Home | History | Annotate | Download | only in NVPTX
      1 ; RUN: opt < %s -separate-const-offset-from-gep -reassociate-geps-verify-no-dead-code -S | FileCheck %s
      2 
      3 ; Several unit tests for -separate-const-offset-from-gep. The transformation
      4 ; heavily relies on TargetTransformInfo, so we put these tests under
      5 ; target-specific folders.
      6 
      7 target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
      8 ; target triple is necessary; otherwise TargetTransformInfo rejects any
      9 ; addressing mode.
     10 target triple = "nvptx64-unknown-unknown"
     11 
     12 %struct.S = type { float, double }
     13 
     14 @struct_array = global [1024 x %struct.S] zeroinitializer, align 16
     15 @float_2d_array = global [32 x [32 x float]] zeroinitializer, align 4
     16 
     17 ; We should not extract any struct field indices, because fields in a struct
     18 ; may have different types.
     19 define double* @struct(i32 %i) {
     20 entry:
     21   %add = add nsw i32 %i, 5
     22   %idxprom = sext i32 %add to i64
     23   %p = getelementptr inbounds [1024 x %struct.S], [1024 x %struct.S]* @struct_array, i64 0, i64 %idxprom, i32 1
     24   ret double* %p
     25 }
     26 ; CHECK-LABEL: @struct(
     27 ; CHECK: getelementptr [1024 x %struct.S], [1024 x %struct.S]* @struct_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1
     28 
     29 ; We should be able to trace into sext(a + b) if a + b is non-negative
     30 ; (e.g., used as an index of an inbounds GEP) and one of a and b is
     31 ; non-negative.
     32 define float* @sext_add(i32 %i, i32 %j) {
     33 entry:
     34   %0 = add i32 %i, 1
     35   %1 = sext i32 %0 to i64  ; inbound sext(i + 1) = sext(i) + 1
     36   %2 = add i32 %j, -2
     37   ; However, inbound sext(j + -2) != sext(j) + -2, e.g., j = INT_MIN
     38   %3 = sext i32 %2 to i64
     39   %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3
     40   ret float* %p
     41 }
     42 ; CHECK-LABEL: @sext_add(
     43 ; CHECK-NOT: = add
     44 ; CHECK: add i32 %j, -2
     45 ; CHECK: sext
     46 ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
     47 ; CHECK: getelementptr inbounds float, float* %{{[a-zA-Z0-9]+}}, i64 32
     48 
     49 ; We should be able to trace into sext/zext if it can be distributed to both
     50 ; operands, e.g., sext (add nsw a, b) == add nsw (sext a), (sext b)
     51 ;
     52 ; This test verifies we can transform
     53 ;   gep base, a + sext(b +nsw 1), c + zext(d +nuw 1)
     54 ; to
     55 ;   gep base, a + sext(b), c + zext(d); gep ..., 1 * 32 + 1
     56 define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) {
     57   %b1 = add nsw i32 %b, 1
     58   %b2 = sext i32 %b1 to i64
     59   %i = add i64 %a, %b2       ; i = a + sext(b +nsw 1)
     60   %d1 = add nuw i32 %d, 1
     61   %d2 = zext i32 %d1 to i64
     62   %j = add i64 %c, %d2       ; j = c + zext(d +nuw 1)
     63   %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
     64   ret float* %p
     65 }
     66 ; CHECK-LABEL: @ext_add_no_overflow(
     67 ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
     68 ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 33
     69 
     70 ; Verifies we handle nested sext/zext correctly.
     71 define void @sext_zext(i32 %a, i32 %b, float** %out1, float** %out2) {
     72 entry:
     73   %0 = add nsw nuw i32 %a, 1
     74   %1 = sext i32 %0 to i48
     75   %2 = zext i48 %1 to i64    ; zext(sext(a +nsw nuw 1)) = zext(sext(a)) + 1
     76   %3 = add nsw i32 %b, 2
     77   %4 = sext i32 %3 to i48
     78   %5 = zext i48 %4 to i64    ; zext(sext(b +nsw 2)) != zext(sext(b)) + 2
     79   %p1 = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %2, i64 %5
     80   store float* %p1, float** %out1
     81   %6 = add nuw i32 %a, 3
     82   %7 = zext i32 %6 to i48
     83   %8 = sext i48 %7 to i64 ; sext(zext(a +nuw 3)) = zext(a +nuw 3) = zext(a) + 3
     84   %9 = add nsw i32 %b, 4
     85   %10 = zext i32 %9 to i48
     86   %11 = sext i48 %10 to i64  ; sext(zext(b +nsw 4)) != zext(b) + 4
     87   %p2 = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %8, i64 %11
     88   store float* %p2, float** %out2
     89   ret void
     90 }
     91 ; CHECK-LABEL: @sext_zext(
     92 ; CHECK: [[BASE_PTR_1:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
     93 ; CHECK: getelementptr float, float* [[BASE_PTR_1]], i64 32
     94 ; CHECK: [[BASE_PTR_2:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
     95 ; CHECK: getelementptr float, float* [[BASE_PTR_2]], i64 96
     96 
     97 ; Similar to @ext_add_no_overflow, we should be able to trace into s/zext if
     98 ; its operand is an OR and the two operands of the OR have no common bits.
     99 define float* @sext_or(i64 %a, i32 %b) {
    100 entry:
    101   %b1 = shl i32 %b, 2
    102   %b2 = or i32 %b1, 1 ; (b << 2) and 1 have no common bits
    103   %b3 = or i32 %b1, 4 ; (b << 2) and 4 may have common bits
    104   %b2.ext = zext i32 %b2 to i64
    105   %b3.ext = sext i32 %b3 to i64
    106   %i = add i64 %a, %b2.ext
    107   %j = add i64 %a, %b3.ext
    108   %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
    109   ret float* %p
    110 }
    111 ; CHECK-LABEL: @sext_or(
    112 ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
    113 ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 32
    114 
    115 ; The subexpression (b + 5) is used in both "i = a + (b + 5)" and "*out = b +
    116 ; 5". When extracting the constant offset 5, make sure "*out = b + 5" isn't
    117 ; affected.
    118 define float* @expr(i64 %a, i64 %b, i64* %out) {
    119 entry:
    120   %b5 = add i64 %b, 5
    121   %i = add i64 %b5, %a
    122   %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 0
    123   store i64 %b5, i64* %out
    124   ret float* %p
    125 }
    126 ; CHECK-LABEL: @expr(
    127 ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 0
    128 ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 160
    129 ; CHECK: store i64 %b5, i64* %out
    130 
    131 ; d + sext(a +nsw (b +nsw (c +nsw 8))) => (d + sext(a) + sext(b) + sext(c)) + 8
    132 define float* @sext_expr(i32 %a, i32 %b, i32 %c, i64 %d) {
    133 entry:
    134   %0 = add nsw i32 %c, 8
    135   %1 = add nsw i32 %b, %0
    136   %2 = add nsw i32 %a, %1
    137   %3 = sext i32 %2 to i64
    138   %i = add i64 %d, %3
    139   %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
    140   ret float* %p
    141 }
    142 ; CHECK-LABEL: @sext_expr(
    143 ; CHECK: sext i32
    144 ; CHECK: sext i32
    145 ; CHECK: sext i32
    146 ; CHECK: getelementptr inbounds float, float* %{{[a-zA-Z0-9]+}}, i64 8
    147 
    148 ; Verifies we handle "sub" correctly.
    149 define float* @sub(i64 %i, i64 %j) {
    150   %i2 = sub i64 %i, 5 ; i - 5
    151   %j2 = sub i64 5, %j ; 5 - i
    152   %p = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i2, i64 %j2
    153   ret float* %p
    154 }
    155 ; CHECK-LABEL: @sub(
    156 ; CHECK: %[[j2:[a-zA-Z0-9]+]] = sub i64 0, %j
    157 ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %[[j2]]
    158 ; CHECK: getelementptr inbounds float, float* [[BASE_PTR]], i64 -155
    159 
    160 %struct.Packed = type <{ [3 x i32], [8 x i64] }> ; <> means packed
    161 
    162 ; Verifies we can emit correct uglygep if the address is not natually aligned.
    163 define i64* @packed_struct(i32 %i, i32 %j) {
    164 entry:
    165   %s = alloca [1024 x %struct.Packed], align 16
    166   %add = add nsw i32 %j, 3
    167   %idxprom = sext i32 %add to i64
    168   %add1 = add nsw i32 %i, 1
    169   %idxprom2 = sext i32 %add1 to i64
    170   %arrayidx3 = getelementptr inbounds [1024 x %struct.Packed], [1024 x %struct.Packed]* %s, i64 0, i64 %idxprom2, i32 1, i64 %idxprom
    171   ret i64* %arrayidx3
    172 }
    173 ; CHECK-LABEL: @packed_struct(
    174 ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [1024 x %struct.Packed], [1024 x %struct.Packed]* %s, i64 0, i64 %{{[a-zA-Z0-9]+}}, i32 1, i64 %{{[a-zA-Z0-9]+}}
    175 ; CHECK: [[CASTED_PTR:%[a-zA-Z0-9]+]] = bitcast i64* [[BASE_PTR]] to i8*
    176 ; CHECK: %uglygep = getelementptr inbounds i8, i8* [[CASTED_PTR]], i64 100
    177 ; CHECK: bitcast i8* %uglygep to i64*
    178 
    179 ; We shouldn't be able to extract the 8 from "zext(a +nuw (b + 8))",
    180 ; because "zext(b + 8) != zext(b) + 8"
    181 define float* @zext_expr(i32 %a, i32 %b) {
    182 entry:
    183   %0 = add i32 %b, 8
    184   %1 = add nuw i32 %a, %0
    185   %i = zext i32 %1 to i64
    186   %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
    187   ret float* %p
    188 }
    189 ; CHECK-LABEL: zext_expr(
    190 ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %i
    191 
    192 ; Per http://llvm.org/docs/LangRef.html#id181, the indices of a off-bound gep
    193 ; should be considered sign-extended to the pointer size. Therefore,
    194 ;   gep base, (add i32 a, b) != gep (gep base, i32 a), i32 b
    195 ; because
    196 ;   sext(a + b) != sext(a) + sext(b)
    197 ;
    198 ; This test verifies we do not illegitimately extract the 8 from
    199 ;   gep base, (i32 a + 8)
    200 define float* @i32_add(i32 %a) {
    201 entry:
    202   %i = add i32 %a, 8
    203   %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i32 %i
    204   ret float* %p
    205 }
    206 ; CHECK-LABEL: @i32_add(
    207 ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
    208 ; CHECK-NOT: getelementptr
    209 
    210 ; Verifies that we compute the correct constant offset when the index is
    211 ; sign-extended and then zero-extended. The old version of our code failed to
    212 ; handle this case because it simply computed the constant offset as the
    213 ; sign-extended value of the constant part of the GEP index.
    214 define float* @apint(i1 %a) {
    215 entry:
    216   %0 = add nsw nuw i1 %a, 1
    217   %1 = sext i1 %0 to i4
    218   %2 = zext i4 %1 to i64         ; zext (sext i1 1 to i4) to i64 = 15
    219   %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %2
    220   ret float* %p
    221 }
    222 ; CHECK-LABEL: @apint(
    223 ; CHECK: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %{{[a-zA-Z0-9]+}}
    224 ; CHECK: getelementptr float, float* [[BASE_PTR]], i64 15
    225 
    226 ; Do not trace into binary operators other than ADD, SUB, and OR.
    227 define float* @and(i64 %a) {
    228 entry:
    229   %0 = shl i64 %a, 2
    230   %1 = and i64 %0, 1
    231   %p = getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array, i64 0, i64 0, i64 %1
    232   ret float* %p
    233 }
    234 ; CHECK-LABEL: @and(
    235 ; CHECK: getelementptr [32 x [32 x float]], [32 x [32 x float]]* @float_2d_array
    236 ; CHECK-NOT: getelementptr
    237 
    238 ; The code that rebuilds an OR expression used to be buggy, and failed on this
    239 ; test.
    240 define float* @shl_add_or(i64 %a, float* %ptr) {
    241 ; CHECK-LABEL: @shl_add_or(
    242 entry:
    243   %shl = shl i64 %a, 2
    244   %add = add i64 %shl, 12
    245   %or = or i64 %add, 1
    246 ; CHECK: [[OR:%or[0-9]*]] = add i64 %shl, 1
    247   ; ((a << 2) + 12) and 1 have no common bits. Therefore,
    248   ; SeparateConstOffsetFromGEP is able to extract the 12.
    249   ; TODO(jingyue): We could reassociate the expression to combine 12 and 1.
    250   %p = getelementptr float, float* %ptr, i64 %or
    251 ; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr float, float* %ptr, i64 [[OR]]
    252 ; CHECK: getelementptr float, float* [[PTR]], i64 12
    253   ret float* %p
    254 ; CHECK-NEXT: ret
    255 }
    256 
    257 ; The source code used to be buggy in checking
    258 ; (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0)
    259 ; where AccumulativeByteOffset is signed but ElementTypeSizeOfGEP is unsigned.
    260 ; The compiler would promote AccumulativeByteOffset to unsigned, causing
    261 ; unexpected results. For example, while -64 % (int64_t)24 != 0,
    262 ; -64 % (uint64_t)24 == 0.
    263 %struct3 = type { i64, i32 }
    264 %struct2 = type { %struct3, i32 }
    265 %struct1 = type { i64, %struct2 }
    266 %struct0 = type { i32, i32, i64*, [100 x %struct1] }
    267 define %struct2* @sign_mod_unsign(%struct0* %ptr, i64 %idx) {
    268 ; CHECK-LABEL: @sign_mod_unsign(
    269 entry:
    270   %arrayidx = add nsw i64 %idx, -2
    271 ; CHECK-NOT: add
    272   %ptr2 = getelementptr inbounds %struct0, %struct0* %ptr, i64 0, i32 3, i64 %arrayidx, i32 1
    273 ; CHECK: [[PTR:%[a-zA-Z0-9]+]] = getelementptr %struct0, %struct0* %ptr, i64 0, i32 3, i64 %idx, i32 1
    274 ; CHECK: [[PTR1:%[a-zA-Z0-9]+]] = bitcast %struct2* [[PTR]] to i8*
    275 ; CHECK: getelementptr inbounds i8, i8* [[PTR1]], i64 -64
    276 ; CHECK: bitcast
    277   ret %struct2* %ptr2
    278 ; CHECK-NEXT: ret
    279 }
    280