Home | History | Annotate | Download | only in IlmImf
      1 ///////////////////////////////////////////////////////////////////////////
      2 //
      3 // Copyright (c) 2006, Industrial Light & Magic, a division of Lucas
      4 // Digital Ltd. LLC
      5 //
      6 // All rights reserved.
      7 //
      8 // Redistribution and use in source and binary forms, with or without
      9 // modification, are permitted provided that the following conditions are
     10 // met:
     11 // *       Redistributions of source code must retain the above copyright
     12 // notice, this list of conditions and the following disclaimer.
     13 // *       Redistributions in binary form must reproduce the above
     14 // copyright notice, this list of conditions and the following disclaimer
     15 // in the documentation and/or other materials provided with the
     16 // distribution.
     17 // *       Neither the name of Industrial Light & Magic nor the names of
     18 // its contributors may be used to endorse or promote products derived
     19 // from this software without specific prior written permission.
     20 //
     21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32 //
     33 ///////////////////////////////////////////////////////////////////////////
     34 
     35 //-----------------------------------------------------------------------------
     36 //
     37 //	Rational numbers
     38 //
     39 //	The double-to-Rational conversion code below
     40 //	was contributed to OpenEXR by Greg Ward.
     41 //
     42 //-----------------------------------------------------------------------------
     43 
     44 #include <ImfRational.h>
     45 #include <cmath>
     46 
     47 using namespace std;
     48 
     49 namespace Imf {
     50 namespace {
     51 
     52 double
     53 frac (double x, double e)
     54 {
     55     return x - floor (x + e);
     56 }
     57 
     58 
     59 double
     60 square (double x)
     61 {
     62     return x * x;
     63 }
     64 
     65 
     66 double
     67 denom (double x, double e)
     68 {
     69     if (e > frac (x, e))
     70     {
     71         return 1;
     72     }
     73     else
     74     {
     75     double r = frac (1 / x, e);
     76 
     77         if (e > r)
     78         {
     79             return floor (1 / x + e);
     80         }
     81         else
     82         {
     83             return denom (frac (1 / r, e), e / square (x * r)) +
     84                    floor (1 / x + e) * denom (frac (1 / x, e), e / square (x));
     85         }
     86     }
     87 }
     88 
     89 } // namespace
     90 
     91 
     92 Rational::Rational (double x)
     93 {
     94     int sign;
     95 
     96     if (x >= 0)
     97     {
     98     sign = 1;	// positive
     99     }
    100     else if (x < 0)
    101     {
    102     sign = -1;	// negative
    103     x = -x;
    104     }
    105     else
    106     {
    107     n = 0;		// NaN
    108     d = 0;
    109     return;
    110     }
    111 
    112     if (x >= (1U << 31) - 0.5)
    113     {
    114     n = sign;	// infinity
    115     d = 0;
    116     return;
    117     }
    118 
    119     double e = (x < 1? 1: x) / (1U << 30);
    120     d = (unsigned int) denom (x, e);
    121     n = sign * (int) floor (x * d + 0.5);
    122 }
    123 
    124 
    125 } // namespace Imf
    126