1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs various transformations related to eliminating memcpy 11 // calls, or transforming sets of stores into memset's. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 #define DEBUG_TYPE "memcpyopt" 38 39 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 40 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 41 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 42 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 43 44 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, 45 bool &VariableIdxFound, 46 const DataLayout &DL) { 47 // Skip over the first indices. 48 gep_type_iterator GTI = gep_type_begin(GEP); 49 for (unsigned i = 1; i != Idx; ++i, ++GTI) 50 /*skip along*/; 51 52 // Compute the offset implied by the rest of the indices. 53 int64_t Offset = 0; 54 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 55 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 56 if (!OpC) 57 return VariableIdxFound = true; 58 if (OpC->isZero()) continue; // No offset. 59 60 // Handle struct indices, which add their field offset to the pointer. 61 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 62 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 63 continue; 64 } 65 66 // Otherwise, we have a sequential type like an array or vector. Multiply 67 // the index by the ElementSize. 68 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 69 Offset += Size*OpC->getSExtValue(); 70 } 71 72 return Offset; 73 } 74 75 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and 76 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2 77 /// might be &A[40]. In this case offset would be -8. 78 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, 79 const DataLayout &DL) { 80 Ptr1 = Ptr1->stripPointerCasts(); 81 Ptr2 = Ptr2->stripPointerCasts(); 82 83 // Handle the trivial case first. 84 if (Ptr1 == Ptr2) { 85 Offset = 0; 86 return true; 87 } 88 89 GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 90 GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 91 92 bool VariableIdxFound = false; 93 94 // If one pointer is a GEP and the other isn't, then see if the GEP is a 95 // constant offset from the base, as in "P" and "gep P, 1". 96 if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { 97 Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL); 98 return !VariableIdxFound; 99 } 100 101 if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { 102 Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL); 103 return !VariableIdxFound; 104 } 105 106 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 107 // base. After that base, they may have some number of common (and 108 // potentially variable) indices. After that they handle some constant 109 // offset, which determines their offset from each other. At this point, we 110 // handle no other case. 111 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 112 return false; 113 114 // Skip any common indices and track the GEP types. 115 unsigned Idx = 1; 116 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 117 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 118 break; 119 120 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL); 121 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL); 122 if (VariableIdxFound) return false; 123 124 Offset = Offset2-Offset1; 125 return true; 126 } 127 128 129 /// Represents a range of memset'd bytes with the ByteVal value. 130 /// This allows us to analyze stores like: 131 /// store 0 -> P+1 132 /// store 0 -> P+0 133 /// store 0 -> P+3 134 /// store 0 -> P+2 135 /// which sometimes happens with stores to arrays of structs etc. When we see 136 /// the first store, we make a range [1, 2). The second store extends the range 137 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 138 /// two ranges into [0, 3) which is memset'able. 139 namespace { 140 struct MemsetRange { 141 // Start/End - A semi range that describes the span that this range covers. 142 // The range is closed at the start and open at the end: [Start, End). 143 int64_t Start, End; 144 145 /// StartPtr - The getelementptr instruction that points to the start of the 146 /// range. 147 Value *StartPtr; 148 149 /// Alignment - The known alignment of the first store. 150 unsigned Alignment; 151 152 /// TheStores - The actual stores that make up this range. 153 SmallVector<Instruction*, 16> TheStores; 154 155 bool isProfitableToUseMemset(const DataLayout &DL) const; 156 }; 157 } // end anon namespace 158 159 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 160 // If we found more than 4 stores to merge or 16 bytes, use memset. 161 if (TheStores.size() >= 4 || End-Start >= 16) return true; 162 163 // If there is nothing to merge, don't do anything. 164 if (TheStores.size() < 2) return false; 165 166 // If any of the stores are a memset, then it is always good to extend the 167 // memset. 168 for (Instruction *SI : TheStores) 169 if (!isa<StoreInst>(SI)) 170 return true; 171 172 // Assume that the code generator is capable of merging pairs of stores 173 // together if it wants to. 174 if (TheStores.size() == 2) return false; 175 176 // If we have fewer than 8 stores, it can still be worthwhile to do this. 177 // For example, merging 4 i8 stores into an i32 store is useful almost always. 178 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 179 // memset will be split into 2 32-bit stores anyway) and doing so can 180 // pessimize the llvm optimizer. 181 // 182 // Since we don't have perfect knowledge here, make some assumptions: assume 183 // the maximum GPR width is the same size as the largest legal integer 184 // size. If so, check to see whether we will end up actually reducing the 185 // number of stores used. 186 unsigned Bytes = unsigned(End-Start); 187 unsigned MaxIntSize = DL.getLargestLegalIntTypeSize(); 188 if (MaxIntSize == 0) 189 MaxIntSize = 1; 190 unsigned NumPointerStores = Bytes / MaxIntSize; 191 192 // Assume the remaining bytes if any are done a byte at a time. 193 unsigned NumByteStores = Bytes % MaxIntSize; 194 195 // If we will reduce the # stores (according to this heuristic), do the 196 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 197 // etc. 198 return TheStores.size() > NumPointerStores+NumByteStores; 199 } 200 201 202 namespace { 203 class MemsetRanges { 204 /// A sorted list of the memset ranges. 205 SmallVector<MemsetRange, 8> Ranges; 206 typedef SmallVectorImpl<MemsetRange>::iterator range_iterator; 207 const DataLayout &DL; 208 public: 209 MemsetRanges(const DataLayout &DL) : DL(DL) {} 210 211 typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator; 212 const_iterator begin() const { return Ranges.begin(); } 213 const_iterator end() const { return Ranges.end(); } 214 bool empty() const { return Ranges.empty(); } 215 216 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 217 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 218 addStore(OffsetFromFirst, SI); 219 else 220 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 221 } 222 223 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 224 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 225 226 addRange(OffsetFromFirst, StoreSize, 227 SI->getPointerOperand(), SI->getAlignment(), SI); 228 } 229 230 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 231 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 232 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI); 233 } 234 235 void addRange(int64_t Start, int64_t Size, Value *Ptr, 236 unsigned Alignment, Instruction *Inst); 237 238 }; 239 240 } // end anon namespace 241 242 243 /// Add a new store to the MemsetRanges data structure. This adds a 244 /// new range for the specified store at the specified offset, merging into 245 /// existing ranges as appropriate. 246 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 247 unsigned Alignment, Instruction *Inst) { 248 int64_t End = Start+Size; 249 250 range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start, 251 [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; }); 252 253 // We now know that I == E, in which case we didn't find anything to merge 254 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 255 // to insert a new range. Handle this now. 256 if (I == Ranges.end() || End < I->Start) { 257 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 258 R.Start = Start; 259 R.End = End; 260 R.StartPtr = Ptr; 261 R.Alignment = Alignment; 262 R.TheStores.push_back(Inst); 263 return; 264 } 265 266 // This store overlaps with I, add it. 267 I->TheStores.push_back(Inst); 268 269 // At this point, we may have an interval that completely contains our store. 270 // If so, just add it to the interval and return. 271 if (I->Start <= Start && I->End >= End) 272 return; 273 274 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 275 // but is not entirely contained within the range. 276 277 // See if the range extends the start of the range. In this case, it couldn't 278 // possibly cause it to join the prior range, because otherwise we would have 279 // stopped on *it*. 280 if (Start < I->Start) { 281 I->Start = Start; 282 I->StartPtr = Ptr; 283 I->Alignment = Alignment; 284 } 285 286 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 287 // is in or right at the end of I), and that End >= I->Start. Extend I out to 288 // End. 289 if (End > I->End) { 290 I->End = End; 291 range_iterator NextI = I; 292 while (++NextI != Ranges.end() && End >= NextI->Start) { 293 // Merge the range in. 294 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 295 if (NextI->End > I->End) 296 I->End = NextI->End; 297 Ranges.erase(NextI); 298 NextI = I; 299 } 300 } 301 } 302 303 //===----------------------------------------------------------------------===// 304 // MemCpyOpt Pass 305 //===----------------------------------------------------------------------===// 306 307 namespace { 308 class MemCpyOpt : public FunctionPass { 309 MemoryDependenceAnalysis *MD; 310 TargetLibraryInfo *TLI; 311 public: 312 static char ID; // Pass identification, replacement for typeid 313 MemCpyOpt() : FunctionPass(ID) { 314 initializeMemCpyOptPass(*PassRegistry::getPassRegistry()); 315 MD = nullptr; 316 TLI = nullptr; 317 } 318 319 bool runOnFunction(Function &F) override; 320 321 private: 322 // This transformation requires dominator postdominator info 323 void getAnalysisUsage(AnalysisUsage &AU) const override { 324 AU.setPreservesCFG(); 325 AU.addRequired<AssumptionCacheTracker>(); 326 AU.addRequired<DominatorTreeWrapperPass>(); 327 AU.addRequired<MemoryDependenceAnalysis>(); 328 AU.addRequired<AAResultsWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addPreserved<GlobalsAAWrapperPass>(); 331 AU.addPreserved<MemoryDependenceAnalysis>(); 332 } 333 334 // Helper functions 335 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); 336 bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI); 337 bool processMemCpy(MemCpyInst *M); 338 bool processMemMove(MemMoveInst *M); 339 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc, 340 uint64_t cpyLen, unsigned cpyAlign, CallInst *C); 341 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep); 342 bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep); 343 bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep); 344 bool processByValArgument(CallSite CS, unsigned ArgNo); 345 Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr, 346 Value *ByteVal); 347 348 bool iterateOnFunction(Function &F); 349 }; 350 351 char MemCpyOpt::ID = 0; 352 } 353 354 /// The public interface to this file... 355 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } 356 357 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 358 false, false) 359 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 360 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 361 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 362 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 363 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 364 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 365 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 366 false, false) 367 368 /// When scanning forward over instructions, we look for some other patterns to 369 /// fold away. In particular, this looks for stores to neighboring locations of 370 /// memory. If it sees enough consecutive ones, it attempts to merge them 371 /// together into a memcpy/memset. 372 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst, 373 Value *StartPtr, Value *ByteVal) { 374 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 375 376 // Okay, so we now have a single store that can be splatable. Scan to find 377 // all subsequent stores of the same value to offset from the same pointer. 378 // Join these together into ranges, so we can decide whether contiguous blocks 379 // are stored. 380 MemsetRanges Ranges(DL); 381 382 BasicBlock::iterator BI(StartInst); 383 for (++BI; !isa<TerminatorInst>(BI); ++BI) { 384 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 385 // If the instruction is readnone, ignore it, otherwise bail out. We 386 // don't even allow readonly here because we don't want something like: 387 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 388 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 389 break; 390 continue; 391 } 392 393 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 394 // If this is a store, see if we can merge it in. 395 if (!NextStore->isSimple()) break; 396 397 // Check to see if this stored value is of the same byte-splattable value. 398 if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) 399 break; 400 401 // Check to see if this store is to a constant offset from the start ptr. 402 int64_t Offset; 403 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, 404 DL)) 405 break; 406 407 Ranges.addStore(Offset, NextStore); 408 } else { 409 MemSetInst *MSI = cast<MemSetInst>(BI); 410 411 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 412 !isa<ConstantInt>(MSI->getLength())) 413 break; 414 415 // Check to see if this store is to a constant offset from the start ptr. 416 int64_t Offset; 417 if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL)) 418 break; 419 420 Ranges.addMemSet(Offset, MSI); 421 } 422 } 423 424 // If we have no ranges, then we just had a single store with nothing that 425 // could be merged in. This is a very common case of course. 426 if (Ranges.empty()) 427 return nullptr; 428 429 // If we had at least one store that could be merged in, add the starting 430 // store as well. We try to avoid this unless there is at least something 431 // interesting as a small compile-time optimization. 432 Ranges.addInst(0, StartInst); 433 434 // If we create any memsets, we put it right before the first instruction that 435 // isn't part of the memset block. This ensure that the memset is dominated 436 // by any addressing instruction needed by the start of the block. 437 IRBuilder<> Builder(&*BI); 438 439 // Now that we have full information about ranges, loop over the ranges and 440 // emit memset's for anything big enough to be worthwhile. 441 Instruction *AMemSet = nullptr; 442 for (const MemsetRange &Range : Ranges) { 443 444 if (Range.TheStores.size() == 1) continue; 445 446 // If it is profitable to lower this range to memset, do so now. 447 if (!Range.isProfitableToUseMemset(DL)) 448 continue; 449 450 // Otherwise, we do want to transform this! Create a new memset. 451 // Get the starting pointer of the block. 452 StartPtr = Range.StartPtr; 453 454 // Determine alignment 455 unsigned Alignment = Range.Alignment; 456 if (Alignment == 0) { 457 Type *EltType = 458 cast<PointerType>(StartPtr->getType())->getElementType(); 459 Alignment = DL.getABITypeAlignment(EltType); 460 } 461 462 AMemSet = 463 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); 464 465 DEBUG(dbgs() << "Replace stores:\n"; 466 for (Instruction *SI : Range.TheStores) 467 dbgs() << *SI << '\n'; 468 dbgs() << "With: " << *AMemSet << '\n'); 469 470 if (!Range.TheStores.empty()) 471 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 472 473 // Zap all the stores. 474 for (Instruction *SI : Range.TheStores) { 475 MD->removeInstruction(SI); 476 SI->eraseFromParent(); 477 } 478 ++NumMemSetInfer; 479 } 480 481 return AMemSet; 482 } 483 484 485 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 486 if (!SI->isSimple()) return false; 487 488 // Avoid merging nontemporal stores since the resulting 489 // memcpy/memset would not be able to preserve the nontemporal hint. 490 // In theory we could teach how to propagate the !nontemporal metadata to 491 // memset calls. However, that change would force the backend to 492 // conservatively expand !nontemporal memset calls back to sequences of 493 // store instructions (effectively undoing the merging). 494 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 495 return false; 496 497 const DataLayout &DL = SI->getModule()->getDataLayout(); 498 499 // Detect cases where we're performing call slot forwarding, but 500 // happen to be using a load-store pair to implement it, rather than 501 // a memcpy. 502 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { 503 if (LI->isSimple() && LI->hasOneUse() && 504 LI->getParent() == SI->getParent()) { 505 MemDepResult ldep = MD->getDependency(LI); 506 CallInst *C = nullptr; 507 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 508 C = dyn_cast<CallInst>(ldep.getInst()); 509 510 if (C) { 511 // Check that nothing touches the dest of the "copy" between 512 // the call and the store. 513 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 514 MemoryLocation StoreLoc = MemoryLocation::get(SI); 515 for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); 516 I != E; --I) { 517 if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) { 518 C = nullptr; 519 break; 520 } 521 } 522 } 523 524 if (C) { 525 unsigned storeAlign = SI->getAlignment(); 526 if (!storeAlign) 527 storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); 528 unsigned loadAlign = LI->getAlignment(); 529 if (!loadAlign) 530 loadAlign = DL.getABITypeAlignment(LI->getType()); 531 532 bool changed = performCallSlotOptzn( 533 LI, SI->getPointerOperand()->stripPointerCasts(), 534 LI->getPointerOperand()->stripPointerCasts(), 535 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 536 std::min(storeAlign, loadAlign), C); 537 if (changed) { 538 MD->removeInstruction(SI); 539 SI->eraseFromParent(); 540 MD->removeInstruction(LI); 541 LI->eraseFromParent(); 542 ++NumMemCpyInstr; 543 return true; 544 } 545 } 546 } 547 } 548 549 // There are two cases that are interesting for this code to handle: memcpy 550 // and memset. Right now we only handle memset. 551 552 // Ensure that the value being stored is something that can be memset'able a 553 // byte at a time like "0" or "-1" or any width, as well as things like 554 // 0xA0A0A0A0 and 0.0. 555 if (Value *ByteVal = isBytewiseValue(SI->getOperand(0))) 556 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 557 ByteVal)) { 558 BBI = I->getIterator(); // Don't invalidate iterator. 559 return true; 560 } 561 562 return false; 563 } 564 565 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 566 // See if there is another memset or store neighboring this memset which 567 // allows us to widen out the memset to do a single larger store. 568 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 569 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 570 MSI->getValue())) { 571 BBI = I->getIterator(); // Don't invalidate iterator. 572 return true; 573 } 574 return false; 575 } 576 577 578 /// Takes a memcpy and a call that it depends on, 579 /// and checks for the possibility of a call slot optimization by having 580 /// the call write its result directly into the destination of the memcpy. 581 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy, 582 Value *cpyDest, Value *cpySrc, 583 uint64_t cpyLen, unsigned cpyAlign, 584 CallInst *C) { 585 // The general transformation to keep in mind is 586 // 587 // call @func(..., src, ...) 588 // memcpy(dest, src, ...) 589 // 590 // -> 591 // 592 // memcpy(dest, src, ...) 593 // call @func(..., dest, ...) 594 // 595 // Since moving the memcpy is technically awkward, we additionally check that 596 // src only holds uninitialized values at the moment of the call, meaning that 597 // the memcpy can be discarded rather than moved. 598 599 // Deliberately get the source and destination with bitcasts stripped away, 600 // because we'll need to do type comparisons based on the underlying type. 601 CallSite CS(C); 602 603 // Require that src be an alloca. This simplifies the reasoning considerably. 604 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 605 if (!srcAlloca) 606 return false; 607 608 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 609 if (!srcArraySize) 610 return false; 611 612 const DataLayout &DL = cpy->getModule()->getDataLayout(); 613 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 614 srcArraySize->getZExtValue(); 615 616 if (cpyLen < srcSize) 617 return false; 618 619 // Check that accessing the first srcSize bytes of dest will not cause a 620 // trap. Otherwise the transform is invalid since it might cause a trap 621 // to occur earlier than it otherwise would. 622 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { 623 // The destination is an alloca. Check it is larger than srcSize. 624 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); 625 if (!destArraySize) 626 return false; 627 628 uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * 629 destArraySize->getZExtValue(); 630 631 if (destSize < srcSize) 632 return false; 633 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { 634 if (A->getDereferenceableBytes() < srcSize) { 635 // If the destination is an sret parameter then only accesses that are 636 // outside of the returned struct type can trap. 637 if (!A->hasStructRetAttr()) 638 return false; 639 640 Type *StructTy = cast<PointerType>(A->getType())->getElementType(); 641 if (!StructTy->isSized()) { 642 // The call may never return and hence the copy-instruction may never 643 // be executed, and therefore it's not safe to say "the destination 644 // has at least <cpyLen> bytes, as implied by the copy-instruction", 645 return false; 646 } 647 648 uint64_t destSize = DL.getTypeAllocSize(StructTy); 649 if (destSize < srcSize) 650 return false; 651 } 652 } else { 653 return false; 654 } 655 656 // Check that dest points to memory that is at least as aligned as src. 657 unsigned srcAlign = srcAlloca->getAlignment(); 658 if (!srcAlign) 659 srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); 660 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 661 // If dest is not aligned enough and we can't increase its alignment then 662 // bail out. 663 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 664 return false; 665 666 // Check that src is not accessed except via the call and the memcpy. This 667 // guarantees that it holds only undefined values when passed in (so the final 668 // memcpy can be dropped), that it is not read or written between the call and 669 // the memcpy, and that writing beyond the end of it is undefined. 670 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), 671 srcAlloca->user_end()); 672 while (!srcUseList.empty()) { 673 User *U = srcUseList.pop_back_val(); 674 675 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 676 for (User *UU : U->users()) 677 srcUseList.push_back(UU); 678 continue; 679 } 680 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 681 if (!G->hasAllZeroIndices()) 682 return false; 683 684 for (User *UU : U->users()) 685 srcUseList.push_back(UU); 686 continue; 687 } 688 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 689 if (IT->getIntrinsicID() == Intrinsic::lifetime_start || 690 IT->getIntrinsicID() == Intrinsic::lifetime_end) 691 continue; 692 693 if (U != C && U != cpy) 694 return false; 695 } 696 697 // Check that src isn't captured by the called function since the 698 // transformation can cause aliasing issues in that case. 699 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 700 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) 701 return false; 702 703 // Since we're changing the parameter to the callsite, we need to make sure 704 // that what would be the new parameter dominates the callsite. 705 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 706 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) 707 if (!DT.dominates(cpyDestInst, C)) 708 return false; 709 710 // In addition to knowing that the call does not access src in some 711 // unexpected manner, for example via a global, which we deduce from 712 // the use analysis, we also need to know that it does not sneakily 713 // access dest. We rely on AA to figure this out for us. 714 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 715 ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize); 716 // If necessary, perform additional analysis. 717 if (MR != MRI_NoModRef) 718 MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); 719 if (MR != MRI_NoModRef) 720 return false; 721 722 // All the checks have passed, so do the transformation. 723 bool changedArgument = false; 724 for (unsigned i = 0; i < CS.arg_size(); ++i) 725 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { 726 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 727 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 728 cpyDest->getName(), C); 729 changedArgument = true; 730 if (CS.getArgument(i)->getType() == Dest->getType()) 731 CS.setArgument(i, Dest); 732 else 733 CS.setArgument(i, CastInst::CreatePointerCast(Dest, 734 CS.getArgument(i)->getType(), Dest->getName(), C)); 735 } 736 737 if (!changedArgument) 738 return false; 739 740 // If the destination wasn't sufficiently aligned then increase its alignment. 741 if (!isDestSufficientlyAligned) { 742 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 743 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 744 } 745 746 // Drop any cached information about the call, because we may have changed 747 // its dependence information by changing its parameter. 748 MD->removeInstruction(C); 749 750 // Update AA metadata 751 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 752 // handled here, but combineMetadata doesn't support them yet 753 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 754 LLVMContext::MD_noalias, 755 LLVMContext::MD_invariant_group}; 756 combineMetadata(C, cpy, KnownIDs); 757 758 // Remove the memcpy. 759 MD->removeInstruction(cpy); 760 ++NumMemCpyInstr; 761 762 return true; 763 } 764 765 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 766 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 767 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep) { 768 // We can only transforms memcpy's where the dest of one is the source of the 769 // other. 770 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 771 return false; 772 773 // If dep instruction is reading from our current input, then it is a noop 774 // transfer and substituting the input won't change this instruction. Just 775 // ignore the input and let someone else zap MDep. This handles cases like: 776 // memcpy(a <- a) 777 // memcpy(b <- a) 778 if (M->getSource() == MDep->getSource()) 779 return false; 780 781 // Second, the length of the memcpy's must be the same, or the preceding one 782 // must be larger than the following one. 783 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 784 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 785 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 786 return false; 787 788 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 789 790 // Verify that the copied-from memory doesn't change in between the two 791 // transfers. For example, in: 792 // memcpy(a <- b) 793 // *b = 42; 794 // memcpy(c <- a) 795 // It would be invalid to transform the second memcpy into memcpy(c <- b). 796 // 797 // TODO: If the code between M and MDep is transparent to the destination "c", 798 // then we could still perform the xform by moving M up to the first memcpy. 799 // 800 // NOTE: This is conservative, it will stop on any read from the source loc, 801 // not just the defining memcpy. 802 MemDepResult SourceDep = 803 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 804 M->getIterator(), M->getParent()); 805 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 806 return false; 807 808 // If the dest of the second might alias the source of the first, then the 809 // source and dest might overlap. We still want to eliminate the intermediate 810 // value, but we have to generate a memmove instead of memcpy. 811 bool UseMemMove = false; 812 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 813 MemoryLocation::getForSource(MDep))) 814 UseMemMove = true; 815 816 // If all checks passed, then we can transform M. 817 818 // Make sure to use the lesser of the alignment of the source and the dest 819 // since we're changing where we're reading from, but don't want to increase 820 // the alignment past what can be read from or written to. 821 // TODO: Is this worth it if we're creating a less aligned memcpy? For 822 // example we could be moving from movaps -> movq on x86. 823 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); 824 825 IRBuilder<> Builder(M); 826 if (UseMemMove) 827 Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(), 828 Align, M->isVolatile()); 829 else 830 Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(), 831 Align, M->isVolatile()); 832 833 // Remove the instruction we're replacing. 834 MD->removeInstruction(M); 835 M->eraseFromParent(); 836 ++NumMemCpyInstr; 837 return true; 838 } 839 840 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 841 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 842 /// weren't copied over by \p MemCpy. 843 /// 844 /// In other words, transform: 845 /// \code 846 /// memset(dst, c, dst_size); 847 /// memcpy(dst, src, src_size); 848 /// \endcode 849 /// into: 850 /// \code 851 /// memcpy(dst, src, src_size); 852 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 853 /// \endcode 854 bool MemCpyOpt::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 855 MemSetInst *MemSet) { 856 // We can only transform memset/memcpy with the same destination. 857 if (MemSet->getDest() != MemCpy->getDest()) 858 return false; 859 860 // Check that there are no other dependencies on the memset destination. 861 MemDepResult DstDepInfo = 862 MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, 863 MemCpy->getIterator(), MemCpy->getParent()); 864 if (DstDepInfo.getInst() != MemSet) 865 return false; 866 867 // Use the same i8* dest as the memcpy, killing the memset dest if different. 868 Value *Dest = MemCpy->getRawDest(); 869 Value *DestSize = MemSet->getLength(); 870 Value *SrcSize = MemCpy->getLength(); 871 872 // By default, create an unaligned memset. 873 unsigned Align = 1; 874 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 875 // of the sum. 876 const unsigned DestAlign = 877 std::max(MemSet->getAlignment(), MemCpy->getAlignment()); 878 if (DestAlign > 1) 879 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 880 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 881 882 IRBuilder<> Builder(MemCpy); 883 884 // If the sizes have different types, zext the smaller one. 885 if (DestSize->getType() != SrcSize->getType()) { 886 if (DestSize->getType()->getIntegerBitWidth() > 887 SrcSize->getType()->getIntegerBitWidth()) 888 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 889 else 890 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 891 } 892 893 Value *MemsetLen = 894 Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize), 895 ConstantInt::getNullValue(DestSize->getType()), 896 Builder.CreateSub(DestSize, SrcSize)); 897 Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1), 898 MemsetLen, Align); 899 900 MD->removeInstruction(MemSet); 901 MemSet->eraseFromParent(); 902 return true; 903 } 904 905 /// Transform memcpy to memset when its source was just memset. 906 /// In other words, turn: 907 /// \code 908 /// memset(dst1, c, dst1_size); 909 /// memcpy(dst2, dst1, dst2_size); 910 /// \endcode 911 /// into: 912 /// \code 913 /// memset(dst1, c, dst1_size); 914 /// memset(dst2, c, dst2_size); 915 /// \endcode 916 /// When dst2_size <= dst1_size. 917 /// 918 /// The \p MemCpy must have a Constant length. 919 bool MemCpyOpt::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 920 MemSetInst *MemSet) { 921 // This only makes sense on memcpy(..., memset(...), ...). 922 if (MemSet->getRawDest() != MemCpy->getRawSource()) 923 return false; 924 925 ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); 926 ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); 927 // Make sure the memcpy doesn't read any more than what the memset wrote. 928 // Don't worry about sizes larger than i64. 929 if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue()) 930 return false; 931 932 IRBuilder<> Builder(MemCpy); 933 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 934 CopySize, MemCpy->getAlignment()); 935 return true; 936 } 937 938 /// Perform simplification of memcpy's. If we have memcpy A 939 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 940 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 941 /// circumstances). This allows later passes to remove the first memcpy 942 /// altogether. 943 bool MemCpyOpt::processMemCpy(MemCpyInst *M) { 944 // We can only optimize non-volatile memcpy's. 945 if (M->isVolatile()) return false; 946 947 // If the source and destination of the memcpy are the same, then zap it. 948 if (M->getSource() == M->getDest()) { 949 MD->removeInstruction(M); 950 M->eraseFromParent(); 951 return false; 952 } 953 954 // If copying from a constant, try to turn the memcpy into a memset. 955 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 956 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 957 if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { 958 IRBuilder<> Builder(M); 959 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 960 M->getAlignment(), false); 961 MD->removeInstruction(M); 962 M->eraseFromParent(); 963 ++NumCpyToSet; 964 return true; 965 } 966 967 MemDepResult DepInfo = MD->getDependency(M); 968 969 // Try to turn a partially redundant memset + memcpy into 970 // memcpy + smaller memset. We don't need the memcpy size for this. 971 if (DepInfo.isClobber()) 972 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 973 if (processMemSetMemCpyDependence(M, MDep)) 974 return true; 975 976 // The optimizations after this point require the memcpy size. 977 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); 978 if (!CopySize) return false; 979 980 // There are four possible optimizations we can do for memcpy: 981 // a) memcpy-memcpy xform which exposes redundance for DSE. 982 // b) call-memcpy xform for return slot optimization. 983 // c) memcpy from freshly alloca'd space or space that has just started its 984 // lifetime copies undefined data, and we can therefore eliminate the 985 // memcpy in favor of the data that was already at the destination. 986 // d) memcpy from a just-memset'd source can be turned into memset. 987 if (DepInfo.isClobber()) { 988 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 989 if (performCallSlotOptzn(M, M->getDest(), M->getSource(), 990 CopySize->getZExtValue(), M->getAlignment(), 991 C)) { 992 MD->removeInstruction(M); 993 M->eraseFromParent(); 994 return true; 995 } 996 } 997 } 998 999 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1000 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( 1001 SrcLoc, true, M->getIterator(), M->getParent()); 1002 1003 if (SrcDepInfo.isClobber()) { 1004 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1005 return processMemCpyMemCpyDependence(M, MDep); 1006 } else if (SrcDepInfo.isDef()) { 1007 Instruction *I = SrcDepInfo.getInst(); 1008 bool hasUndefContents = false; 1009 1010 if (isa<AllocaInst>(I)) { 1011 hasUndefContents = true; 1012 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1013 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1014 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1015 if (LTSize->getZExtValue() >= CopySize->getZExtValue()) 1016 hasUndefContents = true; 1017 } 1018 1019 if (hasUndefContents) { 1020 MD->removeInstruction(M); 1021 M->eraseFromParent(); 1022 ++NumMemCpyInstr; 1023 return true; 1024 } 1025 } 1026 1027 if (SrcDepInfo.isClobber()) 1028 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1029 if (performMemCpyToMemSetOptzn(M, MDep)) { 1030 MD->removeInstruction(M); 1031 M->eraseFromParent(); 1032 ++NumCpyToSet; 1033 return true; 1034 } 1035 1036 return false; 1037 } 1038 1039 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1040 /// not to alias. 1041 bool MemCpyOpt::processMemMove(MemMoveInst *M) { 1042 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1043 1044 if (!TLI->has(LibFunc::memmove)) 1045 return false; 1046 1047 // See if the pointers alias. 1048 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 1049 MemoryLocation::getForSource(M))) 1050 return false; 1051 1052 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n"); 1053 1054 // If not, then we know we can transform this. 1055 Type *ArgTys[3] = { M->getRawDest()->getType(), 1056 M->getRawSource()->getType(), 1057 M->getLength()->getType() }; 1058 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1059 Intrinsic::memcpy, ArgTys)); 1060 1061 // MemDep may have over conservative information about this instruction, just 1062 // conservatively flush it from the cache. 1063 MD->removeInstruction(M); 1064 1065 ++NumMoveToCpy; 1066 return true; 1067 } 1068 1069 /// This is called on every byval argument in call sites. 1070 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) { 1071 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); 1072 // Find out what feeds this byval argument. 1073 Value *ByValArg = CS.getArgument(ArgNo); 1074 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1075 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1076 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1077 MemoryLocation(ByValArg, ByValSize), true, 1078 CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); 1079 if (!DepInfo.isClobber()) 1080 return false; 1081 1082 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1083 // a memcpy, see if we can byval from the source of the memcpy instead of the 1084 // result. 1085 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1086 if (!MDep || MDep->isVolatile() || 1087 ByValArg->stripPointerCasts() != MDep->getDest()) 1088 return false; 1089 1090 // The length of the memcpy must be larger or equal to the size of the byval. 1091 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1092 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1093 return false; 1094 1095 // Get the alignment of the byval. If the call doesn't specify the alignment, 1096 // then it is some target specific value that we can't know. 1097 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1); 1098 if (ByValAlign == 0) return false; 1099 1100 // If it is greater than the memcpy, then we check to see if we can force the 1101 // source of the memcpy to the alignment we need. If we fail, we bail out. 1102 AssumptionCache &AC = 1103 getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 1104 *CS->getParent()->getParent()); 1105 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1106 if (MDep->getAlignment() < ByValAlign && 1107 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, 1108 CS.getInstruction(), &AC, &DT) < ByValAlign) 1109 return false; 1110 1111 // Verify that the copied-from memory doesn't change in between the memcpy and 1112 // the byval call. 1113 // memcpy(a <- b) 1114 // *b = 42; 1115 // foo(*a) 1116 // It would be invalid to transform the second memcpy into foo(*b). 1117 // 1118 // NOTE: This is conservative, it will stop on any read from the source loc, 1119 // not just the defining memcpy. 1120 MemDepResult SourceDep = MD->getPointerDependencyFrom( 1121 MemoryLocation::getForSource(MDep), false, 1122 CS.getInstruction()->getIterator(), MDep->getParent()); 1123 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1124 return false; 1125 1126 Value *TmpCast = MDep->getSource(); 1127 if (MDep->getSource()->getType() != ByValArg->getType()) 1128 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1129 "tmpcast", CS.getInstruction()); 1130 1131 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n" 1132 << " " << *MDep << "\n" 1133 << " " << *CS.getInstruction() << "\n"); 1134 1135 // Otherwise we're good! Update the byval argument. 1136 CS.setArgument(ArgNo, TmpCast); 1137 ++NumMemCpyInstr; 1138 return true; 1139 } 1140 1141 /// Executes one iteration of MemCpyOpt. 1142 bool MemCpyOpt::iterateOnFunction(Function &F) { 1143 bool MadeChange = false; 1144 1145 // Walk all instruction in the function. 1146 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { 1147 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { 1148 // Avoid invalidating the iterator. 1149 Instruction *I = &*BI++; 1150 1151 bool RepeatInstruction = false; 1152 1153 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1154 MadeChange |= processStore(SI, BI); 1155 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1156 RepeatInstruction = processMemSet(M, BI); 1157 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1158 RepeatInstruction = processMemCpy(M); 1159 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1160 RepeatInstruction = processMemMove(M); 1161 else if (auto CS = CallSite(I)) { 1162 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 1163 if (CS.isByValArgument(i)) 1164 MadeChange |= processByValArgument(CS, i); 1165 } 1166 1167 // Reprocess the instruction if desired. 1168 if (RepeatInstruction) { 1169 if (BI != BB->begin()) --BI; 1170 MadeChange = true; 1171 } 1172 } 1173 } 1174 1175 return MadeChange; 1176 } 1177 1178 /// This is the main transformation entry point for a function. 1179 bool MemCpyOpt::runOnFunction(Function &F) { 1180 if (skipOptnoneFunction(F)) 1181 return false; 1182 1183 bool MadeChange = false; 1184 MD = &getAnalysis<MemoryDependenceAnalysis>(); 1185 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1186 1187 // If we don't have at least memset and memcpy, there is little point of doing 1188 // anything here. These are required by a freestanding implementation, so if 1189 // even they are disabled, there is no point in trying hard. 1190 if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy)) 1191 return false; 1192 1193 while (1) { 1194 if (!iterateOnFunction(F)) 1195 break; 1196 MadeChange = true; 1197 } 1198 1199 MD = nullptr; 1200 return MadeChange; 1201 } 1202