1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Float2Int pass, which aims to demote floating 11 // point operations to work on integers, where that is losslessly possible. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "float2int" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/EquivalenceClasses.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/IR/ConstantRange.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include <deque> 35 #include <functional> // For std::function 36 using namespace llvm; 37 38 // The algorithm is simple. Start at instructions that convert from the 39 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 40 // graph, using an equivalence datastructure to unify graphs that interfere. 41 // 42 // Mappable instructions are those with an integer corrollary that, given 43 // integer domain inputs, produce an integer output; fadd, for example. 44 // 45 // If a non-mappable instruction is seen, this entire def-use graph is marked 46 // as non-transformable. If we see an instruction that converts from the 47 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 48 49 /// The largest integer type worth dealing with. 50 static cl::opt<unsigned> 51 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 52 cl::desc("Max integer bitwidth to consider in float2int" 53 "(default=64)")); 54 55 namespace { 56 struct Float2Int : public FunctionPass { 57 static char ID; // Pass identification, replacement for typeid 58 Float2Int() : FunctionPass(ID) { 59 initializeFloat2IntPass(*PassRegistry::getPassRegistry()); 60 } 61 62 bool runOnFunction(Function &F) override; 63 void getAnalysisUsage(AnalysisUsage &AU) const override { 64 AU.setPreservesCFG(); 65 AU.addPreserved<GlobalsAAWrapperPass>(); 66 } 67 68 void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots); 69 ConstantRange seen(Instruction *I, ConstantRange R); 70 ConstantRange badRange(); 71 ConstantRange unknownRange(); 72 ConstantRange validateRange(ConstantRange R); 73 void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots); 74 void walkForwards(); 75 bool validateAndTransform(); 76 Value *convert(Instruction *I, Type *ToTy); 77 void cleanup(); 78 79 MapVector<Instruction*, ConstantRange > SeenInsts; 80 SmallPtrSet<Instruction*,8> Roots; 81 EquivalenceClasses<Instruction*> ECs; 82 MapVector<Instruction*, Value*> ConvertedInsts; 83 LLVMContext *Ctx; 84 }; 85 } 86 87 char Float2Int::ID = 0; 88 INITIALIZE_PASS_BEGIN(Float2Int, "float2int", "Float to int", false, false) 89 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 90 INITIALIZE_PASS_END(Float2Int, "float2int", "Float to int", false, false) 91 92 // Given a FCmp predicate, return a matching ICmp predicate if one 93 // exists, otherwise return BAD_ICMP_PREDICATE. 94 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 95 switch (P) { 96 case CmpInst::FCMP_OEQ: 97 case CmpInst::FCMP_UEQ: 98 return CmpInst::ICMP_EQ; 99 case CmpInst::FCMP_OGT: 100 case CmpInst::FCMP_UGT: 101 return CmpInst::ICMP_SGT; 102 case CmpInst::FCMP_OGE: 103 case CmpInst::FCMP_UGE: 104 return CmpInst::ICMP_SGE; 105 case CmpInst::FCMP_OLT: 106 case CmpInst::FCMP_ULT: 107 return CmpInst::ICMP_SLT; 108 case CmpInst::FCMP_OLE: 109 case CmpInst::FCMP_ULE: 110 return CmpInst::ICMP_SLE; 111 case CmpInst::FCMP_ONE: 112 case CmpInst::FCMP_UNE: 113 return CmpInst::ICMP_NE; 114 default: 115 return CmpInst::BAD_ICMP_PREDICATE; 116 } 117 } 118 119 // Given a floating point binary operator, return the matching 120 // integer version. 121 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 122 switch (Opcode) { 123 default: llvm_unreachable("Unhandled opcode!"); 124 case Instruction::FAdd: return Instruction::Add; 125 case Instruction::FSub: return Instruction::Sub; 126 case Instruction::FMul: return Instruction::Mul; 127 } 128 } 129 130 // Find the roots - instructions that convert from the FP domain to 131 // integer domain. 132 void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { 133 for (auto &I : instructions(F)) { 134 if (isa<VectorType>(I.getType())) 135 continue; 136 switch (I.getOpcode()) { 137 default: break; 138 case Instruction::FPToUI: 139 case Instruction::FPToSI: 140 Roots.insert(&I); 141 break; 142 case Instruction::FCmp: 143 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 144 CmpInst::BAD_ICMP_PREDICATE) 145 Roots.insert(&I); 146 break; 147 } 148 } 149 } 150 151 // Helper - mark I as having been traversed, having range R. 152 ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) { 153 DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 154 if (SeenInsts.find(I) != SeenInsts.end()) 155 SeenInsts.find(I)->second = R; 156 else 157 SeenInsts.insert(std::make_pair(I, R)); 158 return R; 159 } 160 161 // Helper - get a range representing a poison value. 162 ConstantRange Float2Int::badRange() { 163 return ConstantRange(MaxIntegerBW + 1, true); 164 } 165 ConstantRange Float2Int::unknownRange() { 166 return ConstantRange(MaxIntegerBW + 1, false); 167 } 168 ConstantRange Float2Int::validateRange(ConstantRange R) { 169 if (R.getBitWidth() > MaxIntegerBW + 1) 170 return badRange(); 171 return R; 172 } 173 174 // The most obvious way to structure the search is a depth-first, eager 175 // search from each root. However, that require direct recursion and so 176 // can only handle small instruction sequences. Instead, we split the search 177 // up into two phases: 178 // - walkBackwards: A breadth-first walk of the use-def graph starting from 179 // the roots. Populate "SeenInsts" with interesting 180 // instructions and poison values if they're obvious and 181 // cheap to compute. Calculate the equivalance set structure 182 // while we're here too. 183 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 184 // defs before their uses. Calculate the real range info. 185 186 // Breadth-first walk of the use-def graph; determine the set of nodes 187 // we care about and eagerly determine if some of them are poisonous. 188 void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { 189 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 190 while (!Worklist.empty()) { 191 Instruction *I = Worklist.back(); 192 Worklist.pop_back(); 193 194 if (SeenInsts.find(I) != SeenInsts.end()) 195 // Seen already. 196 continue; 197 198 switch (I->getOpcode()) { 199 // FIXME: Handle select and phi nodes. 200 default: 201 // Path terminated uncleanly. 202 seen(I, badRange()); 203 break; 204 205 case Instruction::UIToFP: { 206 // Path terminated cleanly. 207 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 208 APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1); 209 APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1); 210 seen(I, validateRange(ConstantRange(Min, Max))); 211 continue; 212 } 213 214 case Instruction::SIToFP: { 215 // Path terminated cleanly. 216 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 217 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1); 218 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1); 219 seen(I, validateRange(ConstantRange(SMin, SMax))); 220 continue; 221 } 222 223 case Instruction::FAdd: 224 case Instruction::FSub: 225 case Instruction::FMul: 226 case Instruction::FPToUI: 227 case Instruction::FPToSI: 228 case Instruction::FCmp: 229 seen(I, unknownRange()); 230 break; 231 } 232 233 for (Value *O : I->operands()) { 234 if (Instruction *OI = dyn_cast<Instruction>(O)) { 235 // Unify def-use chains if they interfere. 236 ECs.unionSets(I, OI); 237 if (SeenInsts.find(I)->second != badRange()) 238 Worklist.push_back(OI); 239 } else if (!isa<ConstantFP>(O)) { 240 // Not an instruction or ConstantFP? we can't do anything. 241 seen(I, badRange()); 242 } 243 } 244 } 245 } 246 247 // Walk forwards down the list of seen instructions, so we visit defs before 248 // uses. 249 void Float2Int::walkForwards() { 250 for (auto &It : make_range(SeenInsts.rbegin(), SeenInsts.rend())) { 251 if (It.second != unknownRange()) 252 continue; 253 254 Instruction *I = It.first; 255 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; 256 switch (I->getOpcode()) { 257 // FIXME: Handle select and phi nodes. 258 default: 259 case Instruction::UIToFP: 260 case Instruction::SIToFP: 261 llvm_unreachable("Should have been handled in walkForwards!"); 262 263 case Instruction::FAdd: 264 Op = [](ArrayRef<ConstantRange> Ops) { 265 assert(Ops.size() == 2 && "FAdd is a binary operator!"); 266 return Ops[0].add(Ops[1]); 267 }; 268 break; 269 270 case Instruction::FSub: 271 Op = [](ArrayRef<ConstantRange> Ops) { 272 assert(Ops.size() == 2 && "FSub is a binary operator!"); 273 return Ops[0].sub(Ops[1]); 274 }; 275 break; 276 277 case Instruction::FMul: 278 Op = [](ArrayRef<ConstantRange> Ops) { 279 assert(Ops.size() == 2 && "FMul is a binary operator!"); 280 return Ops[0].multiply(Ops[1]); 281 }; 282 break; 283 284 // 285 // Root-only instructions - we'll only see these if they're the 286 // first node in a walk. 287 // 288 case Instruction::FPToUI: 289 case Instruction::FPToSI: 290 Op = [](ArrayRef<ConstantRange> Ops) { 291 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); 292 return Ops[0]; 293 }; 294 break; 295 296 case Instruction::FCmp: 297 Op = [](ArrayRef<ConstantRange> Ops) { 298 assert(Ops.size() == 2 && "FCmp is a binary operator!"); 299 return Ops[0].unionWith(Ops[1]); 300 }; 301 break; 302 } 303 304 bool Abort = false; 305 SmallVector<ConstantRange,4> OpRanges; 306 for (Value *O : I->operands()) { 307 if (Instruction *OI = dyn_cast<Instruction>(O)) { 308 assert(SeenInsts.find(OI) != SeenInsts.end() && 309 "def not seen before use!"); 310 OpRanges.push_back(SeenInsts.find(OI)->second); 311 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 312 // Work out if the floating point number can be losslessly represented 313 // as an integer. 314 // APFloat::convertToInteger(&Exact) purports to do what we want, but 315 // the exactness can be too precise. For example, negative zero can 316 // never be exactly converted to an integer. 317 // 318 // Instead, we ask APFloat to round itself to an integral value - this 319 // preserves sign-of-zero - then compare the result with the original. 320 // 321 APFloat F = CF->getValueAPF(); 322 323 // First, weed out obviously incorrect values. Non-finite numbers 324 // can't be represented and neither can negative zero, unless 325 // we're in fast math mode. 326 if (!F.isFinite() || 327 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 328 !I->hasNoSignedZeros())) { 329 seen(I, badRange()); 330 Abort = true; 331 break; 332 } 333 334 APFloat NewF = F; 335 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 336 if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { 337 seen(I, badRange()); 338 Abort = true; 339 break; 340 } 341 // OK, it's representable. Now get it. 342 APSInt Int(MaxIntegerBW+1, false); 343 bool Exact; 344 CF->getValueAPF().convertToInteger(Int, 345 APFloat::rmNearestTiesToEven, 346 &Exact); 347 OpRanges.push_back(ConstantRange(Int)); 348 } else { 349 llvm_unreachable("Should have already marked this as badRange!"); 350 } 351 } 352 353 // Reduce the operands' ranges to a single range and return. 354 if (!Abort) 355 seen(I, Op(OpRanges)); 356 } 357 } 358 359 // If there is a valid transform to be done, do it. 360 bool Float2Int::validateAndTransform() { 361 bool MadeChange = false; 362 363 // Iterate over every disjoint partition of the def-use graph. 364 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 365 ConstantRange R(MaxIntegerBW + 1, false); 366 bool Fail = false; 367 Type *ConvertedToTy = nullptr; 368 369 // For every member of the partition, union all the ranges together. 370 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 371 MI != ME; ++MI) { 372 Instruction *I = *MI; 373 auto SeenI = SeenInsts.find(I); 374 if (SeenI == SeenInsts.end()) 375 continue; 376 377 R = R.unionWith(SeenI->second); 378 // We need to ensure I has no users that have not been seen. 379 // If it does, transformation would be illegal. 380 // 381 // Don't count the roots, as they terminate the graphs. 382 if (Roots.count(I) == 0) { 383 // Set the type of the conversion while we're here. 384 if (!ConvertedToTy) 385 ConvertedToTy = I->getType(); 386 for (User *U : I->users()) { 387 Instruction *UI = dyn_cast<Instruction>(U); 388 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { 389 DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 390 Fail = true; 391 break; 392 } 393 } 394 } 395 if (Fail) 396 break; 397 } 398 399 // If the set was empty, or we failed, or the range is poisonous, 400 // bail out. 401 if (ECs.member_begin(It) == ECs.member_end() || Fail || 402 R.isFullSet() || R.isSignWrappedSet()) 403 continue; 404 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 405 406 // The number of bits required is the maximum of the upper and 407 // lower limits, plus one so it can be signed. 408 unsigned MinBW = std::max(R.getLower().getMinSignedBits(), 409 R.getUpper().getMinSignedBits()) + 1; 410 DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 411 412 // If we've run off the realms of the exactly representable integers, 413 // the floating point result will differ from an integer approximation. 414 415 // Do we need more bits than are in the mantissa of the type we converted 416 // to? semanticsPrecision returns the number of mantissa bits plus one 417 // for the sign bit. 418 unsigned MaxRepresentableBits 419 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 420 if (MinBW > MaxRepresentableBits) { 421 DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 422 continue; 423 } 424 if (MinBW > 64) { 425 DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); 426 continue; 427 } 428 429 // OK, R is known to be representable. Now pick a type for it. 430 // FIXME: Pick the smallest legal type that will fit. 431 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); 432 433 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 434 MI != ME; ++MI) 435 convert(*MI, Ty); 436 MadeChange = true; 437 } 438 439 return MadeChange; 440 } 441 442 Value *Float2Int::convert(Instruction *I, Type *ToTy) { 443 if (ConvertedInsts.find(I) != ConvertedInsts.end()) 444 // Already converted this instruction. 445 return ConvertedInsts[I]; 446 447 SmallVector<Value*,4> NewOperands; 448 for (Value *V : I->operands()) { 449 // Don't recurse if we're an instruction that terminates the path. 450 if (I->getOpcode() == Instruction::UIToFP || 451 I->getOpcode() == Instruction::SIToFP) { 452 NewOperands.push_back(V); 453 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 454 NewOperands.push_back(convert(VI, ToTy)); 455 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 456 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false); 457 bool Exact; 458 CF->getValueAPF().convertToInteger(Val, 459 APFloat::rmNearestTiesToEven, 460 &Exact); 461 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 462 } else { 463 llvm_unreachable("Unhandled operand type?"); 464 } 465 } 466 467 // Now create a new instruction. 468 IRBuilder<> IRB(I); 469 Value *NewV = nullptr; 470 switch (I->getOpcode()) { 471 default: llvm_unreachable("Unhandled instruction!"); 472 473 case Instruction::FPToUI: 474 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 475 break; 476 477 case Instruction::FPToSI: 478 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 479 break; 480 481 case Instruction::FCmp: { 482 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 483 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 484 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 485 break; 486 } 487 488 case Instruction::UIToFP: 489 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 490 break; 491 492 case Instruction::SIToFP: 493 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 494 break; 495 496 case Instruction::FAdd: 497 case Instruction::FSub: 498 case Instruction::FMul: 499 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 500 NewOperands[0], NewOperands[1], 501 I->getName()); 502 break; 503 } 504 505 // If we're a root instruction, RAUW. 506 if (Roots.count(I)) 507 I->replaceAllUsesWith(NewV); 508 509 ConvertedInsts[I] = NewV; 510 return NewV; 511 } 512 513 // Perform dead code elimination on the instructions we just modified. 514 void Float2Int::cleanup() { 515 for (auto &I : make_range(ConvertedInsts.rbegin(), ConvertedInsts.rend())) 516 I.first->eraseFromParent(); 517 } 518 519 bool Float2Int::runOnFunction(Function &F) { 520 if (skipOptnoneFunction(F)) 521 return false; 522 523 DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 524 // Clear out all state. 525 ECs = EquivalenceClasses<Instruction*>(); 526 SeenInsts.clear(); 527 ConvertedInsts.clear(); 528 Roots.clear(); 529 530 Ctx = &F.getParent()->getContext(); 531 532 findRoots(F, Roots); 533 534 walkBackwards(Roots); 535 walkForwards(); 536 537 bool Modified = validateAndTransform(); 538 if (Modified) 539 cleanup(); 540 return Modified; 541 } 542 543 FunctionPass *llvm::createFloat2IntPass() { return new Float2Int(); } 544