Home | History | Annotate | Download | only in X86
      1 //===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetRegisterInfo class.
     11 // This file is responsible for the frame pointer elimination optimization
     12 // on X86.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "X86RegisterInfo.h"
     17 #include "X86FrameLowering.h"
     18 #include "X86InstrBuilder.h"
     19 #include "X86MachineFunctionInfo.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/ADT/BitVector.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineFunctionPass.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineModuleInfo.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/MachineValueType.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/Type.h"
     34 #include "llvm/MC/MCAsmInfo.h"
     35 #include "llvm/Support/CommandLine.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Target/TargetFrameLowering.h"
     38 #include "llvm/Target/TargetInstrInfo.h"
     39 #include "llvm/Target/TargetMachine.h"
     40 #include "llvm/Target/TargetOptions.h"
     41 
     42 using namespace llvm;
     43 
     44 #define GET_REGINFO_TARGET_DESC
     45 #include "X86GenRegisterInfo.inc"
     46 
     47 static cl::opt<bool>
     48 EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true),
     49           cl::desc("Enable use of a base pointer for complex stack frames"));
     50 
     51 X86RegisterInfo::X86RegisterInfo(const Triple &TT)
     52     : X86GenRegisterInfo((TT.isArch64Bit() ? X86::RIP : X86::EIP),
     53                          X86_MC::getDwarfRegFlavour(TT, false),
     54                          X86_MC::getDwarfRegFlavour(TT, true),
     55                          (TT.isArch64Bit() ? X86::RIP : X86::EIP)) {
     56   X86_MC::InitLLVM2SEHRegisterMapping(this);
     57 
     58   // Cache some information.
     59   Is64Bit = TT.isArch64Bit();
     60   IsWin64 = Is64Bit && TT.isOSWindows();
     61 
     62   // Use a callee-saved register as the base pointer.  These registers must
     63   // not conflict with any ABI requirements.  For example, in 32-bit mode PIC
     64   // requires GOT in the EBX register before function calls via PLT GOT pointer.
     65   if (Is64Bit) {
     66     SlotSize = 8;
     67     // This matches the simplified 32-bit pointer code in the data layout
     68     // computation.
     69     // FIXME: Should use the data layout?
     70     bool Use64BitReg = TT.getEnvironment() != Triple::GNUX32;
     71     StackPtr = Use64BitReg ? X86::RSP : X86::ESP;
     72     FramePtr = Use64BitReg ? X86::RBP : X86::EBP;
     73     BasePtr = Use64BitReg ? X86::RBX : X86::EBX;
     74   } else {
     75     SlotSize = 4;
     76     StackPtr = X86::ESP;
     77     FramePtr = X86::EBP;
     78     BasePtr = X86::ESI;
     79   }
     80 }
     81 
     82 bool
     83 X86RegisterInfo::trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
     84   // ExeDepsFixer and PostRAScheduler require liveness.
     85   return true;
     86 }
     87 
     88 int
     89 X86RegisterInfo::getSEHRegNum(unsigned i) const {
     90   return getEncodingValue(i);
     91 }
     92 
     93 const TargetRegisterClass *
     94 X86RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
     95                                        unsigned Idx) const {
     96   // The sub_8bit sub-register index is more constrained in 32-bit mode.
     97   // It behaves just like the sub_8bit_hi index.
     98   if (!Is64Bit && Idx == X86::sub_8bit)
     99     Idx = X86::sub_8bit_hi;
    100 
    101   // Forward to TableGen's default version.
    102   return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
    103 }
    104 
    105 const TargetRegisterClass *
    106 X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
    107                                           const TargetRegisterClass *B,
    108                                           unsigned SubIdx) const {
    109   // The sub_8bit sub-register index is more constrained in 32-bit mode.
    110   if (!Is64Bit && SubIdx == X86::sub_8bit) {
    111     A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
    112     if (!A)
    113       return nullptr;
    114   }
    115   return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
    116 }
    117 
    118 const TargetRegisterClass *
    119 X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
    120                                            const MachineFunction &MF) const {
    121   // Don't allow super-classes of GR8_NOREX.  This class is only used after
    122   // extracting sub_8bit_hi sub-registers.  The H sub-registers cannot be copied
    123   // to the full GR8 register class in 64-bit mode, so we cannot allow the
    124   // reigster class inflation.
    125   //
    126   // The GR8_NOREX class is always used in a way that won't be constrained to a
    127   // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
    128   // full GR8 class.
    129   if (RC == &X86::GR8_NOREXRegClass)
    130     return RC;
    131 
    132   const TargetRegisterClass *Super = RC;
    133   TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
    134   do {
    135     switch (Super->getID()) {
    136     case X86::GR8RegClassID:
    137     case X86::GR16RegClassID:
    138     case X86::GR32RegClassID:
    139     case X86::GR64RegClassID:
    140     case X86::FR32RegClassID:
    141     case X86::FR64RegClassID:
    142     case X86::RFP32RegClassID:
    143     case X86::RFP64RegClassID:
    144     case X86::RFP80RegClassID:
    145     case X86::VR128RegClassID:
    146     case X86::VR256RegClassID:
    147       // Don't return a super-class that would shrink the spill size.
    148       // That can happen with the vector and float classes.
    149       if (Super->getSize() == RC->getSize())
    150         return Super;
    151     }
    152     Super = *I++;
    153   } while (Super);
    154   return RC;
    155 }
    156 
    157 const TargetRegisterClass *
    158 X86RegisterInfo::getPointerRegClass(const MachineFunction &MF,
    159                                     unsigned Kind) const {
    160   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
    161   switch (Kind) {
    162   default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
    163   case 0: // Normal GPRs.
    164     if (Subtarget.isTarget64BitLP64())
    165       return &X86::GR64RegClass;
    166     return &X86::GR32RegClass;
    167   case 1: // Normal GPRs except the stack pointer (for encoding reasons).
    168     if (Subtarget.isTarget64BitLP64())
    169       return &X86::GR64_NOSPRegClass;
    170     return &X86::GR32_NOSPRegClass;
    171   case 2: // NOREX GPRs.
    172     if (Subtarget.isTarget64BitLP64())
    173       return &X86::GR64_NOREXRegClass;
    174     return &X86::GR32_NOREXRegClass;
    175   case 3: // NOREX GPRs except the stack pointer (for encoding reasons).
    176     if (Subtarget.isTarget64BitLP64())
    177       return &X86::GR64_NOREX_NOSPRegClass;
    178     return &X86::GR32_NOREX_NOSPRegClass;
    179   case 4: // Available for tailcall (not callee-saved GPRs).
    180     return getGPRsForTailCall(MF);
    181   }
    182 }
    183 
    184 const TargetRegisterClass *
    185 X86RegisterInfo::getGPRsForTailCall(const MachineFunction &MF) const {
    186   const Function *F = MF.getFunction();
    187   if (IsWin64 || (F && F->getCallingConv() == CallingConv::X86_64_Win64))
    188     return &X86::GR64_TCW64RegClass;
    189   else if (Is64Bit)
    190     return &X86::GR64_TCRegClass;
    191 
    192   bool hasHipeCC = (F ? F->getCallingConv() == CallingConv::HiPE : false);
    193   if (hasHipeCC)
    194     return &X86::GR32RegClass;
    195   return &X86::GR32_TCRegClass;
    196 }
    197 
    198 const TargetRegisterClass *
    199 X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    200   if (RC == &X86::CCRRegClass) {
    201     if (Is64Bit)
    202       return &X86::GR64RegClass;
    203     else
    204       return &X86::GR32RegClass;
    205   }
    206   return RC;
    207 }
    208 
    209 unsigned
    210 X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
    211                                      MachineFunction &MF) const {
    212   const X86FrameLowering *TFI = getFrameLowering(MF);
    213 
    214   unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
    215   switch (RC->getID()) {
    216   default:
    217     return 0;
    218   case X86::GR32RegClassID:
    219     return 4 - FPDiff;
    220   case X86::GR64RegClassID:
    221     return 12 - FPDiff;
    222   case X86::VR128RegClassID:
    223     return Is64Bit ? 10 : 4;
    224   case X86::VR64RegClassID:
    225     return 4;
    226   }
    227 }
    228 
    229 const MCPhysReg *
    230 X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
    231   const X86Subtarget &Subtarget = MF->getSubtarget<X86Subtarget>();
    232   bool HasSSE = Subtarget.hasSSE1();
    233   bool HasAVX = Subtarget.hasAVX();
    234   bool HasAVX512 = Subtarget.hasAVX512();
    235   bool CallsEHReturn = MF->getMMI().callsEHReturn();
    236 
    237   assert(MF && "MachineFunction required");
    238   switch (MF->getFunction()->getCallingConv()) {
    239   case CallingConv::GHC:
    240   case CallingConv::HiPE:
    241     return CSR_NoRegs_SaveList;
    242   case CallingConv::AnyReg:
    243     if (HasAVX)
    244       return CSR_64_AllRegs_AVX_SaveList;
    245     return CSR_64_AllRegs_SaveList;
    246   case CallingConv::PreserveMost:
    247     return CSR_64_RT_MostRegs_SaveList;
    248   case CallingConv::PreserveAll:
    249     if (HasAVX)
    250       return CSR_64_RT_AllRegs_AVX_SaveList;
    251     return CSR_64_RT_AllRegs_SaveList;
    252   case CallingConv::CXX_FAST_TLS:
    253     if (Is64Bit)
    254       return CSR_64_TLS_Darwin_SaveList;
    255     break;
    256   case CallingConv::Intel_OCL_BI: {
    257     if (HasAVX512 && IsWin64)
    258       return CSR_Win64_Intel_OCL_BI_AVX512_SaveList;
    259     if (HasAVX512 && Is64Bit)
    260       return CSR_64_Intel_OCL_BI_AVX512_SaveList;
    261     if (HasAVX && IsWin64)
    262       return CSR_Win64_Intel_OCL_BI_AVX_SaveList;
    263     if (HasAVX && Is64Bit)
    264       return CSR_64_Intel_OCL_BI_AVX_SaveList;
    265     if (!HasAVX && !IsWin64 && Is64Bit)
    266       return CSR_64_Intel_OCL_BI_SaveList;
    267     break;
    268   }
    269   case CallingConv::HHVM:
    270     return CSR_64_HHVM_SaveList;
    271   case CallingConv::Cold:
    272     if (Is64Bit)
    273       return CSR_64_MostRegs_SaveList;
    274     break;
    275   case CallingConv::X86_64_Win64:
    276     return CSR_Win64_SaveList;
    277   case CallingConv::X86_64_SysV:
    278     if (CallsEHReturn)
    279       return CSR_64EHRet_SaveList;
    280     return CSR_64_SaveList;
    281   case CallingConv::X86_INTR:
    282     if (Is64Bit) {
    283       if (HasAVX)
    284         return CSR_64_AllRegs_AVX_SaveList;
    285       else
    286         return CSR_64_AllRegs_SaveList;
    287     } else {
    288       if (HasSSE)
    289         return CSR_32_AllRegs_SSE_SaveList;
    290       else
    291         return CSR_32_AllRegs_SaveList;
    292     }
    293   default:
    294     break;
    295   }
    296 
    297   if (Is64Bit) {
    298     if (IsWin64)
    299       return CSR_Win64_SaveList;
    300     if (CallsEHReturn)
    301       return CSR_64EHRet_SaveList;
    302     return CSR_64_SaveList;
    303   }
    304   if (CallsEHReturn)
    305     return CSR_32EHRet_SaveList;
    306   return CSR_32_SaveList;
    307 }
    308 
    309 const uint32_t *
    310 X86RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
    311                                       CallingConv::ID CC) const {
    312   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
    313   bool HasSSE = Subtarget.hasSSE1();
    314   bool HasAVX = Subtarget.hasAVX();
    315   bool HasAVX512 = Subtarget.hasAVX512();
    316 
    317   switch (CC) {
    318   case CallingConv::GHC:
    319   case CallingConv::HiPE:
    320     return CSR_NoRegs_RegMask;
    321   case CallingConv::AnyReg:
    322     if (HasAVX)
    323       return CSR_64_AllRegs_AVX_RegMask;
    324     return CSR_64_AllRegs_RegMask;
    325   case CallingConv::PreserveMost:
    326     return CSR_64_RT_MostRegs_RegMask;
    327   case CallingConv::PreserveAll:
    328     if (HasAVX)
    329       return CSR_64_RT_AllRegs_AVX_RegMask;
    330     return CSR_64_RT_AllRegs_RegMask;
    331   case CallingConv::CXX_FAST_TLS:
    332     if (Is64Bit)
    333       return CSR_64_TLS_Darwin_RegMask;
    334     break;
    335   case CallingConv::Intel_OCL_BI: {
    336     if (HasAVX512 && IsWin64)
    337       return CSR_Win64_Intel_OCL_BI_AVX512_RegMask;
    338     if (HasAVX512 && Is64Bit)
    339       return CSR_64_Intel_OCL_BI_AVX512_RegMask;
    340     if (HasAVX && IsWin64)
    341       return CSR_Win64_Intel_OCL_BI_AVX_RegMask;
    342     if (HasAVX && Is64Bit)
    343       return CSR_64_Intel_OCL_BI_AVX_RegMask;
    344     if (!HasAVX && !IsWin64 && Is64Bit)
    345       return CSR_64_Intel_OCL_BI_RegMask;
    346     break;
    347   }
    348   case CallingConv::HHVM:
    349     return CSR_64_HHVM_RegMask;
    350   case CallingConv::Cold:
    351     if (Is64Bit)
    352       return CSR_64_MostRegs_RegMask;
    353     break;
    354   case CallingConv::X86_64_Win64:
    355     return CSR_Win64_RegMask;
    356   case CallingConv::X86_64_SysV:
    357     return CSR_64_RegMask;
    358   case CallingConv::X86_INTR:
    359     if (Is64Bit) {
    360       if (HasAVX)
    361         return CSR_64_AllRegs_AVX_RegMask;
    362       else
    363         return CSR_64_AllRegs_RegMask;
    364     } else {
    365       if (HasSSE)
    366         return CSR_32_AllRegs_SSE_RegMask;
    367       else
    368         return CSR_32_AllRegs_RegMask;
    369     }
    370     default:
    371       break;
    372   }
    373 
    374   // Unlike getCalleeSavedRegs(), we don't have MMI so we can't check
    375   // callsEHReturn().
    376   if (Is64Bit) {
    377     if (IsWin64)
    378       return CSR_Win64_RegMask;
    379     return CSR_64_RegMask;
    380   }
    381   return CSR_32_RegMask;
    382 }
    383 
    384 const uint32_t*
    385 X86RegisterInfo::getNoPreservedMask() const {
    386   return CSR_NoRegs_RegMask;
    387 }
    388 
    389 const uint32_t *X86RegisterInfo::getDarwinTLSCallPreservedMask() const {
    390   return CSR_64_TLS_Darwin_RegMask;
    391 }
    392 
    393 BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
    394   BitVector Reserved(getNumRegs());
    395   const X86FrameLowering *TFI = getFrameLowering(MF);
    396 
    397   // Set the stack-pointer register and its aliases as reserved.
    398   for (MCSubRegIterator I(X86::RSP, this, /*IncludeSelf=*/true); I.isValid();
    399        ++I)
    400     Reserved.set(*I);
    401 
    402   // Set the instruction pointer register and its aliases as reserved.
    403   for (MCSubRegIterator I(X86::RIP, this, /*IncludeSelf=*/true); I.isValid();
    404        ++I)
    405     Reserved.set(*I);
    406 
    407   // Set the frame-pointer register and its aliases as reserved if needed.
    408   if (TFI->hasFP(MF)) {
    409     for (MCSubRegIterator I(X86::RBP, this, /*IncludeSelf=*/true); I.isValid();
    410          ++I)
    411       Reserved.set(*I);
    412   }
    413 
    414   // Set the base-pointer register and its aliases as reserved if needed.
    415   if (hasBasePointer(MF)) {
    416     CallingConv::ID CC = MF.getFunction()->getCallingConv();
    417     const uint32_t *RegMask = getCallPreservedMask(MF, CC);
    418     if (MachineOperand::clobbersPhysReg(RegMask, getBaseRegister()))
    419       report_fatal_error(
    420         "Stack realignment in presence of dynamic allocas is not supported with"
    421         "this calling convention.");
    422 
    423     unsigned BasePtr = getX86SubSuperRegister(getBaseRegister(), MVT::i64,
    424                                               false);
    425     for (MCSubRegIterator I(BasePtr, this, /*IncludeSelf=*/true);
    426          I.isValid(); ++I)
    427       Reserved.set(*I);
    428   }
    429 
    430   // Mark the segment registers as reserved.
    431   Reserved.set(X86::CS);
    432   Reserved.set(X86::SS);
    433   Reserved.set(X86::DS);
    434   Reserved.set(X86::ES);
    435   Reserved.set(X86::FS);
    436   Reserved.set(X86::GS);
    437 
    438   // Mark the floating point stack registers as reserved.
    439   for (unsigned n = 0; n != 8; ++n)
    440     Reserved.set(X86::ST0 + n);
    441 
    442   // Reserve the registers that only exist in 64-bit mode.
    443   if (!Is64Bit) {
    444     // These 8-bit registers are part of the x86-64 extension even though their
    445     // super-registers are old 32-bits.
    446     Reserved.set(X86::SIL);
    447     Reserved.set(X86::DIL);
    448     Reserved.set(X86::BPL);
    449     Reserved.set(X86::SPL);
    450 
    451     for (unsigned n = 0; n != 8; ++n) {
    452       // R8, R9, ...
    453       for (MCRegAliasIterator AI(X86::R8 + n, this, true); AI.isValid(); ++AI)
    454         Reserved.set(*AI);
    455 
    456       // XMM8, XMM9, ...
    457       for (MCRegAliasIterator AI(X86::XMM8 + n, this, true); AI.isValid(); ++AI)
    458         Reserved.set(*AI);
    459     }
    460   }
    461   if (!Is64Bit || !MF.getSubtarget<X86Subtarget>().hasAVX512()) {
    462     for (unsigned n = 16; n != 32; ++n) {
    463       for (MCRegAliasIterator AI(X86::XMM0 + n, this, true); AI.isValid(); ++AI)
    464         Reserved.set(*AI);
    465     }
    466   }
    467 
    468   return Reserved;
    469 }
    470 
    471 void X86RegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
    472   // Check if the EFLAGS register is marked as live-out. This shouldn't happen,
    473   // because the calling convention defines the EFLAGS register as NOT
    474   // preserved.
    475   //
    476   // Unfortunatelly the EFLAGS show up as live-out after branch folding. Adding
    477   // an assert to track this and clear the register afterwards to avoid
    478   // unnecessary crashes during release builds.
    479   assert(!(Mask[X86::EFLAGS / 32] & (1U << (X86::EFLAGS % 32))) &&
    480          "EFLAGS are not live-out from a patchpoint.");
    481 
    482   // Also clean other registers that don't need preserving (IP).
    483   for (auto Reg : {X86::EFLAGS, X86::RIP, X86::EIP, X86::IP})
    484     Mask[Reg / 32] &= ~(1U << (Reg % 32));
    485 }
    486 
    487 //===----------------------------------------------------------------------===//
    488 // Stack Frame Processing methods
    489 //===----------------------------------------------------------------------===//
    490 
    491 static bool CantUseSP(const MachineFrameInfo *MFI) {
    492   return MFI->hasVarSizedObjects() || MFI->hasOpaqueSPAdjustment();
    493 }
    494 
    495 bool X86RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
    496    const MachineFrameInfo *MFI = MF.getFrameInfo();
    497 
    498    if (!EnableBasePointer)
    499      return false;
    500 
    501    // When we need stack realignment, we can't address the stack from the frame
    502    // pointer.  When we have dynamic allocas or stack-adjusting inline asm, we
    503    // can't address variables from the stack pointer.  MS inline asm can
    504    // reference locals while also adjusting the stack pointer.  When we can't
    505    // use both the SP and the FP, we need a separate base pointer register.
    506    bool CantUseFP = needsStackRealignment(MF);
    507    return CantUseFP && CantUseSP(MFI);
    508 }
    509 
    510 bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
    511   if (!TargetRegisterInfo::canRealignStack(MF))
    512     return false;
    513 
    514   const MachineFrameInfo *MFI = MF.getFrameInfo();
    515   const MachineRegisterInfo *MRI = &MF.getRegInfo();
    516 
    517   // Stack realignment requires a frame pointer.  If we already started
    518   // register allocation with frame pointer elimination, it is too late now.
    519   if (!MRI->canReserveReg(FramePtr))
    520     return false;
    521 
    522   // If a base pointer is necessary.  Check that it isn't too late to reserve
    523   // it.
    524   if (CantUseSP(MFI))
    525     return MRI->canReserveReg(BasePtr);
    526   return true;
    527 }
    528 
    529 bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
    530                                            unsigned Reg, int &FrameIdx) const {
    531   // Since X86 defines assignCalleeSavedSpillSlots which always return true
    532   // this function neither used nor tested.
    533   llvm_unreachable("Unused function on X86. Otherwise need a test case.");
    534 }
    535 
    536 void
    537 X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
    538                                      int SPAdj, unsigned FIOperandNum,
    539                                      RegScavenger *RS) const {
    540   MachineInstr &MI = *II;
    541   MachineFunction &MF = *MI.getParent()->getParent();
    542   const X86FrameLowering *TFI = getFrameLowering(MF);
    543   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
    544   unsigned BasePtr;
    545 
    546   unsigned Opc = MI.getOpcode();
    547   bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm ||
    548                     Opc == X86::TCRETURNmi || Opc == X86::TCRETURNmi64;
    549 
    550   if (hasBasePointer(MF))
    551     BasePtr = (FrameIndex < 0 ? FramePtr : getBaseRegister());
    552   else if (needsStackRealignment(MF))
    553     BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
    554   else if (AfterFPPop)
    555     BasePtr = StackPtr;
    556   else
    557     BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);
    558 
    559   // LOCAL_ESCAPE uses a single offset, with no register. It only works in the
    560   // simple FP case, and doesn't work with stack realignment. On 32-bit, the
    561   // offset is from the traditional base pointer location.  On 64-bit, the
    562   // offset is from the SP at the end of the prologue, not the FP location. This
    563   // matches the behavior of llvm.frameaddress.
    564   unsigned IgnoredFrameReg;
    565   if (Opc == TargetOpcode::LOCAL_ESCAPE) {
    566     MachineOperand &FI = MI.getOperand(FIOperandNum);
    567     int Offset;
    568     Offset = TFI->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
    569     FI.ChangeToImmediate(Offset);
    570     return;
    571   }
    572 
    573   // For LEA64_32r when BasePtr is 32-bits (X32) we can use full-size 64-bit
    574   // register as source operand, semantic is the same and destination is
    575   // 32-bits. It saves one byte per lea in code since 0x67 prefix is avoided.
    576   if (Opc == X86::LEA64_32r && X86::GR32RegClass.contains(BasePtr))
    577     BasePtr = getX86SubSuperRegister(BasePtr, MVT::i64, false);
    578 
    579   // This must be part of a four operand memory reference.  Replace the
    580   // FrameIndex with base register with EBP.  Add an offset to the offset.
    581   MI.getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
    582 
    583   // Now add the frame object offset to the offset from EBP.
    584   int FIOffset;
    585   if (AfterFPPop) {
    586     // Tail call jmp happens after FP is popped.
    587     const MachineFrameInfo *MFI = MF.getFrameInfo();
    588     FIOffset = MFI->getObjectOffset(FrameIndex) - TFI->getOffsetOfLocalArea();
    589   } else
    590     FIOffset = TFI->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
    591 
    592   if (BasePtr == StackPtr)
    593     FIOffset += SPAdj;
    594 
    595   // The frame index format for stackmaps and patchpoints is different from the
    596   // X86 format. It only has a FI and an offset.
    597   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
    598     assert(BasePtr == FramePtr && "Expected the FP as base register");
    599     int64_t Offset = MI.getOperand(FIOperandNum + 1).getImm() + FIOffset;
    600     MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
    601     return;
    602   }
    603 
    604   if (MI.getOperand(FIOperandNum+3).isImm()) {
    605     // Offset is a 32-bit integer.
    606     int Imm = (int)(MI.getOperand(FIOperandNum + 3).getImm());
    607     int Offset = FIOffset + Imm;
    608     assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
    609            "Requesting 64-bit offset in 32-bit immediate!");
    610     MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset);
    611   } else {
    612     // Offset is symbolic. This is extremely rare.
    613     uint64_t Offset = FIOffset +
    614       (uint64_t)MI.getOperand(FIOperandNum+3).getOffset();
    615     MI.getOperand(FIOperandNum + 3).setOffset(Offset);
    616   }
    617 }
    618 
    619 unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
    620   const X86FrameLowering *TFI = getFrameLowering(MF);
    621   return TFI->hasFP(MF) ? FramePtr : StackPtr;
    622 }
    623 
    624 unsigned
    625 X86RegisterInfo::getPtrSizedFrameRegister(const MachineFunction &MF) const {
    626   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
    627   unsigned FrameReg = getFrameRegister(MF);
    628   if (Subtarget.isTarget64BitILP32())
    629     FrameReg = getX86SubSuperRegister(FrameReg, MVT::i32, false);
    630   return FrameReg;
    631 }
    632 
    633 namespace llvm {
    634 unsigned getX86SubSuperRegisterOrZero(unsigned Reg, MVT::SimpleValueType VT,
    635                                       bool High) {
    636   switch (VT) {
    637   default: return 0;
    638   case MVT::i8:
    639     if (High) {
    640       switch (Reg) {
    641       default: return getX86SubSuperRegister(Reg, MVT::i64);
    642       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
    643         return X86::SI;
    644       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
    645         return X86::DI;
    646       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
    647         return X86::BP;
    648       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
    649         return X86::SP;
    650       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
    651         return X86::AH;
    652       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
    653         return X86::DH;
    654       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
    655         return X86::CH;
    656       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
    657         return X86::BH;
    658       }
    659     } else {
    660       switch (Reg) {
    661       default: return 0;
    662       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
    663         return X86::AL;
    664       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
    665         return X86::DL;
    666       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
    667         return X86::CL;
    668       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
    669         return X86::BL;
    670       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
    671         return X86::SIL;
    672       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
    673         return X86::DIL;
    674       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
    675         return X86::BPL;
    676       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
    677         return X86::SPL;
    678       case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
    679         return X86::R8B;
    680       case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
    681         return X86::R9B;
    682       case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
    683         return X86::R10B;
    684       case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
    685         return X86::R11B;
    686       case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
    687         return X86::R12B;
    688       case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
    689         return X86::R13B;
    690       case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
    691         return X86::R14B;
    692       case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
    693         return X86::R15B;
    694       }
    695     }
    696   case MVT::i16:
    697     switch (Reg) {
    698     default: return 0;
    699     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
    700       return X86::AX;
    701     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
    702       return X86::DX;
    703     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
    704       return X86::CX;
    705     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
    706       return X86::BX;
    707     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
    708       return X86::SI;
    709     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
    710       return X86::DI;
    711     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
    712       return X86::BP;
    713     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
    714       return X86::SP;
    715     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
    716       return X86::R8W;
    717     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
    718       return X86::R9W;
    719     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
    720       return X86::R10W;
    721     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
    722       return X86::R11W;
    723     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
    724       return X86::R12W;
    725     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
    726       return X86::R13W;
    727     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
    728       return X86::R14W;
    729     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
    730       return X86::R15W;
    731     }
    732   case MVT::i32:
    733     switch (Reg) {
    734     default: return 0;
    735     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
    736       return X86::EAX;
    737     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
    738       return X86::EDX;
    739     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
    740       return X86::ECX;
    741     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
    742       return X86::EBX;
    743     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
    744       return X86::ESI;
    745     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
    746       return X86::EDI;
    747     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
    748       return X86::EBP;
    749     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
    750       return X86::ESP;
    751     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
    752       return X86::R8D;
    753     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
    754       return X86::R9D;
    755     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
    756       return X86::R10D;
    757     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
    758       return X86::R11D;
    759     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
    760       return X86::R12D;
    761     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
    762       return X86::R13D;
    763     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
    764       return X86::R14D;
    765     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
    766       return X86::R15D;
    767     }
    768   case MVT::i64:
    769     switch (Reg) {
    770     default: return 0;
    771     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
    772       return X86::RAX;
    773     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
    774       return X86::RDX;
    775     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
    776       return X86::RCX;
    777     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
    778       return X86::RBX;
    779     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
    780       return X86::RSI;
    781     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
    782       return X86::RDI;
    783     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
    784       return X86::RBP;
    785     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
    786       return X86::RSP;
    787     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
    788       return X86::R8;
    789     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
    790       return X86::R9;
    791     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
    792       return X86::R10;
    793     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
    794       return X86::R11;
    795     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
    796       return X86::R12;
    797     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
    798       return X86::R13;
    799     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
    800       return X86::R14;
    801     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
    802       return X86::R15;
    803     }
    804   }
    805 }
    806 
    807 unsigned getX86SubSuperRegister(unsigned Reg, MVT::SimpleValueType VT,
    808                                 bool High) {
    809   unsigned Res = getX86SubSuperRegisterOrZero(Reg, VT, High);
    810   if (Res == 0)
    811     llvm_unreachable("Unexpected register or VT");
    812   return Res;
    813 }
    814 
    815 unsigned get512BitSuperRegister(unsigned Reg) {
    816   if (Reg >= X86::XMM0 && Reg <= X86::XMM31)
    817     return X86::ZMM0 + (Reg - X86::XMM0);
    818   if (Reg >= X86::YMM0 && Reg <= X86::YMM31)
    819     return X86::ZMM0 + (Reg - X86::YMM0);
    820   if (Reg >= X86::ZMM0 && Reg <= X86::ZMM31)
    821     return Reg;
    822   llvm_unreachable("Unexpected SIMD register");
    823 }
    824 
    825 }
    826