny-looking vectors too.
    345 }
    346 
    347 void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,
    348                       SmallVectorImpl<int> &ShuffleMask) {
    349   for (int i = 0, e = RawMask.size(); i < e; ++i) {
    350     uint64_t M = RawMask[i];
    351     if (M == (uint64_t)SM_SentinelUndef) {
    352       ShuffleMask.push_back(M);
    353       continue;
    354     }
    355     // For AVX vectors with 32 bytes the base of the shuffle is the half of
    356     // the vector we're inside.
    357     int Base = i < 16 ? 0 : 16;
    358     // If the high bit (7) of the byte is set, the element is zeroed.
    359     if (M & (1 << 7))
    360       ShuffleMask.push_back(SM_SentinelZero);
    361     else {
    362       // Only the least significant 4 bits of the byte are used.
    363       int Index = Base + (M & 0xf);
    364       ShuffleMask.push_back(Index);
    365     }
    366   }
    367 }
    368 
    369 void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
    370   int ElementBits = VT.getScalarSizeInBits();
    371   int NumElements = VT.getVectorNumElements();
    372   for (int i = 0; i < NumElements; ++i) {
    373     // If there are more than 8 elements in the vector, then any immediate blend
    374     // mask applies to each 128-bit lane. There can never be more than
    375     // 8 elements in a 128-bit lane with an immediate blend.
    376     int Bit = NumElements > 8 ? i % (128 / ElementBits) : i;
    377     assert(Bit < 8 &&
    378            "Immediate blends only operate over 8 elements at a time!");
    379     ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i);
    380   }
    381 }
    382 
    383 /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
    384 /// No VT provided since it only works on 256-bit, 4 element vectors.
    385 void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
    386   for (unsigned i = 0; i != 4; ++i) {
    387     ShuffleMask.push_back((Imm >> (2 * i)) & 3);
    388   }
    389 }
    390 
    391 void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
    392   Type *MaskTy = C->getType();
    393   assert(MaskTy->isVectorTy() && "Expected a vector constant mask!");
    394   assert(MaskTy->getVectorElementType()->isIntegerTy() &&
    395          "Expected integer constant mask elements!");
    396   int ElementBits = MaskTy->getScalarSizeInBits();
    397   int NumElements = MaskTy->getVectorNumElements();
    398   assert((NumElements == 2 || NumElements == 4 || NumElements == 8) &&
    399          "Unexpected number of vector elements.");
    400   ShuffleMask.reserve(NumElements);
    401   if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
    402     assert((unsigned)NumElements == CDS->getNumElements() &&
    403            "Constant mask has a different number of elements!");
    404 
    405     for (int i = 0; i < NumElements; ++i) {
    406       int Base = (i * ElementBits / 128) * (128 / ElementBits);
    407       uint64_t Element = CDS->getElementAsInteger(i);
    408       // Only the least significant 2 bits of the integer are used.
    409       int Index = Base + (Element & 0x3);
    410       ShuffleMask.push_back(Index);
    411     }
    412   } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
    413     assert((unsigned)NumElements == C->getNumOperands() &&
    414            "Constant mask has a different number of elements!");
    415 
    416     for (int i = 0; i < NumElements; ++i) {
    417       int Base = (i * ElementBits / 128) * (128 / ElementBits);
    418       Constant *COp = CV->getOperand(i);
    419       if (isa<UndefValue>(COp)) {
    420         ShuffleMask.push_back(SM_SentinelUndef);
    421         continue;
    422       }
    423       uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
    424       // Only the least significant 2 bits of the integer are used.
    425       int Index = Base + (Element & 0x3);
    426       ShuffleMask.push_back(Index);
    427     }
    428   }
    429 }
    430 
    431 void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl<int> &Mask) {
    432   unsigned NumDstElts = DstVT.getVectorNumElements();
    433   unsigned SrcScalarBits = SrcVT.getScalarSizeInBits();
    434   unsigned DstScalarBits = DstVT.getScalarSizeInBits();
    435   unsigned Scale = DstScalarBits / SrcScalarBits;
    436   assert(SrcScalarBits < DstScalarBits &&
    437          "Expected zero extension mask to increase scalar size");
    438   assert(SrcVT.getVectorNumElements() >= NumDstElts &&
    439          "Too many zero extension lanes");
    440 
    441   for (unsigned i = 0; i != NumDstElts; i++) {
    442     Mask.push_back(i);
    443     for (unsigned j = 1; j != Scale; j++)
    444       Mask.push_back(SM_SentinelZero);
    445   }
    446 }
    447 
    448 void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
    449   unsigned NumElts = VT.getVectorNumElements();
    450   ShuffleMask.push_back(0);
    451   for (unsigned i = 1; i < NumElts; i++)
    452     ShuffleMask.push_back(SM_SentinelZero);
    453 }
    454 
    455 void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) {
    456   // First element comes from the first element of second source.
    457   // Remaining elements: Load zero extends / Move copies from first source.
    458   unsigned NumElts = VT.getVectorNumElements();
    459   Mask.push_back(NumElts);
    460   for (unsigned i = 1; i < NumElts; i++)
    461     Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
    462 }
    463 
    464 void DecodeEXTRQIMask(int Len, int Idx,
    465                       SmallVectorImpl<int> &ShuffleMask) {
    466   // Only the bottom 6 bits are valid for each immediate.
    467   Len &= 0x3F;
    468   Idx &= 0x3F;
    469 
    470   // We can only decode this bit extraction instruction as a shuffle if both the
    471   // length and index work with whole bytes.
    472   if (0 != (Len % 8) || 0 != (Idx % 8))
    473     return;
    474 
    475   // A length of zero is equivalent to a bit length of 64.
    476   if (Len == 0)
    477     Len = 64;
    478 
    479   // If the length + index exceeds the bottom 64 bits the result is undefined.
    480   if ((Len + Idx) > 64) {
    481     ShuffleMask.append(16, SM_SentinelUndef);
    482     return;
    483   }
    484 
    485   // Convert index and index to work with bytes.
    486   Len /= 8;
    487   Idx /= 8;
    488 
    489   // EXTRQ: Extract Len bytes starting from Idx. Zero pad the remaining bytes
    490   // of the lower 64-bits. The upper 64-bits are undefined.
    491   for (int i = 0; i != Len; ++i)
    492     ShuffleMask.push_back(i + Idx);
    493   for (int i = Len; i != 8; ++i)
    494     ShuffleMask.push_back(SM_SentinelZero);
    495   for (int i = 8; i != 16; ++i)
    496     ShuffleMask.push_back(SM_SentinelUndef);
    497 }
    498 
    499 void DecodeINSERTQIMask(int Len, int Idx,
    500                         SmallVectorImpl<int> &ShuffleMask) {
    501   // Only the bottom 6 bits are valid for each immediate.
    502   Len &= 0x3F;
    503   Idx &= 0x3F;
    504 
    505   // We can only decode this bit insertion instruction as a shuffle if both the
    506   // length and index work with whole bytes.
    507   if (0 != (Len % 8) || 0 != (Idx % 8))
    508     return;
    509 
    510   // A length of zero is equivalent to a bit length of 64.
    511   if (Len == 0)
    512     Len = 64;
    513 
    514   // If the length + index exceeds the bottom 64 bits the result is undefined.
    515   if ((Len + Idx) > 64) {
    516     ShuffleMask.append(16, SM_SentinelUndef);
    517     return;
    518   }
    519 
    520   // Convert index and index to work with bytes.
    521   Len /= 8;
    522   Idx /= 8;
    523 
    524   // INSERTQ: Extract lowest Len bytes from lower half of second source and
    525   // insert over first source starting at Idx byte. The upper 64-bits are
    526   // undefined.
    527   for (int i = 0; i != Idx; ++i)
    528     ShuffleMask.push_back(i);
    529   for (int i = 0; i != Len; ++i)
    530     ShuffleMask.push_back(i + 16);
    531   for (int i = Idx + Len; i != 8; ++i)
    532     ShuffleMask.push_back(i);
    533   for (int i = 8; i != 16; ++i)
    534     ShuffleMask.push_back(SM_SentinelUndef);
    535 }
    536 
    537 void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask,
    538                       SmallVectorImpl<int> &ShuffleMask) {
    539   for (int i = 0, e = RawMask.size(); i < e; ++i) {
    540     uint64_t M = RawMask[i];
    541     ShuffleMask.push_back((int)M);
    542   }
    543 }
    544 
    545 void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask,
    546                       SmallVectorImpl<int> &ShuffleMask) {
    547   for (int i = 0, e = RawMask.size(); i < e; ++i) {
    548     uint64_t M = RawMask[i];
    549     ShuffleMask.push_back((int)M);
    550   }
    551 }
    552 
    553 void DecodeVPERMVMask(const Constant *C, MVT VT,
    554                       SmallVectorImpl<int> &ShuffleMask) {
    555   Type *MaskTy = C->getType();
    556   if (MaskTy->isVectorTy()) {
    557     unsigned NumElements = MaskTy->getVectorNumElements();
    558     if (NumElements == VT.getVectorNumElements()) {
    559       for (unsigned i = 0; i < NumElements; ++i) {
    560         Constant *COp = C->getAggregateElement(i);
    561         if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) {
    562           ShuffleMask.clear();
    563           return;
    564         }
    565         if (isa<UndefValue>(COp))
    566           ShuffleMask.push_back(SM_SentinelUndef);
    567         else {
    568           uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
    569           Element &= (1 << NumElements) - 1;
    570           ShuffleMask.push_back(Element);
    571         }
    572       }
    573     }
    574     return;
    575   }
    576   // Scalar value; just broadcast it
    577   if (!isa<ConstantInt>(C))
    578     return;
    579   uint64_t Element = cast<ConstantInt>(C)->getZExtValue();
    580   int NumElements = VT.getVectorNumElements();
    581   Element &= (1 << NumElements) - 1;
    582   for (int i = 0; i < NumElements; ++i)
    583     ShuffleMask.push_back(Element);
    584 }
    585 
    586 void DecodeVPERMV3Mask(const Constant *C, MVT VT,
    587                        SmallVectorImpl<int> &ShuffleMask) {
    588   Type *MaskTy = C->getType();
    589   unsigned NumElements = MaskTy->getVectorNumElements();
    590   if (NumElements == VT.getVectorNumElements()) {
    591     for (unsigned i = 0; i < NumElements; ++i) {
    592       Constant *COp = C->getAggregateElement(i);
    593       if (!COp) {
    594         ShuffleMask.clear();
    595         return;
    596       }
    597       if (isa<UndefValue>(COp))
    598         ShuffleMask.push_back(SM_SentinelUndef);
    599       else {
    600         uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
    601         Element &= (1 << NumElements*2) - 1;
    602         ShuffleMask.push_back(Element);
    603       }
    604     }
    605   }
    606 }
    607 } // llvm namespace
    608