Home | History | Annotate | Download | only in Scalar
      1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs various transformations related to eliminating memcpy
     11 // calls, or transforming sets of stores into memset's.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/Analysis/AssumptionCache.h"
     20 #include "llvm/Analysis/GlobalsModRef.h"
     21 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     22 #include "llvm/Analysis/TargetLibraryInfo.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/Dominators.h"
     26 #include "llvm/IR/GetElementPtrTypeIterator.h"
     27 #include "llvm/IR/GlobalVariable.h"
     28 #include "llvm/IR/IRBuilder.h"
     29 #include "llvm/IR/Instructions.h"
     30 #include "llvm/IR/IntrinsicInst.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Transforms/Utils/Local.h"
     34 #include <algorithm>
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "memcpyopt"
     38 
     39 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
     40 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
     41 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
     42 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
     43 
     44 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
     45                                   bool &VariableIdxFound,
     46                                   const DataLayout &DL) {
     47   // Skip over the first indices.
     48   gep_type_iterator GTI = gep_type_begin(GEP);
     49   for (unsigned i = 1; i != Idx; ++i, ++GTI)
     50     /*skip along*/;
     51 
     52   // Compute the offset implied by the rest of the indices.
     53   int64_t Offset = 0;
     54   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
     55     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
     56     if (!OpC)
     57       return VariableIdxFound = true;
     58     if (OpC->isZero()) continue;  // No offset.
     59 
     60     // Handle struct indices, which add their field offset to the pointer.
     61     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
     62       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
     63       continue;
     64     }
     65 
     66     // Otherwise, we have a sequential type like an array or vector.  Multiply
     67     // the index by the ElementSize.
     68     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
     69     Offset += Size*OpC->getSExtValue();
     70   }
     71 
     72   return Offset;
     73 }
     74 
     75 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
     76 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
     77 /// might be &A[40]. In this case offset would be -8.
     78 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
     79                             const DataLayout &DL) {
     80   Ptr1 = Ptr1->stripPointerCasts();
     81   Ptr2 = Ptr2->stripPointerCasts();
     82 
     83   // Handle the trivial case first.
     84   if (Ptr1 == Ptr2) {
     85     Offset = 0;
     86     return true;
     87   }
     88 
     89   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
     90   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
     91 
     92   bool VariableIdxFound = false;
     93 
     94   // If one pointer is a GEP and the other isn't, then see if the GEP is a
     95   // constant offset from the base, as in "P" and "gep P, 1".
     96   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
     97     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
     98     return !VariableIdxFound;
     99   }
    100 
    101   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
    102     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
    103     return !VariableIdxFound;
    104   }
    105 
    106   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
    107   // base.  After that base, they may have some number of common (and
    108   // potentially variable) indices.  After that they handle some constant
    109   // offset, which determines their offset from each other.  At this point, we
    110   // handle no other case.
    111   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
    112     return false;
    113 
    114   // Skip any common indices and track the GEP types.
    115   unsigned Idx = 1;
    116   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
    117     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
    118       break;
    119 
    120   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
    121   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
    122   if (VariableIdxFound) return false;
    123 
    124   Offset = Offset2-Offset1;
    125   return true;
    126 }
    127 
    128 
    129 /// Represents a range of memset'd bytes with the ByteVal value.
    130 /// This allows us to analyze stores like:
    131 ///   store 0 -> P+1
    132 ///   store 0 -> P+0
    133 ///   store 0 -> P+3
    134 ///   store 0 -> P+2
    135 /// which sometimes happens with stores to arrays of structs etc.  When we see
    136 /// the first store, we make a range [1, 2).  The second store extends the range
    137 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
    138 /// two ranges into [0, 3) which is memset'able.
    139 namespace {
    140 struct MemsetRange {
    141   // Start/End - A semi range that describes the span that this range covers.
    142   // The range is closed at the start and open at the end: [Start, End).
    143   int64_t Start, End;
    144 
    145   /// StartPtr - The getelementptr instruction that points to the start of the
    146   /// range.
    147   Value *StartPtr;
    148 
    149   /// Alignment - The known alignment of the first store.
    150   unsigned Alignment;
    151 
    152   /// TheStores - The actual stores that make up this range.
    153   SmallVector<Instruction*, 16> TheStores;
    154 
    155   bool isProfitableToUseMemset(const DataLayout &DL) const;
    156 };
    157 } // end anon namespace
    158 
    159 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
    160   // If we found more than 4 stores to merge or 16 bytes, use memset.
    161   if (TheStores.size() >= 4 || End-Start >= 16) return true;
    162 
    163   // If there is nothing to merge, don't do anything.
    164   if (TheStores.size() < 2) return false;
    165 
    166   // If any of the stores are a memset, then it is always good to extend the
    167   // memset.
    168   for (Instruction *SI : TheStores)
    169     if (!isa<StoreInst>(SI))
    170       return true;
    171 
    172   // Assume that the code generator is capable of merging pairs of stores
    173   // together if it wants to.
    174   if (TheStores.size() == 2) return false;
    175 
    176   // If we have fewer than 8 stores, it can still be worthwhile to do this.
    177   // For example, merging 4 i8 stores into an i32 store is useful almost always.
    178   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
    179   // memset will be split into 2 32-bit stores anyway) and doing so can
    180   // pessimize the llvm optimizer.
    181   //
    182   // Since we don't have perfect knowledge here, make some assumptions: assume
    183   // the maximum GPR width is the same size as the largest legal integer
    184   // size. If so, check to see whether we will end up actually reducing the
    185   // number of stores used.
    186   unsigned Bytes = unsigned(End-Start);
    187   unsigned MaxIntSize = DL.getLargestLegalIntTypeSize();
    188   if (MaxIntSize == 0)
    189     MaxIntSize = 1;
    190   unsigned NumPointerStores = Bytes / MaxIntSize;
    191 
    192   // Assume the remaining bytes if any are done a byte at a time.
    193   unsigned NumByteStores = Bytes % MaxIntSize;
    194 
    195   // If we will reduce the # stores (according to this heuristic), do the
    196   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
    197   // etc.
    198   return TheStores.size() > NumPointerStores+NumByteStores;
    199 }
    200 
    201 
    202 namespace {
    203 class MemsetRanges {
    204   /// A sorted list of the memset ranges.
    205   SmallVector<MemsetRange, 8> Ranges;
    206   typedef SmallVectorImpl<MemsetRange>::iterator range_iterator;
    207   const DataLayout &DL;
    208 public:
    209   MemsetRanges(const DataLayout &DL) : DL(DL) {}
    210 
    211   typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator;
    212   const_iterator begin() const { return Ranges.begin(); }
    213   const_iterator end() const { return Ranges.end(); }
    214   bool empty() const { return Ranges.empty(); }
    215 
    216   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
    217     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    218       addStore(OffsetFromFirst, SI);
    219     else
    220       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
    221   }
    222 
    223   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
    224     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
    225 
    226     addRange(OffsetFromFirst, StoreSize,
    227              SI->getPointerOperand(), SI->getAlignment(), SI);
    228   }
    229 
    230   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
    231     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    232     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
    233   }
    234 
    235   void addRange(int64_t Start, int64_t Size, Value *Ptr,
    236                 unsigned Alignment, Instruction *Inst);
    237 
    238 };
    239 
    240 } // end anon namespace
    241 
    242 
    243 /// Add a new store to the MemsetRanges data structure.  This adds a
    244 /// new range for the specified store at the specified offset, merging into
    245 /// existing ranges as appropriate.
    246 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
    247                             unsigned Alignment, Instruction *Inst) {
    248   int64_t End = Start+Size;
    249 
    250   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
    251     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
    252 
    253   // We now know that I == E, in which case we didn't find anything to merge
    254   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
    255   // to insert a new range.  Handle this now.
    256   if (I == Ranges.end() || End < I->Start) {
    257     MemsetRange &R = *Ranges.insert(I, MemsetRange());
    258     R.Start        = Start;
    259     R.End          = End;
    260     R.StartPtr     = Ptr;
    261     R.Alignment    = Alignment;
    262     R.TheStores.push_back(Inst);
    263     return;
    264   }
    265 
    266   // This store overlaps with I, add it.
    267   I->TheStores.push_back(Inst);
    268 
    269   // At this point, we may have an interval that completely contains our store.
    270   // If so, just add it to the interval and return.
    271   if (I->Start <= Start && I->End >= End)
    272     return;
    273 
    274   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
    275   // but is not entirely contained within the range.
    276 
    277   // See if the range extends the start of the range.  In this case, it couldn't
    278   // possibly cause it to join the prior range, because otherwise we would have
    279   // stopped on *it*.
    280   if (Start < I->Start) {
    281     I->Start = Start;
    282     I->StartPtr = Ptr;
    283     I->Alignment = Alignment;
    284   }
    285 
    286   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
    287   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
    288   // End.
    289   if (End > I->End) {
    290     I->End = End;
    291     range_iterator NextI = I;
    292     while (++NextI != Ranges.end() && End >= NextI->Start) {
    293       // Merge the range in.
    294       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
    295       if (NextI->End > I->End)
    296         I->End = NextI->End;
    297       Ranges.erase(NextI);
    298       NextI = I;
    299     }
    300   }
    301 }
    302 
    303 //===----------------------------------------------------------------------===//
    304 //                         MemCpyOpt Pass
    305 //===----------------------------------------------------------------------===//
    306 
    307 namespace {
    308   class MemCpyOpt : public FunctionPass {
    309     MemoryDependenceAnalysis *MD;
    310     TargetLibraryInfo *TLI;
    311   public:
    312     static char ID; // Pass identification, replacement for typeid
    313     MemCpyOpt() : FunctionPass(ID) {
    314       initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
    315       MD = nullptr;
    316       TLI = nullptr;
    317     }
    318 
    319     bool runOnFunction(Function &F) override;
    320 
    321   private:
    322     // This transformation requires dominator postdominator info
    323     void getAnalysisUsage(AnalysisUsage &AU) const override {
    324       AU.setPreservesCFG();
    325       AU.addRequired<AssumptionCacheTracker>();
    326       AU.addRequired<DominatorTreeWrapperPass>();
    327       AU.addRequired<MemoryDependenceAnalysis>();
    328       AU.addRequired<AAResultsWrapperPass>();
    329       AU.addRequired<TargetLibraryInfoWrapperPass>();
    330       AU.addPreserved<GlobalsAAWrapperPass>();
    331       AU.addPreserved<MemoryDependenceAnalysis>();
    332     }
    333 
    334     // Helper functions
    335     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
    336     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
    337     bool processMemCpy(MemCpyInst *M);
    338     bool processMemMove(MemMoveInst *M);
    339     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
    340                               uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
    341     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
    342     bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
    343     bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep);
    344     bool processByValArgument(CallSite CS, unsigned ArgNo);
    345     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
    346                                       Value *ByteVal);
    347 
    348     bool iterateOnFunction(Function &F);
    349   };
    350 
    351   char MemCpyOpt::ID = 0;
    352 }
    353 
    354 /// The public interface to this file...
    355 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
    356 
    357 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
    358                       false, false)
    359 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    360 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    361 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    362 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    363 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    364 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    365 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
    366                     false, false)
    367 
    368 /// When scanning forward over instructions, we look for some other patterns to
    369 /// fold away. In particular, this looks for stores to neighboring locations of
    370 /// memory. If it sees enough consecutive ones, it attempts to merge them
    371 /// together into a memcpy/memset.
    372 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
    373                                              Value *StartPtr, Value *ByteVal) {
    374   const DataLayout &DL = StartInst->getModule()->getDataLayout();
    375 
    376   // Okay, so we now have a single store that can be splatable.  Scan to find
    377   // all subsequent stores of the same value to offset from the same pointer.
    378   // Join these together into ranges, so we can decide whether contiguous blocks
    379   // are stored.
    380   MemsetRanges Ranges(DL);
    381 
    382   BasicBlock::iterator BI(StartInst);
    383   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
    384     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
    385       // If the instruction is readnone, ignore it, otherwise bail out.  We
    386       // don't even allow readonly here because we don't want something like:
    387       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
    388       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
    389         break;
    390       continue;
    391     }
    392 
    393     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
    394       // If this is a store, see if we can merge it in.
    395       if (!NextStore->isSimple()) break;
    396 
    397       // Check to see if this stored value is of the same byte-splattable value.
    398       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
    399         break;
    400 
    401       // Check to see if this store is to a constant offset from the start ptr.
    402       int64_t Offset;
    403       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
    404                            DL))
    405         break;
    406 
    407       Ranges.addStore(Offset, NextStore);
    408     } else {
    409       MemSetInst *MSI = cast<MemSetInst>(BI);
    410 
    411       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
    412           !isa<ConstantInt>(MSI->getLength()))
    413         break;
    414 
    415       // Check to see if this store is to a constant offset from the start ptr.
    416       int64_t Offset;
    417       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
    418         break;
    419 
    420       Ranges.addMemSet(Offset, MSI);
    421     }
    422   }
    423 
    424   // If we have no ranges, then we just had a single store with nothing that
    425   // could be merged in.  This is a very common case of course.
    426   if (Ranges.empty())
    427     return nullptr;
    428 
    429   // If we had at least one store that could be merged in, add the starting
    430   // store as well.  We try to avoid this unless there is at least something
    431   // interesting as a small compile-time optimization.
    432   Ranges.addInst(0, StartInst);
    433 
    434   // If we create any memsets, we put it right before the first instruction that
    435   // isn't part of the memset block.  This ensure that the memset is dominated
    436   // by any addressing instruction needed by the start of the block.
    437   IRBuilder<> Builder(&*BI);
    438 
    439   // Now that we have full information about ranges, loop over the ranges and
    440   // emit memset's for anything big enough to be worthwhile.
    441   Instruction *AMemSet = nullptr;
    442   for (const MemsetRange &Range : Ranges) {
    443 
    444     if (Range.TheStores.size() == 1) continue;
    445 
    446     // If it is profitable to lower this range to memset, do so now.
    447     if (!Range.isProfitableToUseMemset(DL))
    448       continue;
    449 
    450     // Otherwise, we do want to transform this!  Create a new memset.
    451     // Get the starting pointer of the block.
    452     StartPtr = Range.StartPtr;
    453 
    454     // Determine alignment
    455     unsigned Alignment = Range.Alignment;
    456     if (Alignment == 0) {
    457       Type *EltType =
    458         cast<PointerType>(StartPtr->getType())->getElementType();
    459       Alignment = DL.getABITypeAlignment(EltType);
    460     }
    461 
    462     AMemSet =
    463       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
    464 
    465     DEBUG(dbgs() << "Replace stores:\n";
    466           for (Instruction *SI : Range.TheStores)
    467             dbgs() << *SI << '\n';
    468           dbgs() << "With: " << *AMemSet << '\n');
    469 
    470     if (!Range.TheStores.empty())
    471       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
    472 
    473     // Zap all the stores.
    474     for (Instruction *SI : Range.TheStores) {
    475       MD->removeInstruction(SI);
    476       SI->eraseFromParent();
    477     }
    478     ++NumMemSetInfer;
    479   }
    480 
    481   return AMemSet;
    482 }
    483 
    484 
    485 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
    486   if (!SI->isSimple()) return false;
    487 
    488   // Avoid merging nontemporal stores since the resulting
    489   // memcpy/memset would not be able to preserve the nontemporal hint.
    490   // In theory we could teach how to propagate the !nontemporal metadata to
    491   // memset calls. However, that change would force the backend to
    492   // conservatively expand !nontemporal memset calls back to sequences of
    493   // store instructions (effectively undoing the merging).
    494   if (SI->getMetadata(LLVMContext::MD_nontemporal))
    495     return false;
    496 
    497   const DataLayout &DL = SI->getModule()->getDataLayout();
    498 
    499   // Detect cases where we're performing call slot forwarding, but
    500   // happen to be using a load-store pair to implement it, rather than
    501   // a memcpy.
    502   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
    503     if (LI->isSimple() && LI->hasOneUse() &&
    504         LI->getParent() == SI->getParent()) {
    505       MemDepResult ldep = MD->getDependency(LI);
    506       CallInst *C = nullptr;
    507       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
    508         C = dyn_cast<CallInst>(ldep.getInst());
    509 
    510       if (C) {
    511         // Check that nothing touches the dest of the "copy" between
    512         // the call and the store.
    513         AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    514         MemoryLocation StoreLoc = MemoryLocation::get(SI);
    515         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
    516              I != E; --I) {
    517           if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) {
    518             C = nullptr;
    519             break;
    520           }
    521         }
    522       }
    523 
    524       if (C) {
    525         unsigned storeAlign = SI->getAlignment();
    526         if (!storeAlign)
    527           storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
    528         unsigned loadAlign = LI->getAlignment();
    529         if (!loadAlign)
    530           loadAlign = DL.getABITypeAlignment(LI->getType());
    531 
    532         bool changed = performCallSlotOptzn(
    533             LI, SI->getPointerOperand()->stripPointerCasts(),
    534             LI->getPointerOperand()->stripPointerCasts(),
    535             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
    536             std::min(storeAlign, loadAlign), C);
    537         if (changed) {
    538           MD->removeInstruction(SI);
    539           SI->eraseFromParent();
    540           MD->removeInstruction(LI);
    541           LI->eraseFromParent();
    542           ++NumMemCpyInstr;
    543           return true;
    544         }
    545       }
    546     }
    547   }
    548 
    549   // There are two cases that are interesting for this code to handle: memcpy
    550   // and memset.  Right now we only handle memset.
    551 
    552   // Ensure that the value being stored is something that can be memset'able a
    553   // byte at a time like "0" or "-1" or any width, as well as things like
    554   // 0xA0A0A0A0 and 0.0.
    555   if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
    556     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
    557                                               ByteVal)) {
    558       BBI = I->getIterator(); // Don't invalidate iterator.
    559       return true;
    560     }
    561 
    562   return false;
    563 }
    564 
    565 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
    566   // See if there is another memset or store neighboring this memset which
    567   // allows us to widen out the memset to do a single larger store.
    568   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
    569     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
    570                                               MSI->getValue())) {
    571       BBI = I->getIterator(); // Don't invalidate iterator.
    572       return true;
    573     }
    574   return false;
    575 }
    576 
    577 
    578 /// Takes a memcpy and a call that it depends on,
    579 /// and checks for the possibility of a call slot optimization by having
    580 /// the call write its result directly into the destination of the memcpy.
    581 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
    582                                      Value *cpyDest, Value *cpySrc,
    583                                      uint64_t cpyLen, unsigned cpyAlign,
    584                                      CallInst *C) {
    585   // The general transformation to keep in mind is
    586   //
    587   //   call @func(..., src, ...)
    588   //   memcpy(dest, src, ...)
    589   //
    590   // ->
    591   //
    592   //   memcpy(dest, src, ...)
    593   //   call @func(..., dest, ...)
    594   //
    595   // Since moving the memcpy is technically awkward, we additionally check that
    596   // src only holds uninitialized values at the moment of the call, meaning that
    597   // the memcpy can be discarded rather than moved.
    598 
    599   // Deliberately get the source and destination with bitcasts stripped away,
    600   // because we'll need to do type comparisons based on the underlying type.
    601   CallSite CS(C);
    602 
    603   // Require that src be an alloca.  This simplifies the reasoning considerably.
    604   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
    605   if (!srcAlloca)
    606     return false;
    607 
    608   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
    609   if (!srcArraySize)
    610     return false;
    611 
    612   const DataLayout &DL = cpy->getModule()->getDataLayout();
    613   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
    614                      srcArraySize->getZExtValue();
    615 
    616   if (cpyLen < srcSize)
    617     return false;
    618 
    619   // Check that accessing the first srcSize bytes of dest will not cause a
    620   // trap.  Otherwise the transform is invalid since it might cause a trap
    621   // to occur earlier than it otherwise would.
    622   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
    623     // The destination is an alloca.  Check it is larger than srcSize.
    624     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
    625     if (!destArraySize)
    626       return false;
    627 
    628     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
    629                         destArraySize->getZExtValue();
    630 
    631     if (destSize < srcSize)
    632       return false;
    633   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
    634     if (A->getDereferenceableBytes() < srcSize) {
    635       // If the destination is an sret parameter then only accesses that are
    636       // outside of the returned struct type can trap.
    637       if (!A->hasStructRetAttr())
    638         return false;
    639 
    640       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
    641       if (!StructTy->isSized()) {
    642         // The call may never return and hence the copy-instruction may never
    643         // be executed, and therefore it's not safe to say "the destination
    644         // has at least <cpyLen> bytes, as implied by the copy-instruction",
    645         return false;
    646       }
    647 
    648       uint64_t destSize = DL.getTypeAllocSize(StructTy);
    649       if (destSize < srcSize)
    650         return false;
    651     }
    652   } else {
    653     return false;
    654   }
    655 
    656   // Check that dest points to memory that is at least as aligned as src.
    657   unsigned srcAlign = srcAlloca->getAlignment();
    658   if (!srcAlign)
    659     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
    660   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
    661   // If dest is not aligned enough and we can't increase its alignment then
    662   // bail out.
    663   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
    664     return false;
    665 
    666   // Check that src is not accessed except via the call and the memcpy.  This
    667   // guarantees that it holds only undefined values when passed in (so the final
    668   // memcpy can be dropped), that it is not read or written between the call and
    669   // the memcpy, and that writing beyond the end of it is undefined.
    670   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
    671                                    srcAlloca->user_end());
    672   while (!srcUseList.empty()) {
    673     User *U = srcUseList.pop_back_val();
    674 
    675     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
    676       for (User *UU : U->users())
    677         srcUseList.push_back(UU);
    678       continue;
    679     }
    680     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
    681       if (!G->hasAllZeroIndices())
    682         return false;
    683 
    684       for (User *UU : U->users())
    685         srcUseList.push_back(UU);
    686       continue;
    687     }
    688     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
    689       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
    690           IT->getIntrinsicID() == Intrinsic::lifetime_end)
    691         continue;
    692 
    693     if (U != C && U != cpy)
    694       return false;
    695   }
    696 
    697   // Check that src isn't captured by the called function since the
    698   // transformation can cause aliasing issues in that case.
    699   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    700     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
    701       return false;
    702 
    703   // Since we're changing the parameter to the callsite, we need to make sure
    704   // that what would be the new parameter dominates the callsite.
    705   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    706   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
    707     if (!DT.dominates(cpyDestInst, C))
    708       return false;
    709 
    710   // In addition to knowing that the call does not access src in some
    711   // unexpected manner, for example via a global, which we deduce from
    712   // the use analysis, we also need to know that it does not sneakily
    713   // access dest.  We rely on AA to figure this out for us.
    714   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    715   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
    716   // If necessary, perform additional analysis.
    717   if (MR != MRI_NoModRef)
    718     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
    719   if (MR != MRI_NoModRef)
    720     return false;
    721 
    722   // All the checks have passed, so do the transformation.
    723   bool changedArgument = false;
    724   for (unsigned i = 0; i < CS.arg_size(); ++i)
    725     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
    726       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
    727         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
    728                                       cpyDest->getName(), C);
    729       changedArgument = true;
    730       if (CS.getArgument(i)->getType() == Dest->getType())
    731         CS.setArgument(i, Dest);
    732       else
    733         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
    734                           CS.getArgument(i)->getType(), Dest->getName(), C));
    735     }
    736 
    737   if (!changedArgument)
    738     return false;
    739 
    740   // If the destination wasn't sufficiently aligned then increase its alignment.
    741   if (!isDestSufficientlyAligned) {
    742     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
    743     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
    744   }
    745 
    746   // Drop any cached information about the call, because we may have changed
    747   // its dependence information by changing its parameter.
    748   MD->removeInstruction(C);
    749 
    750   // Update AA metadata
    751   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
    752   // handled here, but combineMetadata doesn't support them yet
    753   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
    754                          LLVMContext::MD_noalias,
    755                          LLVMContext::MD_invariant_group};
    756   combineMetadata(C, cpy, KnownIDs);
    757 
    758   // Remove the memcpy.
    759   MD->removeInstruction(cpy);
    760   ++NumMemCpyInstr;
    761 
    762   return true;
    763 }
    764 
    765 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
    766 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
    767 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep) {
    768   // We can only transforms memcpy's where the dest of one is the source of the
    769   // other.
    770   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
    771     return false;
    772 
    773   // If dep instruction is reading from our current input, then it is a noop
    774   // transfer and substituting the input won't change this instruction.  Just
    775   // ignore the input and let someone else zap MDep.  This handles cases like:
    776   //    memcpy(a <- a)
    777   //    memcpy(b <- a)
    778   if (M->getSource() == MDep->getSource())
    779     return false;
    780 
    781   // Second, the length of the memcpy's must be the same, or the preceding one
    782   // must be larger than the following one.
    783   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
    784   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
    785   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
    786     return false;
    787 
    788   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    789 
    790   // Verify that the copied-from memory doesn't change in between the two
    791   // transfers.  For example, in:
    792   //    memcpy(a <- b)
    793   //    *b = 42;
    794   //    memcpy(c <- a)
    795   // It would be invalid to transform the second memcpy into memcpy(c <- b).
    796   //
    797   // TODO: If the code between M and MDep is transparent to the destination "c",
    798   // then we could still perform the xform by moving M up to the first memcpy.
    799   //
    800   // NOTE: This is conservative, it will stop on any read from the source loc,
    801   // not just the defining memcpy.
    802   MemDepResult SourceDep =
    803       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
    804                                    M->getIterator(), M->getParent());
    805   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
    806     return false;
    807 
    808   // If the dest of the second might alias the source of the first, then the
    809   // source and dest might overlap.  We still want to eliminate the intermediate
    810   // value, but we have to generate a memmove instead of memcpy.
    811   bool UseMemMove = false;
    812   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
    813                     MemoryLocation::getForSource(MDep)))
    814     UseMemMove = true;
    815 
    816   // If all checks passed, then we can transform M.
    817 
    818   // Make sure to use the lesser of the alignment of the source and the dest
    819   // since we're changing where we're reading from, but don't want to increase
    820   // the alignment past what can be read from or written to.
    821   // TODO: Is this worth it if we're creating a less aligned memcpy? For
    822   // example we could be moving from movaps -> movq on x86.
    823   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
    824 
    825   IRBuilder<> Builder(M);
    826   if (UseMemMove)
    827     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
    828                           Align, M->isVolatile());
    829   else
    830     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
    831                          Align, M->isVolatile());
    832 
    833   // Remove the instruction we're replacing.
    834   MD->removeInstruction(M);
    835   M->eraseFromParent();
    836   ++NumMemCpyInstr;
    837   return true;
    838 }
    839 
    840 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
    841 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
    842 /// weren't copied over by \p MemCpy.
    843 ///
    844 /// In other words, transform:
    845 /// \code
    846 ///   memset(dst, c, dst_size);
    847 ///   memcpy(dst, src, src_size);
    848 /// \endcode
    849 /// into:
    850 /// \code
    851 ///   memcpy(dst, src, src_size);
    852 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
    853 /// \endcode
    854 bool MemCpyOpt::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
    855                                               MemSetInst *MemSet) {
    856   // We can only transform memset/memcpy with the same destination.
    857   if (MemSet->getDest() != MemCpy->getDest())
    858     return false;
    859 
    860   // Check that there are no other dependencies on the memset destination.
    861   MemDepResult DstDepInfo =
    862       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
    863                                    MemCpy->getIterator(), MemCpy->getParent());
    864   if (DstDepInfo.getInst() != MemSet)
    865     return false;
    866 
    867   // Use the same i8* dest as the memcpy, killing the memset dest if different.
    868   Value *Dest = MemCpy->getRawDest();
    869   Value *DestSize = MemSet->getLength();
    870   Value *SrcSize = MemCpy->getLength();
    871 
    872   // By default, create an unaligned memset.
    873   unsigned Align = 1;
    874   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
    875   // of the sum.
    876   const unsigned DestAlign =
    877       std::max(MemSet->getAlignment(), MemCpy->getAlignment());
    878   if (DestAlign > 1)
    879     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
    880       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
    881 
    882   IRBuilder<> Builder(MemCpy);
    883 
    884   // If the sizes have different types, zext the smaller one.
    885   if (DestSize->getType() != SrcSize->getType()) {
    886     if (DestSize->getType()->getIntegerBitWidth() >
    887         SrcSize->getType()->getIntegerBitWidth())
    888       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
    889     else
    890       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
    891   }
    892 
    893   Value *MemsetLen =
    894       Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize),
    895                            ConstantInt::getNullValue(DestSize->getType()),
    896                            Builder.CreateSub(DestSize, SrcSize));
    897   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
    898                        MemsetLen, Align);
    899 
    900   MD->removeInstruction(MemSet);
    901   MemSet->eraseFromParent();
    902   return true;
    903 }
    904 
    905 /// Transform memcpy to memset when its source was just memset.
    906 /// In other words, turn:
    907 /// \code
    908 ///   memset(dst1, c, dst1_size);
    909 ///   memcpy(dst2, dst1, dst2_size);
    910 /// \endcode
    911 /// into:
    912 /// \code
    913 ///   memset(dst1, c, dst1_size);
    914 ///   memset(dst2, c, dst2_size);
    915 /// \endcode
    916 /// When dst2_size <= dst1_size.
    917 ///
    918 /// The \p MemCpy must have a Constant length.
    919 bool MemCpyOpt::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
    920                                            MemSetInst *MemSet) {
    921   // This only makes sense on memcpy(..., memset(...), ...).
    922   if (MemSet->getRawDest() != MemCpy->getRawSource())
    923     return false;
    924 
    925   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
    926   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
    927   // Make sure the memcpy doesn't read any more than what the memset wrote.
    928   // Don't worry about sizes larger than i64.
    929   if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
    930     return false;
    931 
    932   IRBuilder<> Builder(MemCpy);
    933   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
    934                        CopySize, MemCpy->getAlignment());
    935   return true;
    936 }
    937 
    938 /// Perform simplification of memcpy's.  If we have memcpy A
    939 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
    940 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
    941 /// circumstances). This allows later passes to remove the first memcpy
    942 /// altogether.
    943 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
    944   // We can only optimize non-volatile memcpy's.
    945   if (M->isVolatile()) return false;
    946 
    947   // If the source and destination of the memcpy are the same, then zap it.
    948   if (M->getSource() == M->getDest()) {
    949     MD->removeInstruction(M);
    950     M->eraseFromParent();
    951     return false;
    952   }
    953 
    954   // If copying from a constant, try to turn the memcpy into a memset.
    955   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
    956     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    957       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
    958         IRBuilder<> Builder(M);
    959         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
    960                              M->getAlignment(), false);
    961         MD->removeInstruction(M);
    962         M->eraseFromParent();
    963         ++NumCpyToSet;
    964         return true;
    965       }
    966 
    967   MemDepResult DepInfo = MD->getDependency(M);
    968 
    969   // Try to turn a partially redundant memset + memcpy into
    970   // memcpy + smaller memset.  We don't need the memcpy size for this.
    971   if (DepInfo.isClobber())
    972     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
    973       if (processMemSetMemCpyDependence(M, MDep))
    974         return true;
    975 
    976   // The optimizations after this point require the memcpy size.
    977   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
    978   if (!CopySize) return false;
    979 
    980   // There are four possible optimizations we can do for memcpy:
    981   //   a) memcpy-memcpy xform which exposes redundance for DSE.
    982   //   b) call-memcpy xform for return slot optimization.
    983   //   c) memcpy from freshly alloca'd space or space that has just started its
    984   //      lifetime copies undefined data, and we can therefore eliminate the
    985   //      memcpy in favor of the data that was already at the destination.
    986   //   d) memcpy from a just-memset'd source can be turned into memset.
    987   if (DepInfo.isClobber()) {
    988     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
    989       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
    990                                CopySize->getZExtValue(), M->getAlignment(),
    991                                C)) {
    992         MD->removeInstruction(M);
    993         M->eraseFromParent();
    994         return true;
    995       }
    996     }
    997   }
    998 
    999   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
   1000   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
   1001       SrcLoc, true, M->getIterator(), M->getParent());
   1002 
   1003   if (SrcDepInfo.isClobber()) {
   1004     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
   1005       return processMemCpyMemCpyDependence(M, MDep);
   1006   } else if (SrcDepInfo.isDef()) {
   1007     Instruction *I = SrcDepInfo.getInst();
   1008     bool hasUndefContents = false;
   1009 
   1010     if (isa<AllocaInst>(I)) {
   1011       hasUndefContents = true;
   1012     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1013       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
   1014         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
   1015           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
   1016             hasUndefContents = true;
   1017     }
   1018 
   1019     if (hasUndefContents) {
   1020       MD->removeInstruction(M);
   1021       M->eraseFromParent();
   1022       ++NumMemCpyInstr;
   1023       return true;
   1024     }
   1025   }
   1026 
   1027   if (SrcDepInfo.isClobber())
   1028     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
   1029       if (performMemCpyToMemSetOptzn(M, MDep)) {
   1030         MD->removeInstruction(M);
   1031         M->eraseFromParent();
   1032         ++NumCpyToSet;
   1033         return true;
   1034       }
   1035 
   1036   return false;
   1037 }
   1038 
   1039 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
   1040 /// not to alias.
   1041 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
   1042   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
   1043 
   1044   if (!TLI->has(LibFunc::memmove))
   1045     return false;
   1046 
   1047   // See if the pointers alias.
   1048   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
   1049                     MemoryLocation::getForSource(M)))
   1050     return false;
   1051 
   1052   DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
   1053 
   1054   // If not, then we know we can transform this.
   1055   Type *ArgTys[3] = { M->getRawDest()->getType(),
   1056                       M->getRawSource()->getType(),
   1057                       M->getLength()->getType() };
   1058   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
   1059                                                  Intrinsic::memcpy, ArgTys));
   1060 
   1061   // MemDep may have over conservative information about this instruction, just
   1062   // conservatively flush it from the cache.
   1063   MD->removeInstruction(M);
   1064 
   1065   ++NumMoveToCpy;
   1066   return true;
   1067 }
   1068 
   1069 /// This is called on every byval argument in call sites.
   1070 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
   1071   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
   1072   // Find out what feeds this byval argument.
   1073   Value *ByValArg = CS.getArgument(ArgNo);
   1074   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
   1075   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
   1076   MemDepResult DepInfo = MD->getPointerDependencyFrom(
   1077       MemoryLocation(ByValArg, ByValSize), true,
   1078       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
   1079   if (!DepInfo.isClobber())
   1080     return false;
   1081 
   1082   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
   1083   // a memcpy, see if we can byval from the source of the memcpy instead of the
   1084   // result.
   1085   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
   1086   if (!MDep || MDep->isVolatile() ||
   1087       ByValArg->stripPointerCasts() != MDep->getDest())
   1088     return false;
   1089 
   1090   // The length of the memcpy must be larger or equal to the size of the byval.
   1091   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
   1092   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
   1093     return false;
   1094 
   1095   // Get the alignment of the byval.  If the call doesn't specify the alignment,
   1096   // then it is some target specific value that we can't know.
   1097   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
   1098   if (ByValAlign == 0) return false;
   1099 
   1100   // If it is greater than the memcpy, then we check to see if we can force the
   1101   // source of the memcpy to the alignment we need.  If we fail, we bail out.
   1102   AssumptionCache &AC =
   1103       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
   1104           *CS->getParent()->getParent());
   1105   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1106   if (MDep->getAlignment() < ByValAlign &&
   1107       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
   1108                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
   1109     return false;
   1110 
   1111   // Verify that the copied-from memory doesn't change in between the memcpy and
   1112   // the byval call.
   1113   //    memcpy(a <- b)
   1114   //    *b = 42;
   1115   //    foo(*a)
   1116   // It would be invalid to transform the second memcpy into foo(*b).
   1117   //
   1118   // NOTE: This is conservative, it will stop on any read from the source loc,
   1119   // not just the defining memcpy.
   1120   MemDepResult SourceDep = MD->getPointerDependencyFrom(
   1121       MemoryLocation::getForSource(MDep), false,
   1122       CS.getInstruction()->getIterator(), MDep->getParent());
   1123   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
   1124     return false;
   1125 
   1126   Value *TmpCast = MDep->getSource();
   1127   if (MDep->getSource()->getType() != ByValArg->getType())
   1128     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
   1129                               "tmpcast", CS.getInstruction());
   1130 
   1131   DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
   1132                << "  " << *MDep << "\n"
   1133                << "  " << *CS.getInstruction() << "\n");
   1134 
   1135   // Otherwise we're good!  Update the byval argument.
   1136   CS.setArgument(ArgNo, TmpCast);
   1137   ++NumMemCpyInstr;
   1138   return true;
   1139 }
   1140 
   1141 /// Executes one iteration of MemCpyOpt.
   1142 bool MemCpyOpt::iterateOnFunction(Function &F) {
   1143   bool MadeChange = false;
   1144 
   1145   // Walk all instruction in the function.
   1146   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
   1147     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
   1148       // Avoid invalidating the iterator.
   1149       Instruction *I = &*BI++;
   1150 
   1151       bool RepeatInstruction = false;
   1152 
   1153       if (StoreInst *SI = dyn_cast<StoreInst>(I))
   1154         MadeChange |= processStore(SI, BI);
   1155       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
   1156         RepeatInstruction = processMemSet(M, BI);
   1157       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
   1158         RepeatInstruction = processMemCpy(M);
   1159       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
   1160         RepeatInstruction = processMemMove(M);
   1161       else if (auto CS = CallSite(I)) {
   1162         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
   1163           if (CS.isByValArgument(i))
   1164             MadeChange |= processByValArgument(CS, i);
   1165       }
   1166 
   1167       // Reprocess the instruction if desired.
   1168       if (RepeatInstruction) {
   1169         if (BI != BB->begin()) --BI;
   1170         MadeChange = true;
   1171       }
   1172     }
   1173   }
   1174 
   1175   return MadeChange;
   1176 }
   1177 
   1178 /// This is the main transformation entry point for a function.
   1179 bool MemCpyOpt::runOnFunction(Function &F) {
   1180   if (skipOptnoneFunction(F))
   1181     return false;
   1182 
   1183   bool MadeChange = false;
   1184   MD = &getAnalysis<MemoryDependenceAnalysis>();
   1185   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1186 
   1187   // If we don't have at least memset and memcpy, there is little point of doing
   1188   // anything here.  These are required by a freestanding implementation, so if
   1189   // even they are disabled, there is no point in trying hard.
   1190   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
   1191     return false;
   1192 
   1193   while (1) {
   1194     if (!iterateOnFunction(F))
   1195       break;
   1196     MadeChange = true;
   1197   }
   1198 
   1199   MD = nullptr;
   1200   return MadeChange;
   1201 }
   1202