1 ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s 2 3 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" 4 5 ; Make sure that we can handle multiple integer induction variables. 6 ; CHECK-LABEL: @multi_int_induction( 7 ; CHECK: vector.body: 8 ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 9 ; CHECK: %[[VAR:.*]] = trunc i64 %index to i32 10 ; CHECK: %offset.idx = add i32 190, %[[VAR]] 11 define void @multi_int_induction(i32* %A, i32 %N) { 12 for.body.lr.ph: 13 br label %for.body 14 15 for.body: 16 %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ] 17 %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ] 18 %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv 19 store i32 %count.09, i32* %arrayidx2, align 4 20 %inc = add nsw i32 %count.09, 1 21 %indvars.iv.next = add i64 %indvars.iv, 1 22 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 23 %exitcond = icmp ne i32 %lftr.wideiv, %N 24 br i1 %exitcond, label %for.body, label %for.end 25 26 for.end: 27 ret void 28 } 29 30 ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND 31 32 ; Make sure we remove unneeded vectorization of induction variables. 33 ; In order for instcombine to cleanup the vectorized induction variables that we 34 ; create in the loop vectorizer we need to perform some form of redundancy 35 ; elimination to get rid of multiple uses. 36 37 ; IND-LABEL: scalar_use 38 39 ; IND: br label %vector.body 40 ; IND: vector.body: 41 ; Vectorized induction variable. 42 ; IND-NOT: insertelement <2 x i64> 43 ; IND-NOT: shufflevector <2 x i64> 44 ; IND: br {{.*}}, label %vector.body 45 46 define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) { 47 entry: 48 br label %for.body 49 50 for.body: 51 %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] 52 %ind.sum = add i64 %iv, %offset 53 %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum 54 %l1 = load float, float* %arr.idx, align 4 55 %ind.sum2 = add i64 %iv, %offset2 56 %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2 57 %l2 = load float, float* %arr.idx2, align 4 58 %m = fmul fast float %b, %l2 59 %ad = fadd fast float %l1, %m 60 store float %ad, float* %arr.idx, align 4 61 %iv.next = add nuw nsw i64 %iv, 1 62 %exitcond = icmp eq i64 %iv.next, %n 63 br i1 %exitcond, label %loopexit, label %for.body 64 65 loopexit: 66 ret void 67 } 68 69 70 ; Make sure that the loop exit count computation does not overflow for i8 and 71 ; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the 72 ; induction variable to a bigger type the exit count computation will overflow 73 ; to 0. 74 ; PR17532 75 76 ; CHECK-LABEL: i8_loop 77 ; CHECK: icmp eq i32 {{.*}}, 256 78 define i32 @i8_loop() nounwind readnone ssp uwtable { 79 br label %1 80 81 ; <label>:1 ; preds = %1, %0 82 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 83 %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ] 84 %2 = and i32 %a.0, 4 85 %3 = add i8 %b.0, -1 86 %4 = icmp eq i8 %3, 0 87 br i1 %4, label %5, label %1 88 89 ; <label>:5 ; preds = %1 90 ret i32 %2 91 } 92 93 ; CHECK-LABEL: i16_loop 94 ; CHECK: icmp eq i32 {{.*}}, 65536 95 96 define i32 @i16_loop() nounwind readnone ssp uwtable { 97 br label %1 98 99 ; <label>:1 ; preds = %1, %0 100 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 101 %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ] 102 %2 = and i32 %a.0, 4 103 %3 = add i16 %b.0, -1 104 %4 = icmp eq i16 %3, 0 105 br i1 %4, label %5, label %1 106 107 ; <label>:5 ; preds = %1 108 ret i32 %2 109 } 110 111 ; This loop has a backedge taken count of i32_max. We need to check for this 112 ; condition and branch directly to the scalar loop. 113 114 ; CHECK-LABEL: max_i32_backedgetaken 115 ; CHECK: br i1 true, label %scalar.ph, label %min.iters.checked 116 117 ; CHECK: scalar.ph: 118 ; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %0 ] 119 ; CHECK: %bc.merge.rdx = phi i32 [ 1, %0 ], [ 1, %min.iters.checked ], [ %5, %middle.block ] 120 121 define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable { 122 123 br label %1 124 125 ; <label>:1 ; preds = %1, %0 126 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 127 %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ] 128 %2 = and i32 %a.0, 4 129 %3 = add i32 %b.0, -1 130 %4 = icmp eq i32 %3, 0 131 br i1 %4, label %5, label %1 132 133 ; <label>:5 ; preds = %1 134 ret i32 %2 135 } 136 137 ; When generating the overflow check we must sure that the induction start value 138 ; is defined before the branch to the scalar preheader. 139 140 ; CHECK-LABEL: testoverflowcheck 141 ; CHECK: entry 142 ; CHECK: %[[LOAD:.*]] = load i8 143 ; CHECK: br 144 145 ; CHECK: scalar.ph 146 ; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ] 147 148 @e = global i8 1, align 1 149 @d = common global i32 0, align 4 150 @c = common global i32 0, align 4 151 define i32 @testoverflowcheck() { 152 entry: 153 %.pr.i = load i8, i8* @e, align 1 154 %0 = load i32, i32* @d, align 4 155 %c.promoted.i = load i32, i32* @c, align 4 156 br label %cond.end.i 157 158 cond.end.i: 159 %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ] 160 %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ] 161 %and.i = and i32 %0, %and3.i 162 %inc.i = add i8 %inc4.i, 1 163 %tobool.i = icmp eq i8 %inc.i, 0 164 br i1 %tobool.i, label %loopexit, label %cond.end.i 165 166 loopexit: 167 ret i32 %and.i 168 } 169