1 //===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the X86 jump, return, call, and related instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // Control Flow Instructions. 16 // 17 18 // Return instructions. 19 // 20 // The X86retflag return instructions are variadic because we may add ST0 and 21 // ST1 arguments when returning values on the x87 stack. 22 let isTerminator = 1, isReturn = 1, isBarrier = 1, 23 hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in { 24 def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops), 25 "ret{l}", [(X86retflag 0)], IIC_RET>, OpSize32, 26 Requires<[Not64BitMode]>; 27 def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops), 28 "ret{q}", [(X86retflag 0)], IIC_RET>, OpSize32, 29 Requires<[In64BitMode]>; 30 def RETW : I <0xC3, RawFrm, (outs), (ins), 31 "ret{w}", 32 [], IIC_RET>, OpSize16; 33 def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), 34 "ret{l}\t$amt", 35 [(X86retflag timm:$amt)], IIC_RET_IMM>, OpSize32, 36 Requires<[Not64BitMode]>; 37 def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), 38 "ret{q}\t$amt", 39 [(X86retflag timm:$amt)], IIC_RET_IMM>, OpSize32, 40 Requires<[In64BitMode]>; 41 def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt), 42 "ret{w}\t$amt", 43 [], IIC_RET_IMM>, OpSize16; 44 def LRETL : I <0xCB, RawFrm, (outs), (ins), 45 "{l}ret{l|f}", [], IIC_RET>, OpSize32; 46 def LRETQ : RI <0xCB, RawFrm, (outs), (ins), 47 "{l}ret{|f}q", [], IIC_RET>, Requires<[In64BitMode]>; 48 def LRETW : I <0xCB, RawFrm, (outs), (ins), 49 "{l}ret{w|f}", [], IIC_RET>, OpSize16; 50 def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 51 "{l}ret{l|f}\t$amt", [], IIC_RET>, OpSize32; 52 def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 53 "{l}ret{|f}q\t$amt", [], IIC_RET>, Requires<[In64BitMode]>; 54 def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 55 "{l}ret{w|f}\t$amt", [], IIC_RET>, OpSize16; 56 57 // The machine return from interrupt instruction, but sometimes we need to 58 // perform a post-epilogue stack adjustment. Codegen emits the pseudo form 59 // which expands to include an SP adjustment if necessary. 60 def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", [], IIC_IRET>, 61 OpSize16; 62 def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", [], 63 IIC_IRET>, OpSize32; 64 def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", [], 65 IIC_IRET>, Requires<[In64BitMode]>; 66 let isCodeGenOnly = 1 in 67 def IRET : PseudoI<(outs), (ins i16imm:$adj), [(X86iret timm:$adj)]>; 68 69 } 70 71 // Unconditional branches. 72 let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in { 73 def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), 74 "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>; 75 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { 76 def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst), 77 "jmp\t$dst", [], IIC_JMP_REL>, OpSize16; 78 def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst), 79 "jmp\t$dst", [], IIC_JMP_REL>, OpSize32; 80 } 81 } 82 83 // Conditional Branches. 84 let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in { 85 multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> { 86 def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, 87 [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>; 88 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { 89 def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm, 90 [], IIC_Jcc>, OpSize16, TB; 91 def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm, 92 [], IIC_Jcc>, TB, OpSize32; 93 } 94 } 95 } 96 97 defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>; 98 defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>; 99 defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>; 100 defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>; 101 defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>; 102 defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>; 103 defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>; 104 defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>; 105 defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>; 106 defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>; 107 defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>; 108 defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>; 109 defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>; 110 defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>; 111 defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>; 112 defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>; 113 114 // jcx/jecx/jrcx instructions. 115 let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in { 116 // These are the 32-bit versions of this instruction for the asmparser. In 117 // 32-bit mode, the address size prefix is jcxz and the unprefixed version is 118 // jecxz. 119 let Uses = [CX] in 120 def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 121 "jcxz\t$dst", [], IIC_JCXZ>, AdSize16, 122 Requires<[Not64BitMode]>; 123 let Uses = [ECX] in 124 def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 125 "jecxz\t$dst", [], IIC_JCXZ>, AdSize32; 126 127 let Uses = [RCX] in 128 def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 129 "jrcxz\t$dst", [], IIC_JCXZ>, AdSize64, 130 Requires<[In64BitMode]>; 131 } 132 133 // Indirect branches 134 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 135 def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst", 136 [(brind GR16:$dst)], IIC_JMP_REG>, Requires<[Not64BitMode]>, 137 OpSize16, Sched<[WriteJump]>; 138 def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst", 139 [(brind (loadi16 addr:$dst))], IIC_JMP_MEM>, 140 Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>; 141 142 def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst", 143 [(brind GR32:$dst)], IIC_JMP_REG>, Requires<[Not64BitMode]>, 144 OpSize32, Sched<[WriteJump]>; 145 def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst", 146 [(brind (loadi32 addr:$dst))], IIC_JMP_MEM>, 147 Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>; 148 149 def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst", 150 [(brind GR64:$dst)], IIC_JMP_REG>, Requires<[In64BitMode]>, 151 Sched<[WriteJump]>; 152 def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst", 153 [(brind (loadi64 addr:$dst))], IIC_JMP_MEM>, 154 Requires<[In64BitMode]>, Sched<[WriteJumpLd]>; 155 156 let Predicates = [Not64BitMode] in { 157 def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs), 158 (ins i16imm:$off, i16imm:$seg), 159 "ljmp{w}\t$seg, $off", [], 160 IIC_JMP_FAR_PTR>, OpSize16, Sched<[WriteJump]>; 161 def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs), 162 (ins i32imm:$off, i16imm:$seg), 163 "ljmp{l}\t$seg, $off", [], 164 IIC_JMP_FAR_PTR>, OpSize32, Sched<[WriteJump]>; 165 } 166 def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst), 167 "ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>, 168 Sched<[WriteJump]>; 169 170 def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst), 171 "ljmp{w}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize16, 172 Sched<[WriteJumpLd]>; 173 def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst), 174 "ljmp{l}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize32, 175 Sched<[WriteJumpLd]>; 176 } 177 178 179 // Loop instructions 180 let SchedRW = [WriteJump] in { 181 def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", [], IIC_LOOP>; 182 def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", [], IIC_LOOPE>; 183 def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", [], IIC_LOOPNE>; 184 } 185 186 //===----------------------------------------------------------------------===// 187 // Call Instructions... 188 // 189 let isCall = 1 in 190 // All calls clobber the non-callee saved registers. ESP is marked as 191 // a use to prevent stack-pointer assignments that appear immediately 192 // before calls from potentially appearing dead. Uses for argument 193 // registers are added manually. 194 let Uses = [ESP] in { 195 def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm, 196 (outs), (ins i32imm_pcrel:$dst), 197 "call{l}\t$dst", [], IIC_CALL_RI>, OpSize32, 198 Requires<[Not64BitMode]>, Sched<[WriteJump]>; 199 let hasSideEffects = 0 in 200 def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm, 201 (outs), (ins i16imm_pcrel:$dst), 202 "call{w}\t$dst", [], IIC_CALL_RI>, OpSize16, 203 Sched<[WriteJump]>; 204 def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst), 205 "call{w}\t{*}$dst", [(X86call GR16:$dst)], IIC_CALL_RI>, 206 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>; 207 def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst), 208 "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))], 209 IIC_CALL_MEM>, OpSize16, 210 Requires<[Not64BitMode,FavorMemIndirectCall]>, 211 Sched<[WriteJumpLd]>; 212 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst), 213 "call{l}\t{*}$dst", [(X86call GR32:$dst)], IIC_CALL_RI>, 214 OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>; 215 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst), 216 "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))], 217 IIC_CALL_MEM>, OpSize32, 218 Requires<[Not64BitMode,FavorMemIndirectCall]>, 219 Sched<[WriteJumpLd]>; 220 221 let Predicates = [Not64BitMode] in { 222 def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs), 223 (ins i16imm:$off, i16imm:$seg), 224 "lcall{w}\t$seg, $off", [], 225 IIC_CALL_FAR_PTR>, OpSize16, Sched<[WriteJump]>; 226 def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs), 227 (ins i32imm:$off, i16imm:$seg), 228 "lcall{l}\t$seg, $off", [], 229 IIC_CALL_FAR_PTR>, OpSize32, Sched<[WriteJump]>; 230 } 231 232 def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst), 233 "lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize16, 234 Sched<[WriteJumpLd]>; 235 def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst), 236 "lcall{l}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize32, 237 Sched<[WriteJumpLd]>; 238 } 239 240 241 // Tail call stuff. 242 243 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 244 isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in 245 let Uses = [ESP] in { 246 def TCRETURNdi : PseudoI<(outs), 247 (ins i32imm_pcrel:$dst, i32imm:$offset), []>; 248 def TCRETURNri : PseudoI<(outs), 249 (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>; 250 let mayLoad = 1 in 251 def TCRETURNmi : PseudoI<(outs), 252 (ins i32mem_TC:$dst, i32imm:$offset), []>; 253 254 // FIXME: The should be pseudo instructions that are lowered when going to 255 // mcinst. 256 def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs), 257 (ins i32imm_pcrel:$dst), 258 "jmp\t$dst", 259 [], IIC_JMP_REL>; 260 def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), 261 "", [], IIC_JMP_REG>; // FIXME: Remove encoding when JIT is dead. 262 let mayLoad = 1 in 263 def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst), 264 "jmp{l}\t{*}$dst", [], IIC_JMP_MEM>; 265 } 266 267 268 //===----------------------------------------------------------------------===// 269 // Call Instructions... 270 // 271 272 // RSP is marked as a use to prevent stack-pointer assignments that appear 273 // immediately before calls from potentially appearing dead. Uses for argument 274 // registers are added manually. 275 let isCall = 1, Uses = [RSP], SchedRW = [WriteJump] in { 276 // NOTE: this pattern doesn't match "X86call imm", because we do not know 277 // that the offset between an arbitrary immediate and the call will fit in 278 // the 32-bit pcrel field that we have. 279 def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm, 280 (outs), (ins i64i32imm_pcrel:$dst), 281 "call{q}\t$dst", [], IIC_CALL_RI>, OpSize32, 282 Requires<[In64BitMode]>; 283 def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst), 284 "call{q}\t{*}$dst", [(X86call GR64:$dst)], 285 IIC_CALL_RI>, 286 Requires<[In64BitMode]>; 287 def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst), 288 "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))], 289 IIC_CALL_MEM>, 290 Requires<[In64BitMode,FavorMemIndirectCall]>; 291 292 def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst), 293 "lcall{q}\t{*}$dst", [], IIC_CALL_FAR_MEM>; 294 } 295 296 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 297 isCodeGenOnly = 1, Uses = [RSP], usesCustomInserter = 1, 298 SchedRW = [WriteJump] in { 299 def TCRETURNdi64 : PseudoI<(outs), 300 (ins i64i32imm_pcrel:$dst, i32imm:$offset), 301 []>; 302 def TCRETURNri64 : PseudoI<(outs), 303 (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>; 304 let mayLoad = 1 in 305 def TCRETURNmi64 : PseudoI<(outs), 306 (ins i64mem_TC:$dst, i32imm:$offset), []>; 307 308 def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst), 309 "jmp\t$dst", [], IIC_JMP_REL>; 310 def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), 311 "jmp{q}\t{*}$dst", [], IIC_JMP_MEM>; 312 313 let mayLoad = 1 in 314 def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst), 315 "jmp{q}\t{*}$dst", [], IIC_JMP_MEM>; 316 317 // Win64 wants jumps leaving the function to have a REX_W prefix. 318 let hasREX_WPrefix = 1 in { 319 def TAILJMPd64_REX : Ii32PCRel<0xE9, RawFrm, (outs), 320 (ins i64i32imm_pcrel:$dst), 321 "rex64 jmp\t$dst", [], IIC_JMP_REL>; 322 def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), 323 "rex64 jmp{q}\t{*}$dst", [], IIC_JMP_MEM>; 324 325 let mayLoad = 1 in 326 def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst), 327 "rex64 jmp{q}\t{*}$dst", [], IIC_JMP_MEM>; 328 } 329 } 330