1 //===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the X86 Register file, defining the registers themselves, 11 // aliases between the registers, and the register classes built out of the 12 // registers. 13 // 14 //===----------------------------------------------------------------------===// 15 16 class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> { 17 let Namespace = "X86"; 18 let HWEncoding = Enc; 19 let SubRegs = subregs; 20 } 21 22 // Subregister indices. 23 let Namespace = "X86" in { 24 def sub_8bit : SubRegIndex<8>; 25 def sub_8bit_hi : SubRegIndex<8, 8>; 26 def sub_16bit : SubRegIndex<16>; 27 def sub_32bit : SubRegIndex<32>; 28 def sub_xmm : SubRegIndex<128>; 29 def sub_ymm : SubRegIndex<256>; 30 } 31 32 //===----------------------------------------------------------------------===// 33 // Register definitions... 34 // 35 36 // In the register alias definitions below, we define which registers alias 37 // which others. We only specify which registers the small registers alias, 38 // because the register file generator is smart enough to figure out that 39 // AL aliases AX if we tell it that AX aliased AL (for example). 40 41 // Dwarf numbering is different for 32-bit and 64-bit, and there are 42 // variations by target as well. Currently the first entry is for X86-64, 43 // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux 44 // and debug information on X86-32/Darwin) 45 46 // 8-bit registers 47 // Low registers 48 def AL : X86Reg<"al", 0>; 49 def DL : X86Reg<"dl", 2>; 50 def CL : X86Reg<"cl", 1>; 51 def BL : X86Reg<"bl", 3>; 52 53 // High registers. On x86-64, these cannot be used in any instruction 54 // with a REX prefix. 55 def AH : X86Reg<"ah", 4>; 56 def DH : X86Reg<"dh", 6>; 57 def CH : X86Reg<"ch", 5>; 58 def BH : X86Reg<"bh", 7>; 59 60 // X86-64 only, requires REX. 61 let CostPerUse = 1 in { 62 def SIL : X86Reg<"sil", 6>; 63 def DIL : X86Reg<"dil", 7>; 64 def BPL : X86Reg<"bpl", 5>; 65 def SPL : X86Reg<"spl", 4>; 66 def R8B : X86Reg<"r8b", 8>; 67 def R9B : X86Reg<"r9b", 9>; 68 def R10B : X86Reg<"r10b", 10>; 69 def R11B : X86Reg<"r11b", 11>; 70 def R12B : X86Reg<"r12b", 12>; 71 def R13B : X86Reg<"r13b", 13>; 72 def R14B : X86Reg<"r14b", 14>; 73 def R15B : X86Reg<"r15b", 15>; 74 } 75 76 // 16-bit registers 77 let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in { 78 def AX : X86Reg<"ax", 0, [AL,AH]>; 79 def DX : X86Reg<"dx", 2, [DL,DH]>; 80 def CX : X86Reg<"cx", 1, [CL,CH]>; 81 def BX : X86Reg<"bx", 3, [BL,BH]>; 82 } 83 let SubRegIndices = [sub_8bit] in { 84 def SI : X86Reg<"si", 6, [SIL]>; 85 def DI : X86Reg<"di", 7, [DIL]>; 86 def BP : X86Reg<"bp", 5, [BPL]>; 87 def SP : X86Reg<"sp", 4, [SPL]>; 88 } 89 def IP : X86Reg<"ip", 0>; 90 91 // X86-64 only, requires REX. 92 let SubRegIndices = [sub_8bit], CostPerUse = 1 in { 93 def R8W : X86Reg<"r8w", 8, [R8B]>; 94 def R9W : X86Reg<"r9w", 9, [R9B]>; 95 def R10W : X86Reg<"r10w", 10, [R10B]>; 96 def R11W : X86Reg<"r11w", 11, [R11B]>; 97 def R12W : X86Reg<"r12w", 12, [R12B]>; 98 def R13W : X86Reg<"r13w", 13, [R13B]>; 99 def R14W : X86Reg<"r14w", 14, [R14B]>; 100 def R15W : X86Reg<"r15w", 15, [R15B]>; 101 } 102 103 // 32-bit registers 104 let SubRegIndices = [sub_16bit] in { 105 def EAX : X86Reg<"eax", 0, [AX]>, DwarfRegNum<[-2, 0, 0]>; 106 def EDX : X86Reg<"edx", 2, [DX]>, DwarfRegNum<[-2, 2, 2]>; 107 def ECX : X86Reg<"ecx", 1, [CX]>, DwarfRegNum<[-2, 1, 1]>; 108 def EBX : X86Reg<"ebx", 3, [BX]>, DwarfRegNum<[-2, 3, 3]>; 109 def ESI : X86Reg<"esi", 6, [SI]>, DwarfRegNum<[-2, 6, 6]>; 110 def EDI : X86Reg<"edi", 7, [DI]>, DwarfRegNum<[-2, 7, 7]>; 111 def EBP : X86Reg<"ebp", 5, [BP]>, DwarfRegNum<[-2, 4, 5]>; 112 def ESP : X86Reg<"esp", 4, [SP]>, DwarfRegNum<[-2, 5, 4]>; 113 def EIP : X86Reg<"eip", 0, [IP]>, DwarfRegNum<[-2, 8, 8]>; 114 115 // X86-64 only, requires REX 116 let CostPerUse = 1 in { 117 def R8D : X86Reg<"r8d", 8, [R8W]>; 118 def R9D : X86Reg<"r9d", 9, [R9W]>; 119 def R10D : X86Reg<"r10d", 10, [R10W]>; 120 def R11D : X86Reg<"r11d", 11, [R11W]>; 121 def R12D : X86Reg<"r12d", 12, [R12W]>; 122 def R13D : X86Reg<"r13d", 13, [R13W]>; 123 def R14D : X86Reg<"r14d", 14, [R14W]>; 124 def R15D : X86Reg<"r15d", 15, [R15W]>; 125 }} 126 127 // 64-bit registers, X86-64 only 128 let SubRegIndices = [sub_32bit] in { 129 def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>; 130 def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>; 131 def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>; 132 def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>; 133 def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>; 134 def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>; 135 def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>; 136 def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>; 137 138 // These also require REX. 139 let CostPerUse = 1 in { 140 def R8 : X86Reg<"r8", 8, [R8D]>, DwarfRegNum<[ 8, -2, -2]>; 141 def R9 : X86Reg<"r9", 9, [R9D]>, DwarfRegNum<[ 9, -2, -2]>; 142 def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>; 143 def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>; 144 def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>; 145 def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>; 146 def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>; 147 def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>; 148 def RIP : X86Reg<"rip", 0, [EIP]>, DwarfRegNum<[16, -2, -2]>; 149 }} 150 151 // MMX Registers. These are actually aliased to ST0 .. ST7 152 def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>; 153 def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>; 154 def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>; 155 def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>; 156 def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>; 157 def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>; 158 def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>; 159 def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>; 160 161 // Pseudo Floating Point registers 162 def FP0 : X86Reg<"fp0", 0>; 163 def FP1 : X86Reg<"fp1", 0>; 164 def FP2 : X86Reg<"fp2", 0>; 165 def FP3 : X86Reg<"fp3", 0>; 166 def FP4 : X86Reg<"fp4", 0>; 167 def FP5 : X86Reg<"fp5", 0>; 168 def FP6 : X86Reg<"fp6", 0>; 169 def FP7 : X86Reg<"fp7", 0>; 170 171 // XMM Registers, used by the various SSE instruction set extensions. 172 def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>; 173 def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>; 174 def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>; 175 def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>; 176 def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>; 177 def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>; 178 def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>; 179 def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>; 180 181 // X86-64 only 182 let CostPerUse = 1 in { 183 def XMM8: X86Reg<"xmm8", 8>, DwarfRegNum<[25, -2, -2]>; 184 def XMM9: X86Reg<"xmm9", 9>, DwarfRegNum<[26, -2, -2]>; 185 def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>; 186 def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>; 187 def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>; 188 def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>; 189 def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>; 190 def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>; 191 192 def XMM16: X86Reg<"xmm16", 16>, DwarfRegNum<[60, -2, -2]>; 193 def XMM17: X86Reg<"xmm17", 17>, DwarfRegNum<[61, -2, -2]>; 194 def XMM18: X86Reg<"xmm18", 18>, DwarfRegNum<[62, -2, -2]>; 195 def XMM19: X86Reg<"xmm19", 19>, DwarfRegNum<[63, -2, -2]>; 196 def XMM20: X86Reg<"xmm20", 20>, DwarfRegNum<[64, -2, -2]>; 197 def XMM21: X86Reg<"xmm21", 21>, DwarfRegNum<[65, -2, -2]>; 198 def XMM22: X86Reg<"xmm22", 22>, DwarfRegNum<[66, -2, -2]>; 199 def XMM23: X86Reg<"xmm23", 23>, DwarfRegNum<[67, -2, -2]>; 200 def XMM24: X86Reg<"xmm24", 24>, DwarfRegNum<[68, -2, -2]>; 201 def XMM25: X86Reg<"xmm25", 25>, DwarfRegNum<[69, -2, -2]>; 202 def XMM26: X86Reg<"xmm26", 26>, DwarfRegNum<[70, -2, -2]>; 203 def XMM27: X86Reg<"xmm27", 27>, DwarfRegNum<[71, -2, -2]>; 204 def XMM28: X86Reg<"xmm28", 28>, DwarfRegNum<[72, -2, -2]>; 205 def XMM29: X86Reg<"xmm29", 29>, DwarfRegNum<[73, -2, -2]>; 206 def XMM30: X86Reg<"xmm30", 30>, DwarfRegNum<[74, -2, -2]>; 207 def XMM31: X86Reg<"xmm31", 31>, DwarfRegNum<[75, -2, -2]>; 208 209 } // CostPerUse 210 211 // YMM0-15 registers, used by AVX instructions and 212 // YMM16-31 registers, used by AVX-512 instructions. 213 let SubRegIndices = [sub_xmm] in { 214 foreach Index = 0-31 in { 215 def YMM#Index : X86Reg<"ymm"#Index, Index, [!cast<X86Reg>("XMM"#Index)]>, 216 DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>; 217 } 218 } 219 220 // ZMM Registers, used by AVX-512 instructions. 221 let SubRegIndices = [sub_ymm] in { 222 foreach Index = 0-31 in { 223 def ZMM#Index : X86Reg<"zmm"#Index, Index, [!cast<X86Reg>("YMM"#Index)]>, 224 DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>; 225 } 226 } 227 228 // Mask Registers, used by AVX-512 instructions. 229 def K0 : X86Reg<"k0", 0>, DwarfRegNum<[118, -2, -2]>; 230 def K1 : X86Reg<"k1", 1>, DwarfRegNum<[119, -2, -2]>; 231 def K2 : X86Reg<"k2", 2>, DwarfRegNum<[120, -2, -2]>; 232 def K3 : X86Reg<"k3", 3>, DwarfRegNum<[121, -2, -2]>; 233 def K4 : X86Reg<"k4", 4>, DwarfRegNum<[122, -2, -2]>; 234 def K5 : X86Reg<"k5", 5>, DwarfRegNum<[123, -2, -2]>; 235 def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124, -2, -2]>; 236 def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, -2, -2]>; 237 238 // Floating point stack registers. These don't map one-to-one to the FP 239 // pseudo registers, but we still mark them as aliasing FP registers. That 240 // way both kinds can be live without exceeding the stack depth. ST registers 241 // are only live around inline assembly. 242 def ST0 : X86Reg<"st(0)", 0>, DwarfRegNum<[33, 12, 11]>; 243 def ST1 : X86Reg<"st(1)", 1>, DwarfRegNum<[34, 13, 12]>; 244 def ST2 : X86Reg<"st(2)", 2>, DwarfRegNum<[35, 14, 13]>; 245 def ST3 : X86Reg<"st(3)", 3>, DwarfRegNum<[36, 15, 14]>; 246 def ST4 : X86Reg<"st(4)", 4>, DwarfRegNum<[37, 16, 15]>; 247 def ST5 : X86Reg<"st(5)", 5>, DwarfRegNum<[38, 17, 16]>; 248 def ST6 : X86Reg<"st(6)", 6>, DwarfRegNum<[39, 18, 17]>; 249 def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>; 250 251 // Floating-point status word 252 def FPSW : X86Reg<"fpsw", 0>; 253 254 // Status flags register 255 def EFLAGS : X86Reg<"flags", 0>; 256 257 // Segment registers 258 def CS : X86Reg<"cs", 1>; 259 def DS : X86Reg<"ds", 3>; 260 def SS : X86Reg<"ss", 2>; 261 def ES : X86Reg<"es", 0>; 262 def FS : X86Reg<"fs", 4>; 263 def GS : X86Reg<"gs", 5>; 264 265 // Debug registers 266 def DR0 : X86Reg<"dr0", 0>; 267 def DR1 : X86Reg<"dr1", 1>; 268 def DR2 : X86Reg<"dr2", 2>; 269 def DR3 : X86Reg<"dr3", 3>; 270 def DR4 : X86Reg<"dr4", 4>; 271 def DR5 : X86Reg<"dr5", 5>; 272 def DR6 : X86Reg<"dr6", 6>; 273 def DR7 : X86Reg<"dr7", 7>; 274 def DR8 : X86Reg<"dr8", 8>; 275 def DR9 : X86Reg<"dr9", 9>; 276 def DR10 : X86Reg<"dr10", 10>; 277 def DR11 : X86Reg<"dr11", 11>; 278 def DR12 : X86Reg<"dr12", 12>; 279 def DR13 : X86Reg<"dr13", 13>; 280 def DR14 : X86Reg<"dr14", 14>; 281 def DR15 : X86Reg<"dr15", 15>; 282 283 // Control registers 284 def CR0 : X86Reg<"cr0", 0>; 285 def CR1 : X86Reg<"cr1", 1>; 286 def CR2 : X86Reg<"cr2", 2>; 287 def CR3 : X86Reg<"cr3", 3>; 288 def CR4 : X86Reg<"cr4", 4>; 289 def CR5 : X86Reg<"cr5", 5>; 290 def CR6 : X86Reg<"cr6", 6>; 291 def CR7 : X86Reg<"cr7", 7>; 292 def CR8 : X86Reg<"cr8", 8>; 293 def CR9 : X86Reg<"cr9", 9>; 294 def CR10 : X86Reg<"cr10", 10>; 295 def CR11 : X86Reg<"cr11", 11>; 296 def CR12 : X86Reg<"cr12", 12>; 297 def CR13 : X86Reg<"cr13", 13>; 298 def CR14 : X86Reg<"cr14", 14>; 299 def CR15 : X86Reg<"cr15", 15>; 300 301 // Pseudo index registers 302 def EIZ : X86Reg<"eiz", 4>; 303 def RIZ : X86Reg<"riz", 4>; 304 305 // Bound registers, used in MPX instructions 306 def BND0 : X86Reg<"bnd0", 0>; 307 def BND1 : X86Reg<"bnd1", 1>; 308 def BND2 : X86Reg<"bnd2", 2>; 309 def BND3 : X86Reg<"bnd3", 3>; 310 311 //===----------------------------------------------------------------------===// 312 // Register Class Definitions... now that we have all of the pieces, define the 313 // top-level register classes. The order specified in the register list is 314 // implicitly defined to be the register allocation order. 315 // 316 317 // List call-clobbered registers before callee-save registers. RBX, RBP, (and 318 // R12, R13, R14, and R15 for X86-64) are callee-save registers. 319 // In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and 320 // R8B, ... R15B. 321 // Allocate R12 and R13 last, as these require an extra byte when 322 // encoded in x86_64 instructions. 323 // FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in 324 // 64-bit mode. The main complication is that they cannot be encoded in an 325 // instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc. 326 // require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d" 327 // cannot be encoded. 328 def GR8 : RegisterClass<"X86", [i8], 8, 329 (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL, 330 R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> { 331 let AltOrders = [(sub GR8, AH, BH, CH, DH)]; 332 let AltOrderSelect = [{ 333 return MF.getSubtarget<X86Subtarget>().is64Bit(); 334 }]; 335 } 336 337 def GR16 : RegisterClass<"X86", [i16], 16, 338 (add AX, CX, DX, SI, DI, BX, BP, SP, 339 R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>; 340 341 def GR32 : RegisterClass<"X86", [i32], 32, 342 (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP, 343 R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>; 344 345 // GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since 346 // RIP isn't really a register and it can't be used anywhere except in an 347 // address, but it doesn't cause trouble. 348 def GR64 : RegisterClass<"X86", [i64], 64, 349 (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, 350 RBX, R14, R15, R12, R13, RBP, RSP, RIP)>; 351 352 // Segment registers for use by MOV instructions (and others) that have a 353 // segment register as one operand. Always contain a 16-bit segment 354 // descriptor. 355 def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>; 356 357 // Debug registers. 358 def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>; 359 360 // Control registers. 361 def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>; 362 363 // GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of 364 // GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d" 365 // registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers 366 // that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD, 367 // and GR64_ABCD are classes for registers that support 8-bit h-register 368 // operations. 369 def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>; 370 def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>; 371 def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>; 372 def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>; 373 def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>; 374 def GR32_TC : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)>; 375 def GR64_TC : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI, 376 R8, R9, R11, RIP)>; 377 def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, 378 R8, R9, R10, R11, RIP)>; 379 380 // GR8_NOREX - GR8 registers which do not require a REX prefix. 381 def GR8_NOREX : RegisterClass<"X86", [i8], 8, 382 (add AL, CL, DL, AH, CH, DH, BL, BH)> { 383 let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)]; 384 let AltOrderSelect = [{ 385 return MF.getSubtarget<X86Subtarget>().is64Bit(); 386 }]; 387 } 388 // GR16_NOREX - GR16 registers which do not require a REX prefix. 389 def GR16_NOREX : RegisterClass<"X86", [i16], 16, 390 (add AX, CX, DX, SI, DI, BX, BP, SP)>; 391 // GR32_NOREX - GR32 registers which do not require a REX prefix. 392 def GR32_NOREX : RegisterClass<"X86", [i32], 32, 393 (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>; 394 // GR64_NOREX - GR64 registers which do not require a REX prefix. 395 def GR64_NOREX : RegisterClass<"X86", [i64], 64, 396 (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>; 397 398 // GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit 399 // mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs 400 // to clear upper 32-bits of RAX so is not a NOP. 401 def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)>; 402 403 // GR32_NOSP - GR32 registers except ESP. 404 def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>; 405 406 // GR64_NOSP - GR64 registers except RSP (and RIP). 407 def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>; 408 409 // GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except 410 // ESP. 411 def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32, 412 (and GR32_NOREX, GR32_NOSP)>; 413 414 // GR64_NOREX_NOSP - GR64_NOREX registers except RSP. 415 def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64, 416 (and GR64_NOREX, GR64_NOSP)>; 417 418 // A class to support the 'A' assembler constraint: EAX then EDX. 419 def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>; 420 421 // Scalar SSE2 floating point registers. 422 def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>; 423 424 def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>; 425 426 def FR128 : RegisterClass<"X86", [i128, f128], 128, (add FR32)>; 427 428 429 // FIXME: This sets up the floating point register files as though they are f64 430 // values, though they really are f80 values. This will cause us to spill 431 // values as 64-bit quantities instead of 80-bit quantities, which is much much 432 // faster on common hardware. In reality, this should be controlled by a 433 // command line option or something. 434 435 def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>; 436 def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>; 437 def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>; 438 439 // Floating point stack registers (these are not allocatable by the 440 // register allocator - the floating point stackifier is responsible 441 // for transforming FPn allocations to STn registers) 442 def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> { 443 let isAllocatable = 0; 444 } 445 446 // Generic vector registers: VR64 and VR128. 447 // Ensure that float types are declared first - only float is legal on SSE1. 448 def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>; 449 def VR128 : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64], 450 128, (add FR32)>; 451 def VR256 : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64], 452 256, (sequence "YMM%u", 0, 15)>; 453 454 // Status flags registers. 455 def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> { 456 let CopyCost = -1; // Don't allow copying of status registers. 457 let isAllocatable = 0; 458 } 459 def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> { 460 let CopyCost = -1; // Don't allow copying of status registers. 461 let isAllocatable = 0; 462 } 463 464 // AVX-512 vector/mask registers. 465 def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64], 466 512, (sequence "ZMM%u", 0, 31)>; 467 468 // Scalar AVX-512 floating point registers. 469 def FR32X : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 31)>; 470 471 def FR64X : RegisterClass<"X86", [f64], 64, (add FR32X)>; 472 473 // Extended VR128 and VR256 for AVX-512 instructions 474 def VR128X : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64], 475 128, (add FR32X)>; 476 def VR256X : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64], 477 256, (sequence "YMM%u", 0, 31)>; 478 479 // Mask registers 480 def VK1 : RegisterClass<"X86", [i1], 8, (sequence "K%u", 0, 7)> {let Size = 8;} 481 def VK2 : RegisterClass<"X86", [v2i1], 8, (add VK1)> {let Size = 8;} 482 def VK4 : RegisterClass<"X86", [v4i1], 8, (add VK2)> {let Size = 8;} 483 def VK8 : RegisterClass<"X86", [v8i1], 8, (add VK4)> {let Size = 8;} 484 def VK16 : RegisterClass<"X86", [v16i1], 16, (add VK8)> {let Size = 16;} 485 def VK32 : RegisterClass<"X86", [v32i1], 32, (add VK16)> {let Size = 32;} 486 def VK64 : RegisterClass<"X86", [v64i1], 64, (add VK32)> {let Size = 64;} 487 488 def VK1WM : RegisterClass<"X86", [i1], 8, (sub VK1, K0)> {let Size = 8;} 489 def VK2WM : RegisterClass<"X86", [v2i1], 8, (sub VK2, K0)> {let Size = 8;} 490 def VK4WM : RegisterClass<"X86", [v4i1], 8, (sub VK4, K0)> {let Size = 8;} 491 def VK8WM : RegisterClass<"X86", [v8i1], 8, (sub VK8, K0)> {let Size = 8;} 492 def VK16WM : RegisterClass<"X86", [v16i1], 16, (add VK8WM)> {let Size = 16;} 493 def VK32WM : RegisterClass<"X86", [v32i1], 32, (add VK16WM)> {let Size = 32;} 494 def VK64WM : RegisterClass<"X86", [v64i1], 64, (add VK32WM)> {let Size = 64;} 495 496 // Bound registers 497 def BNDR : RegisterClass<"X86", [v2i64], 128, (sequence "BND%u", 0, 3)>; 498