1 //=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the machine model for AMD btver2 (Jaguar) to support 11 // instruction scheduling and other instruction cost heuristics. Based off AMD Software 12 // Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix. 13 // 14 //===----------------------------------------------------------------------===// 15 16 def BtVer2Model : SchedMachineModel { 17 // All x86 instructions are modeled as a single micro-op, and btver2 can 18 // decode 2 instructions per cycle. 19 let IssueWidth = 2; 20 let MicroOpBufferSize = 64; // Retire Control Unit 21 let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency) 22 let HighLatency = 25; 23 let MispredictPenalty = 14; // Minimum branch misdirection penalty 24 let PostRAScheduler = 1; 25 26 // FIXME: SSE4/AVX is unimplemented. This flag is set to allow 27 // the scheduler to assign a default model to unrecognized opcodes. 28 let CompleteModel = 0; 29 } 30 31 let SchedModel = BtVer2Model in { 32 33 // Jaguar can issue up to 6 micro-ops in one cycle 34 def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam) 35 def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV 36 def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU 37 def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA) 38 def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA 39 def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM 40 41 // Any pipe - FIXME we need this until we can discriminate between int/fpu load/store/moves properly 42 def JAny : ProcResGroup<[JALU0, JALU1, JLAGU, JSAGU, JFPU0, JFPU1]>; 43 44 // Integer Pipe Scheduler 45 def JALU01 : ProcResGroup<[JALU0, JALU1]> { 46 let BufferSize=20; 47 } 48 49 // AGU Pipe Scheduler 50 def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> { 51 let BufferSize=12; 52 } 53 54 // Fpu Pipe Scheduler 55 def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> { 56 let BufferSize=18; 57 } 58 59 def JDiv : ProcResource<1>; // integer division 60 def JMul : ProcResource<1>; // integer multiplication 61 def JVALU0 : ProcResource<1>; // vector integer 62 def JVALU1 : ProcResource<1>; // vector integer 63 def JVIMUL : ProcResource<1>; // vector integer multiplication 64 def JSTC : ProcResource<1>; // vector store/convert 65 def JFPM : ProcResource<1>; // FP multiplication 66 def JFPA : ProcResource<1>; // FP addition 67 68 // Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3 69 // cycles after the memory operand. 70 def : ReadAdvance<ReadAfterLd, 3>; 71 72 // Many SchedWrites are defined in pairs with and without a folded load. 73 // Instructions with folded loads are usually micro-fused, so they only appear 74 // as two micro-ops when dispatched by the schedulers. 75 // This multiclass defines the resource usage for variants with and without 76 // folded loads. 77 multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW, 78 ProcResourceKind ExePort, 79 int Lat> { 80 // Register variant is using a single cycle on ExePort. 81 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } 82 83 // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the 84 // latency. 85 def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> { 86 let Latency = !add(Lat, 3); 87 } 88 } 89 90 multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW, 91 ProcResourceKind ExePort, 92 int Lat> { 93 // Register variant is using a single cycle on ExePort. 94 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } 95 96 // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the 97 // latency. 98 def : WriteRes<SchedRW.Folded, [JLAGU, ExePort]> { 99 let Latency = !add(Lat, 5); 100 } 101 } 102 103 // A folded store needs a cycle on the SAGU for the store data. 104 def : WriteRes<WriteRMW, [JSAGU]>; 105 106 //////////////////////////////////////////////////////////////////////////////// 107 // Arithmetic. 108 //////////////////////////////////////////////////////////////////////////////// 109 110 defm : JWriteResIntPair<WriteALU, JALU01, 1>; 111 defm : JWriteResIntPair<WriteIMul, JALU1, 3>; 112 113 def : WriteRes<WriteIMulH, [JALU1]> { 114 let Latency = 6; 115 let ResourceCycles = [4]; 116 } 117 118 // FIXME 8/16 bit divisions 119 def : WriteRes<WriteIDiv, [JALU1, JDiv]> { 120 let Latency = 25; 121 let ResourceCycles = [1, 25]; 122 } 123 def : WriteRes<WriteIDivLd, [JALU1, JLAGU, JDiv]> { 124 let Latency = 41; 125 let ResourceCycles = [1, 1, 25]; 126 } 127 128 // This is for simple LEAs with one or two input operands. 129 // FIXME: SAGU 3-operand LEA 130 def : WriteRes<WriteLEA, [JALU01]>; 131 132 //////////////////////////////////////////////////////////////////////////////// 133 // Integer shifts and rotates. 134 //////////////////////////////////////////////////////////////////////////////// 135 136 defm : JWriteResIntPair<WriteShift, JALU01, 1>; 137 138 //////////////////////////////////////////////////////////////////////////////// 139 // Loads, stores, and moves, not folded with other operations. 140 // FIXME: Split x86 and SSE load/store/moves 141 //////////////////////////////////////////////////////////////////////////////// 142 143 def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; } 144 def : WriteRes<WriteStore, [JSAGU]>; 145 def : WriteRes<WriteMove, [JAny]>; 146 147 //////////////////////////////////////////////////////////////////////////////// 148 // Idioms that clear a register, like xorps %xmm0, %xmm0. 149 // These can often bypass execution ports completely. 150 //////////////////////////////////////////////////////////////////////////////// 151 152 def : WriteRes<WriteZero, []>; 153 154 //////////////////////////////////////////////////////////////////////////////// 155 // Branches don't produce values, so they have no latency, but they still 156 // consume resources. Indirect branches can fold loads. 157 //////////////////////////////////////////////////////////////////////////////// 158 159 defm : JWriteResIntPair<WriteJump, JALU01, 1>; 160 161 //////////////////////////////////////////////////////////////////////////////// 162 // Floating point. This covers both scalar and vector operations. 163 // FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions? 164 // FIXME: Double precision latencies 165 // FIXME: SS vs PS latencies 166 // FIXME: ymm latencies 167 //////////////////////////////////////////////////////////////////////////////// 168 169 defm : JWriteResFpuPair<WriteFAdd, JFPU0, 3>; 170 defm : JWriteResFpuPair<WriteFMul, JFPU1, 2>; 171 defm : JWriteResFpuPair<WriteFRcp, JFPU1, 2>; 172 defm : JWriteResFpuPair<WriteFRsqrt, JFPU1, 2>; 173 defm : JWriteResFpuPair<WriteFShuffle, JFPU01, 1>; 174 defm : JWriteResFpuPair<WriteFBlend, JFPU01, 1>; 175 defm : JWriteResFpuPair<WriteFShuffle256, JFPU01, 1>; 176 177 def : WriteRes<WriteFSqrt, [JFPU1, JLAGU, JFPM]> { 178 let Latency = 21; 179 let ResourceCycles = [1, 1, 21]; 180 } 181 def : WriteRes<WriteFSqrtLd, [JFPU1, JLAGU, JFPM]> { 182 let Latency = 26; 183 let ResourceCycles = [1, 1, 21]; 184 } 185 186 def : WriteRes<WriteFDiv, [JFPU1, JLAGU, JFPM]> { 187 let Latency = 19; 188 let ResourceCycles = [1, 1, 19]; 189 } 190 def : WriteRes<WriteFDivLd, [JFPU1, JLAGU, JFPM]> { 191 let Latency = 24; 192 let ResourceCycles = [1, 1, 19]; 193 } 194 195 // FIXME: integer pipes 196 defm : JWriteResFpuPair<WriteCvtF2I, JFPU1, 3>; // Float -> Integer. 197 defm : JWriteResFpuPair<WriteCvtI2F, JFPU1, 3>; // Integer -> Float. 198 defm : JWriteResFpuPair<WriteCvtF2F, JFPU1, 3>; // Float -> Float size conversion. 199 200 def : WriteRes<WriteFVarBlend, [JFPU01]> { 201 let Latency = 2; 202 let ResourceCycles = [2]; 203 } 204 def : WriteRes<WriteFVarBlendLd, [JLAGU, JFPU01]> { 205 let Latency = 7; 206 let ResourceCycles = [1, 2]; 207 } 208 209 // Vector integer operations. 210 defm : JWriteResFpuPair<WriteVecALU, JFPU01, 1>; 211 defm : JWriteResFpuPair<WriteVecShift, JFPU01, 1>; 212 defm : JWriteResFpuPair<WriteVecIMul, JFPU0, 2>; 213 defm : JWriteResFpuPair<WriteShuffle, JFPU01, 1>; 214 defm : JWriteResFpuPair<WriteBlend, JFPU01, 1>; 215 defm : JWriteResFpuPair<WriteVecLogic, JFPU01, 1>; 216 defm : JWriteResFpuPair<WriteShuffle256, JFPU01, 1>; 217 218 def : WriteRes<WriteVarBlend, [JFPU01]> { 219 let Latency = 2; 220 let ResourceCycles = [2]; 221 } 222 def : WriteRes<WriteVarBlendLd, [JLAGU, JFPU01]> { 223 let Latency = 7; 224 let ResourceCycles = [1, 2]; 225 } 226 227 // FIXME: why do we need to define AVX2 resource on CPU that doesn't have AVX2? 228 def : WriteRes<WriteVarVecShift, [JFPU01]> { 229 let Latency = 1; 230 let ResourceCycles = [1]; 231 } 232 def : WriteRes<WriteVarVecShiftLd, [JLAGU, JFPU01]> { 233 let Latency = 6; 234 let ResourceCycles = [1, 1]; 235 } 236 237 def : WriteRes<WriteMPSAD, [JFPU0]> { 238 let Latency = 3; 239 let ResourceCycles = [2]; 240 } 241 def : WriteRes<WriteMPSADLd, [JLAGU, JFPU0]> { 242 let Latency = 8; 243 let ResourceCycles = [1, 2]; 244 } 245 246 //////////////////////////////////////////////////////////////////////////////// 247 // String instructions. 248 // Packed Compare Implicit Length Strings, Return Mask 249 // FIXME: approximate latencies + pipe dependencies 250 //////////////////////////////////////////////////////////////////////////////// 251 252 def : WriteRes<WritePCmpIStrM, [JFPU01]> { 253 let Latency = 7; 254 let ResourceCycles = [2]; 255 } 256 def : WriteRes<WritePCmpIStrMLd, [JLAGU, JFPU01]> { 257 let Latency = 12; 258 let ResourceCycles = [1, 2]; 259 } 260 261 // Packed Compare Explicit Length Strings, Return Mask 262 def : WriteRes<WritePCmpEStrM, [JFPU01]> { 263 let Latency = 13; 264 let ResourceCycles = [5]; 265 } 266 def : WriteRes<WritePCmpEStrMLd, [JLAGU, JFPU01]> { 267 let Latency = 18; 268 let ResourceCycles = [1, 5]; 269 } 270 271 // Packed Compare Implicit Length Strings, Return Index 272 def : WriteRes<WritePCmpIStrI, [JFPU01]> { 273 let Latency = 6; 274 let ResourceCycles = [2]; 275 } 276 def : WriteRes<WritePCmpIStrILd, [JLAGU, JFPU01]> { 277 let Latency = 11; 278 let ResourceCycles = [1, 2]; 279 } 280 281 // Packed Compare Explicit Length Strings, Return Index 282 def : WriteRes<WritePCmpEStrI, [JFPU01]> { 283 let Latency = 13; 284 let ResourceCycles = [5]; 285 } 286 def : WriteRes<WritePCmpEStrILd, [JLAGU, JFPU01]> { 287 let Latency = 18; 288 let ResourceCycles = [1, 5]; 289 } 290 291 //////////////////////////////////////////////////////////////////////////////// 292 // AES Instructions. 293 //////////////////////////////////////////////////////////////////////////////// 294 295 def : WriteRes<WriteAESDecEnc, [JFPU01, JVIMUL]> { 296 let Latency = 3; 297 let ResourceCycles = [1, 1]; 298 } 299 def : WriteRes<WriteAESDecEncLd, [JFPU01, JLAGU, JVIMUL]> { 300 let Latency = 8; 301 let ResourceCycles = [1, 1, 1]; 302 } 303 304 def : WriteRes<WriteAESIMC, [JVIMUL]> { 305 let Latency = 2; 306 let ResourceCycles = [1]; 307 } 308 def : WriteRes<WriteAESIMCLd, [JLAGU, JVIMUL]> { 309 let Latency = 7; 310 let ResourceCycles = [1, 1]; 311 } 312 313 def : WriteRes<WriteAESKeyGen, [JVIMUL]> { 314 let Latency = 2; 315 let ResourceCycles = [1]; 316 } 317 def : WriteRes<WriteAESKeyGenLd, [JLAGU, JVIMUL]> { 318 let Latency = 7; 319 let ResourceCycles = [1, 1]; 320 } 321 322 //////////////////////////////////////////////////////////////////////////////// 323 // Carry-less multiplication instructions. 324 //////////////////////////////////////////////////////////////////////////////// 325 326 def : WriteRes<WriteCLMul, [JVIMUL]> { 327 let Latency = 2; 328 let ResourceCycles = [1]; 329 } 330 def : WriteRes<WriteCLMulLd, [JLAGU, JVIMUL]> { 331 let Latency = 7; 332 let ResourceCycles = [1, 1]; 333 } 334 335 // FIXME: pipe for system/microcode? 336 def : WriteRes<WriteSystem, [JAny]> { let Latency = 100; } 337 def : WriteRes<WriteMicrocoded, [JAny]> { let Latency = 100; } 338 def : WriteRes<WriteFence, [JSAGU]>; 339 def : WriteRes<WriteNop, []>; 340 } // SchedModel 341 342