Home | History | Annotate | Download | only in Scalar
      1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Float2Int pass, which aims to demote floating
     11 // point operations to work on integers, where that is losslessly possible.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "float2int"
     16 #include "llvm/ADT/APInt.h"
     17 #include "llvm/ADT/APSInt.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/EquivalenceClasses.h"
     20 #include "llvm/ADT/MapVector.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/Analysis/GlobalsModRef.h"
     24 #include "llvm/IR/ConstantRange.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/IRBuilder.h"
     27 #include "llvm/IR/InstIterator.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Module.h"
     30 #include "llvm/Pass.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Transforms/Scalar.h"
     34 #include <deque>
     35 #include <functional> // For std::function
     36 using namespace llvm;
     37 
     38 // The algorithm is simple. Start at instructions that convert from the
     39 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
     40 // graph, using an equivalence datastructure to unify graphs that interfere.
     41 //
     42 // Mappable instructions are those with an integer corrollary that, given
     43 // integer domain inputs, produce an integer output; fadd, for example.
     44 //
     45 // If a non-mappable instruction is seen, this entire def-use graph is marked
     46 // as non-transformable. If we see an instruction that converts from the
     47 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
     48 
     49 /// The largest integer type worth dealing with.
     50 static cl::opt<unsigned>
     51 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
     52              cl::desc("Max integer bitwidth to consider in float2int"
     53                       "(default=64)"));
     54 
     55 namespace {
     56   struct Float2Int : public FunctionPass {
     57     static char ID; // Pass identification, replacement for typeid
     58     Float2Int() : FunctionPass(ID) {
     59       initializeFloat2IntPass(*PassRegistry::getPassRegistry());
     60     }
     61 
     62     bool runOnFunction(Function &F) override;
     63     void getAnalysisUsage(AnalysisUsage &AU) const override {
     64       AU.setPreservesCFG();
     65       AU.addPreserved<GlobalsAAWrapperPass>();
     66     }
     67 
     68     void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots);
     69     ConstantRange seen(Instruction *I, ConstantRange R);
     70     ConstantRange badRange();
     71     ConstantRange unknownRange();
     72     ConstantRange validateRange(ConstantRange R);
     73     void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots);
     74     void walkForwards();
     75     bool validateAndTransform();
     76     Value *convert(Instruction *I, Type *ToTy);
     77     void cleanup();
     78 
     79     MapVector<Instruction*, ConstantRange > SeenInsts;
     80     SmallPtrSet<Instruction*,8> Roots;
     81     EquivalenceClasses<Instruction*> ECs;
     82     MapVector<Instruction*, Value*> ConvertedInsts;
     83     LLVMContext *Ctx;
     84   };
     85 }
     86 
     87 char Float2Int::ID = 0;
     88 INITIALIZE_PASS_BEGIN(Float2Int, "float2int", "Float to int", false, false)
     89 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
     90 INITIALIZE_PASS_END(Float2Int, "float2int", "Float to int", false, false)
     91 
     92 // Given a FCmp predicate, return a matching ICmp predicate if one
     93 // exists, otherwise return BAD_ICMP_PREDICATE.
     94 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
     95   switch (P) {
     96   case CmpInst::FCMP_OEQ:
     97   case CmpInst::FCMP_UEQ:
     98     return CmpInst::ICMP_EQ;
     99   case CmpInst::FCMP_OGT:
    100   case CmpInst::FCMP_UGT:
    101     return CmpInst::ICMP_SGT;
    102   case CmpInst::FCMP_OGE:
    103   case CmpInst::FCMP_UGE:
    104     return CmpInst::ICMP_SGE;
    105   case CmpInst::FCMP_OLT:
    106   case CmpInst::FCMP_ULT:
    107     return CmpInst::ICMP_SLT;
    108   case CmpInst::FCMP_OLE:
    109   case CmpInst::FCMP_ULE:
    110     return CmpInst::ICMP_SLE;
    111   case CmpInst::FCMP_ONE:
    112   case CmpInst::FCMP_UNE:
    113     return CmpInst::ICMP_NE;
    114   default:
    115     return CmpInst::BAD_ICMP_PREDICATE;
    116   }
    117 }
    118 
    119 // Given a floating point binary operator, return the matching
    120 // integer version.
    121 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
    122   switch (Opcode) {
    123   default: llvm_unreachable("Unhandled opcode!");
    124   case Instruction::FAdd: return Instruction::Add;
    125   case Instruction::FSub: return Instruction::Sub;
    126   case Instruction::FMul: return Instruction::Mul;
    127   }
    128 }
    129 
    130 // Find the roots - instructions that convert from the FP domain to
    131 // integer domain.
    132 void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
    133   for (auto &I : instructions(F)) {
    134     if (isa<VectorType>(I.getType()))
    135       continue;
    136     switch (I.getOpcode()) {
    137     default: break;
    138     case Instruction::FPToUI:
    139     case Instruction::FPToSI:
    140       Roots.insert(&I);
    141       break;
    142     case Instruction::FCmp:
    143       if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
    144           CmpInst::BAD_ICMP_PREDICATE)
    145         Roots.insert(&I);
    146       break;
    147     }
    148   }
    149 }
    150 
    151 // Helper - mark I as having been traversed, having range R.
    152 ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) {
    153   DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
    154   if (SeenInsts.find(I) != SeenInsts.end())
    155     SeenInsts.find(I)->second = R;
    156   else
    157     SeenInsts.insert(std::make_pair(I, R));
    158   return R;
    159 }
    160 
    161 // Helper - get a range representing a poison value.
    162 ConstantRange Float2Int::badRange() {
    163   return ConstantRange(MaxIntegerBW + 1, true);
    164 }
    165 ConstantRange Float2Int::unknownRange() {
    166   return ConstantRange(MaxIntegerBW + 1, false);
    167 }
    168 ConstantRange Float2Int::validateRange(ConstantRange R) {
    169   if (R.getBitWidth() > MaxIntegerBW + 1)
    170     return badRange();
    171   return R;
    172 }
    173 
    174 // The most obvious way to structure the search is a depth-first, eager
    175 // search from each root. However, that require direct recursion and so
    176 // can only handle small instruction sequences. Instead, we split the search
    177 // up into two phases:
    178 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
    179 //                     the roots. Populate "SeenInsts" with interesting
    180 //                     instructions and poison values if they're obvious and
    181 //                     cheap to compute. Calculate the equivalance set structure
    182 //                     while we're here too.
    183 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
    184 //                     defs before their uses. Calculate the real range info.
    185 
    186 // Breadth-first walk of the use-def graph; determine the set of nodes
    187 // we care about and eagerly determine if some of them are poisonous.
    188 void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
    189   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
    190   while (!Worklist.empty()) {
    191     Instruction *I = Worklist.back();
    192     Worklist.pop_back();
    193 
    194     if (SeenInsts.find(I) != SeenInsts.end())
    195       // Seen already.
    196       continue;
    197 
    198     switch (I->getOpcode()) {
    199       // FIXME: Handle select and phi nodes.
    200     default:
    201       // Path terminated uncleanly.
    202       seen(I, badRange());
    203       break;
    204 
    205     case Instruction::UIToFP: {
    206       // Path terminated cleanly.
    207       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
    208       APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
    209       APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
    210       seen(I, validateRange(ConstantRange(Min, Max)));
    211       continue;
    212     }
    213 
    214     case Instruction::SIToFP: {
    215       // Path terminated cleanly.
    216       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
    217       APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
    218       APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
    219       seen(I, validateRange(ConstantRange(SMin, SMax)));
    220       continue;
    221     }
    222 
    223     case Instruction::FAdd:
    224     case Instruction::FSub:
    225     case Instruction::FMul:
    226     case Instruction::FPToUI:
    227     case Instruction::FPToSI:
    228     case Instruction::FCmp:
    229       seen(I, unknownRange());
    230       break;
    231     }
    232 
    233     for (Value *O : I->operands()) {
    234       if (Instruction *OI = dyn_cast<Instruction>(O)) {
    235         // Unify def-use chains if they interfere.
    236         ECs.unionSets(I, OI);
    237         if (SeenInsts.find(I)->second != badRange())
    238           Worklist.push_back(OI);
    239       } else if (!isa<ConstantFP>(O)) {
    240         // Not an instruction or ConstantFP? we can't do anything.
    241         seen(I, badRange());
    242       }
    243     }
    244   }
    245 }
    246 
    247 // Walk forwards down the list of seen instructions, so we visit defs before
    248 // uses.
    249 void Float2Int::walkForwards() {
    250   for (auto &It : make_range(SeenInsts.rbegin(), SeenInsts.rend())) {
    251     if (It.second != unknownRange())
    252       continue;
    253 
    254     Instruction *I = It.first;
    255     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
    256     switch (I->getOpcode()) {
    257       // FIXME: Handle select and phi nodes.
    258     default:
    259     case Instruction::UIToFP:
    260     case Instruction::SIToFP:
    261       llvm_unreachable("Should have been handled in walkForwards!");
    262 
    263     case Instruction::FAdd:
    264       Op = [](ArrayRef<ConstantRange> Ops) {
    265         assert(Ops.size() == 2 && "FAdd is a binary operator!");
    266         return Ops[0].add(Ops[1]);
    267       };
    268       break;
    269 
    270     case Instruction::FSub:
    271       Op = [](ArrayRef<ConstantRange> Ops) {
    272         assert(Ops.size() == 2 && "FSub is a binary operator!");
    273         return Ops[0].sub(Ops[1]);
    274       };
    275       break;
    276 
    277     case Instruction::FMul:
    278       Op = [](ArrayRef<ConstantRange> Ops) {
    279         assert(Ops.size() == 2 && "FMul is a binary operator!");
    280         return Ops[0].multiply(Ops[1]);
    281       };
    282       break;
    283 
    284     //
    285     // Root-only instructions - we'll only see these if they're the
    286     //                          first node in a walk.
    287     //
    288     case Instruction::FPToUI:
    289     case Instruction::FPToSI:
    290       Op = [](ArrayRef<ConstantRange> Ops) {
    291         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
    292         return Ops[0];
    293       };
    294       break;
    295 
    296     case Instruction::FCmp:
    297       Op = [](ArrayRef<ConstantRange> Ops) {
    298         assert(Ops.size() == 2 && "FCmp is a binary operator!");
    299         return Ops[0].unionWith(Ops[1]);
    300       };
    301       break;
    302     }
    303 
    304     bool Abort = false;
    305     SmallVector<ConstantRange,4> OpRanges;
    306     for (Value *O : I->operands()) {
    307       if (Instruction *OI = dyn_cast<Instruction>(O)) {
    308         assert(SeenInsts.find(OI) != SeenInsts.end() &&
    309                "def not seen before use!");
    310         OpRanges.push_back(SeenInsts.find(OI)->second);
    311       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
    312         // Work out if the floating point number can be losslessly represented
    313         // as an integer.
    314         // APFloat::convertToInteger(&Exact) purports to do what we want, but
    315         // the exactness can be too precise. For example, negative zero can
    316         // never be exactly converted to an integer.
    317         //
    318         // Instead, we ask APFloat to round itself to an integral value - this
    319         // preserves sign-of-zero - then compare the result with the original.
    320         //
    321         APFloat F = CF->getValueAPF();
    322 
    323         // First, weed out obviously incorrect values. Non-finite numbers
    324         // can't be represented and neither can negative zero, unless
    325         // we're in fast math mode.
    326         if (!F.isFinite() ||
    327             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
    328              !I->hasNoSignedZeros())) {
    329           seen(I, badRange());
    330           Abort = true;
    331           break;
    332         }
    333 
    334         APFloat NewF = F;
    335         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
    336         if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
    337           seen(I, badRange());
    338           Abort = true;
    339           break;
    340         }
    341         // OK, it's representable. Now get it.
    342         APSInt Int(MaxIntegerBW+1, false);
    343         bool Exact;
    344         CF->getValueAPF().convertToInteger(Int,
    345                                            APFloat::rmNearestTiesToEven,
    346                                            &Exact);
    347         OpRanges.push_back(ConstantRange(Int));
    348       } else {
    349         llvm_unreachable("Should have already marked this as badRange!");
    350       }
    351     }
    352 
    353     // Reduce the operands' ranges to a single range and return.
    354     if (!Abort)
    355       seen(I, Op(OpRanges));
    356   }
    357 }
    358 
    359 // If there is a valid transform to be done, do it.
    360 bool Float2Int::validateAndTransform() {
    361   bool MadeChange = false;
    362 
    363   // Iterate over every disjoint partition of the def-use graph.
    364   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
    365     ConstantRange R(MaxIntegerBW + 1, false);
    366     bool Fail = false;
    367     Type *ConvertedToTy = nullptr;
    368 
    369     // For every member of the partition, union all the ranges together.
    370     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
    371          MI != ME; ++MI) {
    372       Instruction *I = *MI;
    373       auto SeenI = SeenInsts.find(I);
    374       if (SeenI == SeenInsts.end())
    375         continue;
    376 
    377       R = R.unionWith(SeenI->second);
    378       // We need to ensure I has no users that have not been seen.
    379       // If it does, transformation would be illegal.
    380       //
    381       // Don't count the roots, as they terminate the graphs.
    382       if (Roots.count(I) == 0) {
    383         // Set the type of the conversion while we're here.
    384         if (!ConvertedToTy)
    385           ConvertedToTy = I->getType();
    386         for (User *U : I->users()) {
    387           Instruction *UI = dyn_cast<Instruction>(U);
    388           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
    389             DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
    390             Fail = true;
    391             break;
    392           }
    393         }
    394       }
    395       if (Fail)
    396         break;
    397     }
    398 
    399     // If the set was empty, or we failed, or the range is poisonous,
    400     // bail out.
    401     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
    402         R.isFullSet() || R.isSignWrappedSet())
    403       continue;
    404     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
    405 
    406     // The number of bits required is the maximum of the upper and
    407     // lower limits, plus one so it can be signed.
    408     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
    409                               R.getUpper().getMinSignedBits()) + 1;
    410     DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
    411 
    412     // If we've run off the realms of the exactly representable integers,
    413     // the floating point result will differ from an integer approximation.
    414 
    415     // Do we need more bits than are in the mantissa of the type we converted
    416     // to? semanticsPrecision returns the number of mantissa bits plus one
    417     // for the sign bit.
    418     unsigned MaxRepresentableBits
    419       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
    420     if (MinBW > MaxRepresentableBits) {
    421       DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
    422       continue;
    423     }
    424     if (MinBW > 64) {
    425       DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
    426       continue;
    427     }
    428 
    429     // OK, R is known to be representable. Now pick a type for it.
    430     // FIXME: Pick the smallest legal type that will fit.
    431     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
    432 
    433     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
    434          MI != ME; ++MI)
    435       convert(*MI, Ty);
    436     MadeChange = true;
    437   }
    438 
    439   return MadeChange;
    440 }
    441 
    442 Value *Float2Int::convert(Instruction *I, Type *ToTy) {
    443   if (ConvertedInsts.find(I) != ConvertedInsts.end())
    444     // Already converted this instruction.
    445     return ConvertedInsts[I];
    446 
    447   SmallVector<Value*,4> NewOperands;
    448   for (Value *V : I->operands()) {
    449     // Don't recurse if we're an instruction that terminates the path.
    450     if (I->getOpcode() == Instruction::UIToFP ||
    451         I->getOpcode() == Instruction::SIToFP) {
    452       NewOperands.push_back(V);
    453     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
    454       NewOperands.push_back(convert(VI, ToTy));
    455     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
    456       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
    457       bool Exact;
    458       CF->getValueAPF().convertToInteger(Val,
    459                                          APFloat::rmNearestTiesToEven,
    460                                          &Exact);
    461       NewOperands.push_back(ConstantInt::get(ToTy, Val));
    462     } else {
    463       llvm_unreachable("Unhandled operand type?");
    464     }
    465   }
    466 
    467   // Now create a new instruction.
    468   IRBuilder<> IRB(I);
    469   Value *NewV = nullptr;
    470   switch (I->getOpcode()) {
    471   default: llvm_unreachable("Unhandled instruction!");
    472 
    473   case Instruction::FPToUI:
    474     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
    475     break;
    476 
    477   case Instruction::FPToSI:
    478     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
    479     break;
    480 
    481   case Instruction::FCmp: {
    482     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
    483     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
    484     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
    485     break;
    486   }
    487 
    488   case Instruction::UIToFP:
    489     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
    490     break;
    491 
    492   case Instruction::SIToFP:
    493     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
    494     break;
    495 
    496   case Instruction::FAdd:
    497   case Instruction::FSub:
    498   case Instruction::FMul:
    499     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
    500                            NewOperands[0], NewOperands[1],
    501                            I->getName());
    502     break;
    503   }
    504 
    505   // If we're a root instruction, RAUW.
    506   if (Roots.count(I))
    507     I->replaceAllUsesWith(NewV);
    508 
    509   ConvertedInsts[I] = NewV;
    510   return NewV;
    511 }
    512 
    513 // Perform dead code elimination on the instructions we just modified.
    514 void Float2Int::cleanup() {
    515   for (auto &I : make_range(ConvertedInsts.rbegin(), ConvertedInsts.rend()))
    516     I.first->eraseFromParent();
    517 }
    518 
    519 bool Float2Int::runOnFunction(Function &F) {
    520   if (skipOptnoneFunction(F))
    521     return false;
    522 
    523   DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
    524   // Clear out all state.
    525   ECs = EquivalenceClasses<Instruction*>();
    526   SeenInsts.clear();
    527   ConvertedInsts.clear();
    528   Roots.clear();
    529 
    530   Ctx = &F.getParent()->getContext();
    531 
    532   findRoots(F, Roots);
    533 
    534   walkBackwards(Roots);
    535   walkForwards();
    536 
    537   bool Modified = validateAndTransform();
    538   if (Modified)
    539     cleanup();
    540   return Modified;
    541 }
    542 
    543 FunctionPass *llvm::createFloat2IntPass() { return new Float2Int(); }
    544