Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jdarith.c
      3  *
      4  * Developed 1997-2012 by Guido Vollbeding.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains portable arithmetic entropy decoding routines for JPEG
      9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
     10  *
     11  * Both sequential and progressive modes are supported in this single module.
     12  *
     13  * Suspension is not currently supported in this module.
     14  */
     15 
     16 #define JPEG_INTERNALS
     17 #include "jinclude.h"
     18 #include "jpeglib.h"
     19 
     20 
     21 /* Expanded entropy decoder object for arithmetic decoding. */
     22 
     23 typedef struct {
     24   struct jpeg_entropy_decoder pub; /* public fields */
     25 
     26   INT32 c;       /* C register, base of coding interval + input bit buffer */
     27   INT32 a;               /* A register, normalized size of coding interval */
     28   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
     29                                                          /* init: ct = -16 */
     30                                                          /* run: ct = 0..7 */
     31                                                          /* error: ct = -1 */
     32   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     33   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
     34 
     35   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     36 
     37   /* Pointers to statistics areas (these workspaces have image lifespan) */
     38   unsigned char * dc_stats[NUM_ARITH_TBLS];
     39   unsigned char * ac_stats[NUM_ARITH_TBLS];
     40 
     41   /* Statistics bin for coding with fixed probability 0.5 */
     42   unsigned char fixed_bin[4];
     43 } arith_entropy_decoder;
     44 
     45 typedef arith_entropy_decoder * arith_entropy_ptr;
     46 
     47 /* The following two definitions specify the allocation chunk size
     48  * for the statistics area.
     49  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
     50  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
     51  *
     52  * We use a compact representation with 1 byte per statistics bin,
     53  * thus the numbers directly represent byte sizes.
     54  * This 1 byte per statistics bin contains the meaning of the MPS
     55  * (more probable symbol) in the highest bit (mask 0x80), and the
     56  * index into the probability estimation state machine table
     57  * in the lower bits (mask 0x7F).
     58  */
     59 
     60 #define DC_STAT_BINS 64
     61 #define AC_STAT_BINS 256
     62 
     63 
     64 LOCAL(int)
     65 get_byte (j_decompress_ptr cinfo)
     66 /* Read next input byte; we do not support suspension in this module. */
     67 {
     68   struct jpeg_source_mgr * src = cinfo->src;
     69 
     70   if (src->bytes_in_buffer == 0)
     71     if (! (*src->fill_input_buffer) (cinfo))
     72       ERREXIT(cinfo, JERR_CANT_SUSPEND);
     73   src->bytes_in_buffer--;
     74   return GETJOCTET(*src->next_input_byte++);
     75 }
     76 
     77 
     78 /*
     79  * The core arithmetic decoding routine (common in JPEG and JBIG).
     80  * This needs to go as fast as possible.
     81  * Machine-dependent optimization facilities
     82  * are not utilized in this portable implementation.
     83  * However, this code should be fairly efficient and
     84  * may be a good base for further optimizations anyway.
     85  *
     86  * Return value is 0 or 1 (binary decision).
     87  *
     88  * Note: I've changed the handling of the code base & bit
     89  * buffer register C compared to other implementations
     90  * based on the standards layout & procedures.
     91  * While it also contains both the actual base of the
     92  * coding interval (16 bits) and the next-bits buffer,
     93  * the cut-point between these two parts is floating
     94  * (instead of fixed) with the bit shift counter CT.
     95  * Thus, we also need only one (variable instead of
     96  * fixed size) shift for the LPS/MPS decision, and
     97  * we can get away with any renormalization update
     98  * of C (except for new data insertion, of course).
     99  *
    100  * I've also introduced a new scheme for accessing
    101  * the probability estimation state machine table,
    102  * derived from Markus Kuhn's JBIG implementation.
    103  */
    104 
    105 LOCAL(int)
    106 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
    107 {
    108   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
    109   register unsigned char nl, nm;
    110   register INT32 qe, temp;
    111   register int sv, data;
    112 
    113   /* Renormalization & data input per section D.2.6 */
    114   while (e->a < 0x8000L) {
    115     if (--e->ct < 0) {
    116       /* Need to fetch next data byte */
    117       if (cinfo->unread_marker)
    118         data = 0;		/* stuff zero data */
    119       else {
    120         data = get_byte(cinfo);	/* read next input byte */
    121         if (data == 0xFF) {	/* zero stuff or marker code */
    122           do data = get_byte(cinfo);
    123           while (data == 0xFF);	/* swallow extra 0xFF bytes */
    124           if (data == 0)
    125             data = 0xFF;	/* discard stuffed zero byte */
    126           else {
    127             /* Note: Different from the Huffman decoder, hitting
    128              * a marker while processing the compressed data
    129              * segment is legal in arithmetic coding.
    130              * The convention is to supply zero data
    131              * then until decoding is complete.
    132              */
    133             cinfo->unread_marker = data;
    134             data = 0;
    135           }
    136         }
    137       }
    138       e->c = (e->c << 8) | data; /* insert data into C register */
    139       if ((e->ct += 8) < 0)	 /* update bit shift counter */
    140         /* Need more initial bytes */
    141         if (++e->ct == 0)
    142           /* Got 2 initial bytes -> re-init A and exit loop */
    143           e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
    144     }
    145     e->a <<= 1;
    146   }
    147 
    148   /* Fetch values from our compact representation of Table D.3(D.2):
    149    * Qe values and probability estimation state machine
    150    */
    151   sv = *st;
    152   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
    153   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
    154   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
    155 
    156   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
    157   temp = e->a - qe;
    158   e->a = temp;
    159   temp <<= e->ct;
    160   if (e->c >= temp) {
    161     e->c -= temp;
    162     /* Conditional LPS (less probable symbol) exchange */
    163     if (e->a < qe) {
    164       e->a = qe;
    165       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
    166     } else {
    167       e->a = qe;
    168       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
    169       sv ^= 0x80;		/* Exchange LPS/MPS */
    170     }
    171   } else if (e->a < 0x8000L) {
    172     /* Conditional MPS (more probable symbol) exchange */
    173     if (e->a < qe) {
    174       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
    175       sv ^= 0x80;		/* Exchange LPS/MPS */
    176     } else {
    177       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
    178     }
    179   }
    180 
    181   return sv >> 7;
    182 }
    183 
    184 
    185 /*
    186  * Check for a restart marker & resynchronize decoder.
    187  */
    188 
    189 LOCAL(void)
    190 process_restart (j_decompress_ptr cinfo)
    191 {
    192   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    193   int ci;
    194   jpeg_component_info * compptr;
    195 
    196   /* Advance past the RSTn marker */
    197   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    198     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    199 
    200   /* Re-initialize statistics areas */
    201   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    202     compptr = cinfo->cur_comp_info[ci];
    203     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    204       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
    205       /* Reset DC predictions to 0 */
    206       entropy->last_dc_val[ci] = 0;
    207       entropy->dc_context[ci] = 0;
    208     }
    209     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
    210         (cinfo->progressive_mode && cinfo->Ss)) {
    211       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
    212     }
    213   }
    214 
    215   /* Reset arithmetic decoding variables */
    216   entropy->c = 0;
    217   entropy->a = 0;
    218   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
    219 
    220   /* Reset restart counter */
    221   entropy->restarts_to_go = cinfo->restart_interval;
    222 }
    223 
    224 
    225 /*
    226  * Arithmetic MCU decoding.
    227  * Each of these routines decodes and returns one MCU's worth of
    228  * arithmetic-compressed coefficients.
    229  * The coefficients are reordered from zigzag order into natural array order,
    230  * but are not dequantized.
    231  *
    232  * The i'th block of the MCU is stored into the block pointed to by
    233  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
    234  */
    235 
    236 /*
    237  * MCU decoding for DC initial scan (either spectral selection,
    238  * or first pass of successive approximation).
    239  */
    240 
    241 METHODDEF(boolean)
    242 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    243 {
    244   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    245   JBLOCKROW block;
    246   unsigned char *st;
    247   int blkn, ci, tbl, sign;
    248   int v, m;
    249 
    250   /* Process restart marker if needed */
    251   if (cinfo->restart_interval) {
    252     if (entropy->restarts_to_go == 0)
    253       process_restart(cinfo);
    254     entropy->restarts_to_go--;
    255   }
    256 
    257   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
    258 
    259   /* Outer loop handles each block in the MCU */
    260 
    261   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    262     block = MCU_data[blkn];
    263     ci = cinfo->MCU_membership[blkn];
    264     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
    265 
    266     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
    267 
    268     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    269     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    270 
    271     /* Figure F.19: Decode_DC_DIFF */
    272     if (arith_decode(cinfo, st) == 0)
    273       entropy->dc_context[ci] = 0;
    274     else {
    275       /* Figure F.21: Decoding nonzero value v */
    276       /* Figure F.22: Decoding the sign of v */
    277       sign = arith_decode(cinfo, st + 1);
    278       st += 2; st += sign;
    279       /* Figure F.23: Decoding the magnitude category of v */
    280       if ((m = arith_decode(cinfo, st)) != 0) {
    281         st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
    282         while (arith_decode(cinfo, st)) {
    283           if ((m <<= 1) == 0x8000) {
    284             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    285             entropy->ct = -1;			/* magnitude overflow */
    286             return TRUE;
    287           }
    288           st += 1;
    289         }
    290       }
    291       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    292       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    293         entropy->dc_context[ci] = 0;		   /* zero diff category */
    294       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    295         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
    296       else
    297         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
    298       v = m;
    299       /* Figure F.24: Decoding the magnitude bit pattern of v */
    300       st += 14;
    301       while (m >>= 1)
    302         if (arith_decode(cinfo, st)) v |= m;
    303       v += 1; if (sign) v = -v;
    304       entropy->last_dc_val[ci] += v;
    305     }
    306 
    307     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
    308     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
    309   }
    310 
    311   return TRUE;
    312 }
    313 
    314 
    315 /*
    316  * MCU decoding for AC initial scan (either spectral selection,
    317  * or first pass of successive approximation).
    318  */
    319 
    320 METHODDEF(boolean)
    321 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    322 {
    323   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    324   JBLOCKROW block;
    325   unsigned char *st;
    326   int tbl, sign, k;
    327   int v, m;
    328   const int * natural_order;
    329 
    330   /* Process restart marker if needed */
    331   if (cinfo->restart_interval) {
    332     if (entropy->restarts_to_go == 0)
    333       process_restart(cinfo);
    334     entropy->restarts_to_go--;
    335   }
    336 
    337   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
    338 
    339   natural_order = cinfo->natural_order;
    340 
    341   /* There is always only one block per MCU */
    342   block = MCU_data[0];
    343   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    344 
    345   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
    346 
    347   /* Figure F.20: Decode_AC_coefficients */
    348   k = cinfo->Ss - 1;
    349   do {
    350     st = entropy->ac_stats[tbl] + 3 * k;
    351     if (arith_decode(cinfo, st)) break;		/* EOB flag */
    352     for (;;) {
    353       k++;
    354       if (arith_decode(cinfo, st + 1)) break;
    355       st += 3;
    356       if (k >= cinfo->Se) {
    357         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    358         entropy->ct = -1;			/* spectral overflow */
    359         return TRUE;
    360       }
    361     }
    362     /* Figure F.21: Decoding nonzero value v */
    363     /* Figure F.22: Decoding the sign of v */
    364     sign = arith_decode(cinfo, entropy->fixed_bin);
    365     st += 2;
    366     /* Figure F.23: Decoding the magnitude category of v */
    367     if ((m = arith_decode(cinfo, st)) != 0) {
    368       if (arith_decode(cinfo, st)) {
    369         m <<= 1;
    370         st = entropy->ac_stats[tbl] +
    371              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    372         while (arith_decode(cinfo, st)) {
    373           if ((m <<= 1) == 0x8000) {
    374             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    375             entropy->ct = -1;			/* magnitude overflow */
    376             return TRUE;
    377           }
    378           st += 1;
    379         }
    380       }
    381     }
    382     v = m;
    383     /* Figure F.24: Decoding the magnitude bit pattern of v */
    384     st += 14;
    385     while (m >>= 1)
    386       if (arith_decode(cinfo, st)) v |= m;
    387     v += 1; if (sign) v = -v;
    388     /* Scale and output coefficient in natural (dezigzagged) order */
    389     (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
    390   } while (k < cinfo->Se);
    391 
    392   return TRUE;
    393 }
    394 
    395 
    396 /*
    397  * MCU decoding for DC successive approximation refinement scan.
    398  */
    399 
    400 METHODDEF(boolean)
    401 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    402 {
    403   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    404   unsigned char *st;
    405   int p1, blkn;
    406 
    407   /* Process restart marker if needed */
    408   if (cinfo->restart_interval) {
    409     if (entropy->restarts_to_go == 0)
    410       process_restart(cinfo);
    411     entropy->restarts_to_go--;
    412   }
    413 
    414   st = entropy->fixed_bin;	/* use fixed probability estimation */
    415   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
    416 
    417   /* Outer loop handles each block in the MCU */
    418 
    419   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    420     /* Encoded data is simply the next bit of the two's-complement DC value */
    421     if (arith_decode(cinfo, st))
    422       MCU_data[blkn][0][0] |= p1;
    423   }
    424 
    425   return TRUE;
    426 }
    427 
    428 
    429 /*
    430  * MCU decoding for AC successive approximation refinement scan.
    431  */
    432 
    433 METHODDEF(boolean)
    434 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    435 {
    436   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    437   JBLOCKROW block;
    438   JCOEFPTR thiscoef;
    439   unsigned char *st;
    440   int tbl, k, kex;
    441   int p1, m1;
    442   const int * natural_order;
    443 
    444   /* Process restart marker if needed */
    445   if (cinfo->restart_interval) {
    446     if (entropy->restarts_to_go == 0)
    447       process_restart(cinfo);
    448     entropy->restarts_to_go--;
    449   }
    450 
    451   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
    452 
    453   natural_order = cinfo->natural_order;
    454 
    455   /* There is always only one block per MCU */
    456   block = MCU_data[0];
    457   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    458 
    459   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
    460   m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
    461 
    462   /* Establish EOBx (previous stage end-of-block) index */
    463   kex = cinfo->Se;
    464   do {
    465     if ((*block)[natural_order[kex]]) break;
    466   } while (--kex);
    467 
    468   k = cinfo->Ss - 1;
    469   do {
    470     st = entropy->ac_stats[tbl] + 3 * k;
    471     if (k >= kex)
    472       if (arith_decode(cinfo, st)) break;	/* EOB flag */
    473     for (;;) {
    474       thiscoef = *block + natural_order[++k];
    475       if (*thiscoef) {				/* previously nonzero coef */
    476         if (arith_decode(cinfo, st + 2)) {
    477           if (*thiscoef < 0)
    478             *thiscoef += m1;
    479           else
    480             *thiscoef += p1;
    481         }
    482         break;
    483       }
    484       if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
    485         if (arith_decode(cinfo, entropy->fixed_bin))
    486           *thiscoef = m1;
    487         else
    488           *thiscoef = p1;
    489         break;
    490       }
    491       st += 3;
    492       if (k >= cinfo->Se) {
    493         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    494         entropy->ct = -1;			/* spectral overflow */
    495         return TRUE;
    496       }
    497     }
    498   } while (k < cinfo->Se);
    499 
    500   return TRUE;
    501 }
    502 
    503 
    504 /*
    505  * Decode one MCU's worth of arithmetic-compressed coefficients.
    506  */
    507 
    508 METHODDEF(boolean)
    509 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    510 {
    511   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    512   jpeg_component_info * compptr;
    513   JBLOCKROW block;
    514   unsigned char *st;
    515   int blkn, ci, tbl, sign, k;
    516   int v, m;
    517   const int * natural_order;
    518 
    519   /* Process restart marker if needed */
    520   if (cinfo->restart_interval) {
    521     if (entropy->restarts_to_go == 0)
    522       process_restart(cinfo);
    523     entropy->restarts_to_go--;
    524   }
    525 
    526   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
    527 
    528   natural_order = cinfo->natural_order;
    529 
    530   /* Outer loop handles each block in the MCU */
    531 
    532   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    533     block = MCU_data[blkn];
    534     ci = cinfo->MCU_membership[blkn];
    535     compptr = cinfo->cur_comp_info[ci];
    536 
    537     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
    538 
    539     tbl = compptr->dc_tbl_no;
    540 
    541     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    542     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    543 
    544     /* Figure F.19: Decode_DC_DIFF */
    545     if (arith_decode(cinfo, st) == 0)
    546       entropy->dc_context[ci] = 0;
    547     else {
    548       /* Figure F.21: Decoding nonzero value v */
    549       /* Figure F.22: Decoding the sign of v */
    550       sign = arith_decode(cinfo, st + 1);
    551       st += 2; st += sign;
    552       /* Figure F.23: Decoding the magnitude category of v */
    553       if ((m = arith_decode(cinfo, st)) != 0) {
    554         st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
    555         while (arith_decode(cinfo, st)) {
    556           if ((m <<= 1) == 0x8000) {
    557             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    558             entropy->ct = -1;			/* magnitude overflow */
    559             return TRUE;
    560           }
    561           st += 1;
    562         }
    563       }
    564       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    565       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    566         entropy->dc_context[ci] = 0;		   /* zero diff category */
    567       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    568         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
    569       else
    570         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
    571       v = m;
    572       /* Figure F.24: Decoding the magnitude bit pattern of v */
    573       st += 14;
    574       while (m >>= 1)
    575         if (arith_decode(cinfo, st)) v |= m;
    576       v += 1; if (sign) v = -v;
    577       entropy->last_dc_val[ci] += v;
    578     }
    579 
    580     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
    581 
    582     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
    583 
    584     if (cinfo->lim_Se == 0) continue;
    585     tbl = compptr->ac_tbl_no;
    586     k = 0;
    587 
    588     /* Figure F.20: Decode_AC_coefficients */
    589     do {
    590       st = entropy->ac_stats[tbl] + 3 * k;
    591       if (arith_decode(cinfo, st)) break;	/* EOB flag */
    592       for (;;) {
    593         k++;
    594         if (arith_decode(cinfo, st + 1)) break;
    595         st += 3;
    596         if (k >= cinfo->lim_Se) {
    597           WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    598           entropy->ct = -1;			/* spectral overflow */
    599           return TRUE;
    600         }
    601       }
    602       /* Figure F.21: Decoding nonzero value v */
    603       /* Figure F.22: Decoding the sign of v */
    604       sign = arith_decode(cinfo, entropy->fixed_bin);
    605       st += 2;
    606       /* Figure F.23: Decoding the magnitude category of v */
    607       if ((m = arith_decode(cinfo, st)) != 0) {
    608         if (arith_decode(cinfo, st)) {
    609           m <<= 1;
    610           st = entropy->ac_stats[tbl] +
    611                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    612           while (arith_decode(cinfo, st)) {
    613             if ((m <<= 1) == 0x8000) {
    614               WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    615               entropy->ct = -1;			/* magnitude overflow */
    616               return TRUE;
    617             }
    618             st += 1;
    619           }
    620         }
    621       }
    622       v = m;
    623       /* Figure F.24: Decoding the magnitude bit pattern of v */
    624       st += 14;
    625       while (m >>= 1)
    626         if (arith_decode(cinfo, st)) v |= m;
    627       v += 1; if (sign) v = -v;
    628       (*block)[natural_order[k]] = (JCOEF) v;
    629     } while (k < cinfo->lim_Se);
    630   }
    631 
    632   return TRUE;
    633 }
    634 
    635 
    636 /*
    637  * Initialize for an arithmetic-compressed scan.
    638  */
    639 
    640 METHODDEF(void)
    641 start_pass (j_decompress_ptr cinfo)
    642 {
    643   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    644   int ci, tbl;
    645   jpeg_component_info * compptr;
    646 
    647   if (cinfo->progressive_mode) {
    648     /* Validate progressive scan parameters */
    649     if (cinfo->Ss == 0) {
    650       if (cinfo->Se != 0)
    651         goto bad;
    652     } else {
    653       /* need not check Ss/Se < 0 since they came from unsigned bytes */
    654       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
    655         goto bad;
    656       /* AC scans may have only one component */
    657       if (cinfo->comps_in_scan != 1)
    658         goto bad;
    659     }
    660     if (cinfo->Ah != 0) {
    661       /* Successive approximation refinement scan: must have Al = Ah-1. */
    662       if (cinfo->Ah-1 != cinfo->Al)
    663         goto bad;
    664     }
    665     if (cinfo->Al > 13) {	/* need not check for < 0 */
    666       bad:
    667       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
    668                cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
    669     }
    670     /* Update progression status, and verify that scan order is legal.
    671      * Note that inter-scan inconsistencies are treated as warnings
    672      * not fatal errors ... not clear if this is right way to behave.
    673      */
    674     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    675       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
    676       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
    677       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
    678         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
    679       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
    680         int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
    681         if (cinfo->Ah != expected)
    682           WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
    683         coef_bit_ptr[coefi] = cinfo->Al;
    684       }
    685     }
    686     /* Select MCU decoding routine */
    687     if (cinfo->Ah == 0) {
    688       if (cinfo->Ss == 0)
    689         entropy->pub.decode_mcu = decode_mcu_DC_first;
    690       else
    691         entropy->pub.decode_mcu = decode_mcu_AC_first;
    692     } else {
    693       if (cinfo->Ss == 0)
    694         entropy->pub.decode_mcu = decode_mcu_DC_refine;
    695       else
    696         entropy->pub.decode_mcu = decode_mcu_AC_refine;
    697     }
    698   } else {
    699     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
    700      * This ought to be an error condition, but we make it a warning.
    701      */
    702     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
    703         (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
    704       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
    705     /* Select MCU decoding routine */
    706     entropy->pub.decode_mcu = decode_mcu;
    707   }
    708 
    709   /* Allocate & initialize requested statistics areas */
    710   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    711     compptr = cinfo->cur_comp_info[ci];
    712     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    713       tbl = compptr->dc_tbl_no;
    714       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    715         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    716       if (entropy->dc_stats[tbl] == NULL)
    717         entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    718           ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
    719       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
    720       /* Initialize DC predictions to 0 */
    721       entropy->last_dc_val[ci] = 0;
    722       entropy->dc_context[ci] = 0;
    723     }
    724     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
    725         (cinfo->progressive_mode && cinfo->Ss)) {
    726       tbl = compptr->ac_tbl_no;
    727       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    728         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    729       if (entropy->ac_stats[tbl] == NULL)
    730         entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    731           ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
    732       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
    733     }
    734   }
    735 
    736   /* Initialize arithmetic decoding variables */
    737   entropy->c = 0;
    738   entropy->a = 0;
    739   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
    740 
    741   /* Initialize restart counter */
    742   entropy->restarts_to_go = cinfo->restart_interval;
    743 }
    744 
    745 
    746 /*
    747  * Module initialization routine for arithmetic entropy decoding.
    748  */
    749 
    750 GLOBAL(void)
    751 jinit_arith_decoder (j_decompress_ptr cinfo)
    752 {
    753   arith_entropy_ptr entropy;
    754   int i;
    755 
    756   entropy = (arith_entropy_ptr)
    757     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    758                                 SIZEOF(arith_entropy_decoder));
    759   cinfo->entropy = &entropy->pub;
    760   entropy->pub.start_pass = start_pass;
    761 
    762   /* Mark tables unallocated */
    763   for (i = 0; i < NUM_ARITH_TBLS; i++) {
    764     entropy->dc_stats[i] = NULL;
    765     entropy->ac_stats[i] = NULL;
    766   }
    767 
    768   /* Initialize index for fixed probability estimation */
    769   entropy->fixed_bin[0] = 113;
    770 
    771   if (cinfo->progressive_mode) {
    772     /* Create progression status table */
    773     int *coef_bit_ptr, ci;
    774     cinfo->coef_bits = (int (*)[DCTSIZE2])
    775       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    776                                   cinfo->num_components*DCTSIZE2*SIZEOF(int));
    777     coef_bit_ptr = & cinfo->coef_bits[0][0];
    778     for (ci = 0; ci < cinfo->num_components; ci++)
    779       for (i = 0; i < DCTSIZE2; i++)
    780         *coef_bit_ptr++ = -1;
    781   }
    782 }
    783