1 /* trees.c -- output deflated data using Huffman coding 2 * Copyright (C) 1995-2012 Jean-loup Gailly 3 * detect_data_type() function provided freely by Cosmin Truta, 2006 4 * For conditions of distribution and use, see copyright notice in zlib.h 5 */ 6 7 /* 8 * ALGORITHM 9 * 10 * The "deflation" process uses several Huffman trees. The more 11 * common source values are represented by shorter bit sequences. 12 * 13 * Each code tree is stored in a compressed form which is itself 14 * a Huffman encoding of the lengths of all the code strings (in 15 * ascending order by source values). The actual code strings are 16 * reconstructed from the lengths in the inflate process, as described 17 * in the deflate specification. 18 * 19 * REFERENCES 20 * 21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 23 * 24 * Storer, James A. 25 * Data Compression: Methods and Theory, pp. 49-50. 26 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 27 * 28 * Sedgewick, R. 29 * Algorithms, p290. 30 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 31 */ 32 33 /* @(#) $Id$ */ 34 35 /* #define GEN_TREES_H */ 36 37 #include "deflate.h" 38 39 #ifdef DEBUG 40 # include <ctype.h> 41 #endif 42 43 /* =========================================================================== 44 * Constants 45 */ 46 47 #define MAX_BL_BITS 7 48 /* Bit length codes must not exceed MAX_BL_BITS bits */ 49 50 #define END_BLOCK 256 51 /* end of block literal code */ 52 53 #define REP_3_6 16 54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 55 56 #define REPZ_3_10 17 57 /* repeat a zero length 3-10 times (3 bits of repeat count) */ 58 59 #define REPZ_11_138 18 60 /* repeat a zero length 11-138 times (7 bits of repeat count) */ 61 62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 64 65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ 66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 67 68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 70 71 local const uch bl_order[BL_CODES] 72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 73 /* The lengths of the bit length codes are sent in order of decreasing 74 * probability, to avoid transmitting the lengths for unused bit length codes. 75 */ 76 77 /* =========================================================================== 78 * Local data. These are initialized only once. 79 */ 80 81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ 82 83 #if defined(GEN_TREES_H) || !defined(STDC) 84 /* non ANSI compilers may not accept trees.h */ 85 86 local ct_data static_ltree[L_CODES+2]; 87 /* The static literal tree. Since the bit lengths are imposed, there is no 88 * need for the L_CODES extra codes used during heap construction. However 89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 90 * below). 91 */ 92 93 local ct_data static_dtree[D_CODES]; 94 /* The static distance tree. (Actually a trivial tree since all codes use 95 * 5 bits.) 96 */ 97 98 uch _dist_code[DIST_CODE_LEN]; 99 /* Distance codes. The first 256 values correspond to the distances 100 * 3 .. 258, the last 256 values correspond to the top 8 bits of 101 * the 15 bit distances. 102 */ 103 104 uch _length_code[MAX_MATCH-MIN_MATCH+1]; 105 /* length code for each normalized match length (0 == MIN_MATCH) */ 106 107 local int base_length[LENGTH_CODES]; 108 /* First normalized length for each code (0 = MIN_MATCH) */ 109 110 local int base_dist[D_CODES]; 111 /* First normalized distance for each code (0 = distance of 1) */ 112 113 #else 114 # include "trees.h" 115 #endif /* GEN_TREES_H */ 116 117 struct static_tree_desc_s { 118 const ct_data *static_tree; /* static tree or NULL */ 119 const intf *extra_bits; /* extra bits for each code or NULL */ 120 int extra_base; /* base index for extra_bits */ 121 int elems; /* max number of elements in the tree */ 122 int max_length; /* max bit length for the codes */ 123 }; 124 125 local static_tree_desc static_l_desc = 126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 127 128 local static_tree_desc static_d_desc = 129 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 130 131 local static_tree_desc static_bl_desc = 132 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 133 134 /* =========================================================================== 135 * Local (static) routines in this file. 136 */ 137 138 local void tr_static_init OF((void)); 139 local void init_block OF((deflate_state *s)); 140 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); 141 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); 142 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); 143 local void build_tree OF((deflate_state *s, tree_desc *desc)); 144 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); 145 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); 146 local int build_bl_tree OF((deflate_state *s)); 147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, 148 int blcodes)); 149 local void compress_block OF((deflate_state *s, const ct_data *ltree, 150 const ct_data *dtree)); 151 local int detect_data_type OF((deflate_state *s)); 152 local unsigned bi_reverse OF((unsigned value, int length)); 153 local void bi_windup OF((deflate_state *s)); 154 local void bi_flush OF((deflate_state *s)); 155 local void copy_block OF((deflate_state *s, charf *buf, unsigned len, 156 int header)); 157 158 #ifdef GEN_TREES_H 159 local void gen_trees_header OF((void)); 160 #endif 161 162 #ifndef DEBUG 163 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 164 /* Send a code of the given tree. c and tree must not have side effects */ 165 166 #else /* DEBUG */ 167 # define send_code(s, c, tree) \ 168 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 169 send_bits(s, tree[c].Code, tree[c].Len); } 170 #endif 171 172 /* =========================================================================== 173 * Output a short LSB first on the stream. 174 * IN assertion: there is enough room in pendingBuf. 175 */ 176 #define put_short(s, w) { \ 177 put_byte(s, (uch)((w) & 0xff)); \ 178 put_byte(s, (uch)((ush)(w) >> 8)); \ 179 } 180 181 /* =========================================================================== 182 * Send a value on a given number of bits. 183 * IN assertion: length <= 16 and value fits in length bits. 184 */ 185 #ifdef DEBUG 186 local void send_bits OF((deflate_state *s, int value, int length)); 187 188 local void send_bits(s, value, length) 189 deflate_state *s; 190 int value; /* value to send */ 191 int length; /* number of bits */ 192 { 193 Tracevv((stderr," l %2d v %4x ", length, value)); 194 Assert(length > 0 && length <= 15, "invalid length"); 195 s->bits_sent += (ulg)length; 196 197 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 198 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) 199 * unused bits in value. 200 */ 201 if (s->bi_valid > (int)Buf_size - length) { 202 s->bi_buf |= (ush)value << s->bi_valid; 203 put_short(s, s->bi_buf); 204 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 205 s->bi_valid += length - Buf_size; 206 } else { 207 s->bi_buf |= (ush)value << s->bi_valid; 208 s->bi_valid += length; 209 } 210 } 211 #else /* !DEBUG */ 212 213 #define send_bits(s, value, length) \ 214 { int len = length;\ 215 if (s->bi_valid > (int)Buf_size - len) {\ 216 int val = value;\ 217 s->bi_buf |= (ush)val << s->bi_valid;\ 218 put_short(s, s->bi_buf);\ 219 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 220 s->bi_valid += len - Buf_size;\ 221 } else {\ 222 s->bi_buf |= (ush)(value) << s->bi_valid;\ 223 s->bi_valid += len;\ 224 }\ 225 } 226 #endif /* DEBUG */ 227 228 229 /* the arguments must not have side effects */ 230 231 /* =========================================================================== 232 * Initialize the various 'constant' tables. 233 */ 234 local void tr_static_init() 235 { 236 #if defined(GEN_TREES_H) || !defined(STDC) 237 static int static_init_done = 0; 238 int n; /* iterates over tree elements */ 239 int bits; /* bit counter */ 240 int length; /* length value */ 241 int code; /* code value */ 242 int dist; /* distance index */ 243 ush bl_count[MAX_BITS+1]; 244 /* number of codes at each bit length for an optimal tree */ 245 246 if (static_init_done) return; 247 248 /* For some embedded targets, global variables are not initialized: */ 249 #ifdef NO_INIT_GLOBAL_POINTERS 250 static_l_desc.static_tree = static_ltree; 251 static_l_desc.extra_bits = extra_lbits; 252 static_d_desc.static_tree = static_dtree; 253 static_d_desc.extra_bits = extra_dbits; 254 static_bl_desc.extra_bits = extra_blbits; 255 #endif 256 257 /* Initialize the mapping length (0..255) -> length code (0..28) */ 258 length = 0; 259 for (code = 0; code < LENGTH_CODES-1; code++) { 260 base_length[code] = length; 261 for (n = 0; n < (1<<extra_lbits[code]); n++) { 262 _length_code[length++] = (uch)code; 263 } 264 } 265 Assert (length == 256, "tr_static_init: length != 256"); 266 /* Note that the length 255 (match length 258) can be represented 267 * in two different ways: code 284 + 5 bits or code 285, so we 268 * overwrite length_code[255] to use the best encoding: 269 */ 270 _length_code[length-1] = (uch)code; 271 272 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 273 dist = 0; 274 for (code = 0 ; code < 16; code++) { 275 base_dist[code] = dist; 276 for (n = 0; n < (1<<extra_dbits[code]); n++) { 277 _dist_code[dist++] = (uch)code; 278 } 279 } 280 Assert (dist == 256, "tr_static_init: dist != 256"); 281 dist >>= 7; /* from now on, all distances are divided by 128 */ 282 for ( ; code < D_CODES; code++) { 283 base_dist[code] = dist << 7; 284 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { 285 _dist_code[256 + dist++] = (uch)code; 286 } 287 } 288 Assert (dist == 256, "tr_static_init: 256+dist != 512"); 289 290 /* Construct the codes of the static literal tree */ 291 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 292 n = 0; 293 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 294 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 295 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 296 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 297 /* Codes 286 and 287 do not exist, but we must include them in the 298 * tree construction to get a canonical Huffman tree (longest code 299 * all ones) 300 */ 301 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 302 303 /* The static distance tree is trivial: */ 304 for (n = 0; n < D_CODES; n++) { 305 static_dtree[n].Len = 5; 306 static_dtree[n].Code = bi_reverse((unsigned)n, 5); 307 } 308 static_init_done = 1; 309 310 # ifdef GEN_TREES_H 311 gen_trees_header(); 312 # endif 313 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ 314 } 315 316 /* =========================================================================== 317 * Genererate the file trees.h describing the static trees. 318 */ 319 #ifdef GEN_TREES_H 320 # ifndef DEBUG 321 # include <stdio.h> 322 # endif 323 324 # define SEPARATOR(i, last, width) \ 325 ((i) == (last)? "\n};\n\n" : \ 326 ((i) % (width) == (width)-1 ? ",\n" : ", ")) 327 328 void gen_trees_header() 329 { 330 FILE *header = fopen("trees.h", "w"); 331 int i; 332 333 Assert (header != NULL, "Can't open trees.h"); 334 fprintf(header, 335 "/* header created automatically with -DGEN_TREES_H */\n\n"); 336 337 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); 338 for (i = 0; i < L_CODES+2; i++) { 339 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, 340 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); 341 } 342 343 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); 344 for (i = 0; i < D_CODES; i++) { 345 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, 346 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); 347 } 348 349 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); 350 for (i = 0; i < DIST_CODE_LEN; i++) { 351 fprintf(header, "%2u%s", _dist_code[i], 352 SEPARATOR(i, DIST_CODE_LEN-1, 20)); 353 } 354 355 fprintf(header, 356 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); 357 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { 358 fprintf(header, "%2u%s", _length_code[i], 359 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); 360 } 361 362 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); 363 for (i = 0; i < LENGTH_CODES; i++) { 364 fprintf(header, "%1u%s", base_length[i], 365 SEPARATOR(i, LENGTH_CODES-1, 20)); 366 } 367 368 fprintf(header, "local const int base_dist[D_CODES] = {\n"); 369 for (i = 0; i < D_CODES; i++) { 370 fprintf(header, "%5u%s", base_dist[i], 371 SEPARATOR(i, D_CODES-1, 10)); 372 } 373 374 fclose(header); 375 } 376 #endif /* GEN_TREES_H */ 377 378 /* =========================================================================== 379 * Initialize the tree data structures for a new zlib stream. 380 */ 381 void ZLIB_INTERNAL _tr_init(s) 382 deflate_state *s; 383 { 384 tr_static_init(); 385 386 s->l_desc.dyn_tree = s->dyn_ltree; 387 s->l_desc.stat_desc = &static_l_desc; 388 389 s->d_desc.dyn_tree = s->dyn_dtree; 390 s->d_desc.stat_desc = &static_d_desc; 391 392 s->bl_desc.dyn_tree = s->bl_tree; 393 s->bl_desc.stat_desc = &static_bl_desc; 394 395 s->bi_buf = 0; 396 s->bi_valid = 0; 397 #ifdef DEBUG 398 s->compressed_len = 0L; 399 s->bits_sent = 0L; 400 #endif 401 402 /* Initialize the first block of the first file: */ 403 init_block(s); 404 } 405 406 /* =========================================================================== 407 * Initialize a new block. 408 */ 409 local void init_block(s) 410 deflate_state *s; 411 { 412 int n; /* iterates over tree elements */ 413 414 /* Initialize the trees. */ 415 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 416 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 417 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 418 419 s->dyn_ltree[END_BLOCK].Freq = 1; 420 s->opt_len = s->static_len = 0L; 421 s->last_lit = s->matches = 0; 422 } 423 424 #define SMALLEST 1 425 /* Index within the heap array of least frequent node in the Huffman tree */ 426 427 428 /* =========================================================================== 429 * Remove the smallest element from the heap and recreate the heap with 430 * one less element. Updates heap and heap_len. 431 */ 432 #define pqremove(s, tree, top) \ 433 {\ 434 top = s->heap[SMALLEST]; \ 435 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 436 pqdownheap(s, tree, SMALLEST); \ 437 } 438 439 /* =========================================================================== 440 * Compares to subtrees, using the tree depth as tie breaker when 441 * the subtrees have equal frequency. This minimizes the worst case length. 442 */ 443 #define smaller(tree, n, m, depth) \ 444 (tree[n].Freq < tree[m].Freq || \ 445 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 446 447 /* =========================================================================== 448 * Restore the heap property by moving down the tree starting at node k, 449 * exchanging a node with the smallest of its two sons if necessary, stopping 450 * when the heap property is re-established (each father smaller than its 451 * two sons). 452 */ 453 local void pqdownheap(s, tree, k) 454 deflate_state *s; 455 ct_data *tree; /* the tree to restore */ 456 int k; /* node to move down */ 457 { 458 int v = s->heap[k]; 459 int j = k << 1; /* left son of k */ 460 while (j <= s->heap_len) { 461 /* Set j to the smallest of the two sons: */ 462 if (j < s->heap_len && 463 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { 464 j++; 465 } 466 /* Exit if v is smaller than both sons */ 467 if (smaller(tree, v, s->heap[j], s->depth)) break; 468 469 /* Exchange v with the smallest son */ 470 s->heap[k] = s->heap[j]; k = j; 471 472 /* And continue down the tree, setting j to the left son of k */ 473 j <<= 1; 474 } 475 s->heap[k] = v; 476 } 477 478 /* =========================================================================== 479 * Compute the optimal bit lengths for a tree and update the total bit length 480 * for the current block. 481 * IN assertion: the fields freq and dad are set, heap[heap_max] and 482 * above are the tree nodes sorted by increasing frequency. 483 * OUT assertions: the field len is set to the optimal bit length, the 484 * array bl_count contains the frequencies for each bit length. 485 * The length opt_len is updated; static_len is also updated if stree is 486 * not null. 487 */ 488 local void gen_bitlen(s, desc) 489 deflate_state *s; 490 tree_desc *desc; /* the tree descriptor */ 491 { 492 ct_data *tree = desc->dyn_tree; 493 int max_code = desc->max_code; 494 const ct_data *stree = desc->stat_desc->static_tree; 495 const intf *extra = desc->stat_desc->extra_bits; 496 int base = desc->stat_desc->extra_base; 497 int max_length = desc->stat_desc->max_length; 498 int h; /* heap index */ 499 int n, m; /* iterate over the tree elements */ 500 int bits; /* bit length */ 501 int xbits; /* extra bits */ 502 ush f; /* frequency */ 503 int overflow = 0; /* number of elements with bit length too large */ 504 505 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 506 507 /* In a first pass, compute the optimal bit lengths (which may 508 * overflow in the case of the bit length tree). 509 */ 510 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 511 512 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { 513 n = s->heap[h]; 514 bits = tree[tree[n].Dad].Len + 1; 515 if (bits > max_length) bits = max_length, overflow++; 516 tree[n].Len = (ush)bits; 517 /* We overwrite tree[n].Dad which is no longer needed */ 518 519 if (n > max_code) continue; /* not a leaf node */ 520 521 s->bl_count[bits]++; 522 xbits = 0; 523 if (n >= base) xbits = extra[n-base]; 524 f = tree[n].Freq; 525 s->opt_len += (ulg)f * (bits + xbits); 526 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); 527 } 528 if (overflow == 0) return; 529 530 Trace((stderr,"\nbit length overflow\n")); 531 /* This happens for example on obj2 and pic of the Calgary corpus */ 532 533 /* Find the first bit length which could increase: */ 534 do { 535 bits = max_length-1; 536 while (s->bl_count[bits] == 0) bits--; 537 s->bl_count[bits]--; /* move one leaf down the tree */ 538 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ 539 s->bl_count[max_length]--; 540 /* The brother of the overflow item also moves one step up, 541 * but this does not affect bl_count[max_length] 542 */ 543 overflow -= 2; 544 } while (overflow > 0); 545 546 /* Now recompute all bit lengths, scanning in increasing frequency. 547 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 548 * lengths instead of fixing only the wrong ones. This idea is taken 549 * from 'ar' written by Haruhiko Okumura.) 550 */ 551 for (bits = max_length; bits != 0; bits--) { 552 n = s->bl_count[bits]; 553 while (n != 0) { 554 m = s->heap[--h]; 555 if (m > max_code) continue; 556 if ((unsigned) tree[m].Len != (unsigned) bits) { 557 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 558 s->opt_len += ((long)bits - (long)tree[m].Len) 559 *(long)tree[m].Freq; 560 tree[m].Len = (ush)bits; 561 } 562 n--; 563 } 564 } 565 } 566 567 /* =========================================================================== 568 * Generate the codes for a given tree and bit counts (which need not be 569 * optimal). 570 * IN assertion: the array bl_count contains the bit length statistics for 571 * the given tree and the field len is set for all tree elements. 572 * OUT assertion: the field code is set for all tree elements of non 573 * zero code length. 574 */ 575 local void gen_codes (tree, max_code, bl_count) 576 ct_data *tree; /* the tree to decorate */ 577 int max_code; /* largest code with non zero frequency */ 578 ushf *bl_count; /* number of codes at each bit length */ 579 { 580 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 581 ush code = 0; /* running code value */ 582 int bits; /* bit index */ 583 int n; /* code index */ 584 585 /* The distribution counts are first used to generate the code values 586 * without bit reversal. 587 */ 588 for (bits = 1; bits <= MAX_BITS; bits++) { 589 next_code[bits] = code = (code + bl_count[bits-1]) << 1; 590 } 591 /* Check that the bit counts in bl_count are consistent. The last code 592 * must be all ones. 593 */ 594 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, 595 "inconsistent bit counts"); 596 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 597 598 for (n = 0; n <= max_code; n++) { 599 int len = tree[n].Len; 600 if (len == 0) continue; 601 /* Now reverse the bits */ 602 tree[n].Code = bi_reverse(next_code[len]++, len); 603 604 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 605 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); 606 } 607 } 608 609 /* =========================================================================== 610 * Construct one Huffman tree and assigns the code bit strings and lengths. 611 * Update the total bit length for the current block. 612 * IN assertion: the field freq is set for all tree elements. 613 * OUT assertions: the fields len and code are set to the optimal bit length 614 * and corresponding code. The length opt_len is updated; static_len is 615 * also updated if stree is not null. The field max_code is set. 616 */ 617 local void build_tree(s, desc) 618 deflate_state *s; 619 tree_desc *desc; /* the tree descriptor */ 620 { 621 ct_data *tree = desc->dyn_tree; 622 const ct_data *stree = desc->stat_desc->static_tree; 623 int elems = desc->stat_desc->elems; 624 int n, m; /* iterate over heap elements */ 625 int max_code = -1; /* largest code with non zero frequency */ 626 int node; /* new node being created */ 627 628 /* Construct the initial heap, with least frequent element in 629 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. 630 * heap[0] is not used. 631 */ 632 s->heap_len = 0, s->heap_max = HEAP_SIZE; 633 634 for (n = 0; n < elems; n++) { 635 if (tree[n].Freq != 0) { 636 s->heap[++(s->heap_len)] = max_code = n; 637 s->depth[n] = 0; 638 } else { 639 tree[n].Len = 0; 640 } 641 } 642 643 /* The pkzip format requires that at least one distance code exists, 644 * and that at least one bit should be sent even if there is only one 645 * possible code. So to avoid special checks later on we force at least 646 * two codes of non zero frequency. 647 */ 648 while (s->heap_len < 2) { 649 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 650 tree[node].Freq = 1; 651 s->depth[node] = 0; 652 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 653 /* node is 0 or 1 so it does not have extra bits */ 654 } 655 desc->max_code = max_code; 656 657 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, 658 * establish sub-heaps of increasing lengths: 659 */ 660 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 661 662 /* Construct the Huffman tree by repeatedly combining the least two 663 * frequent nodes. 664 */ 665 node = elems; /* next internal node of the tree */ 666 do { 667 pqremove(s, tree, n); /* n = node of least frequency */ 668 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 669 670 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 671 s->heap[--(s->heap_max)] = m; 672 673 /* Create a new node father of n and m */ 674 tree[node].Freq = tree[n].Freq + tree[m].Freq; 675 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? 676 s->depth[n] : s->depth[m]) + 1); 677 tree[n].Dad = tree[m].Dad = (ush)node; 678 #ifdef DUMP_BL_TREE 679 if (tree == s->bl_tree) { 680 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 681 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 682 } 683 #endif 684 /* and insert the new node in the heap */ 685 s->heap[SMALLEST] = node++; 686 pqdownheap(s, tree, SMALLEST); 687 688 } while (s->heap_len >= 2); 689 690 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 691 692 /* At this point, the fields freq and dad are set. We can now 693 * generate the bit lengths. 694 */ 695 gen_bitlen(s, (tree_desc *)desc); 696 697 /* The field len is now set, we can generate the bit codes */ 698 gen_codes ((ct_data *)tree, max_code, s->bl_count); 699 } 700 701 /* =========================================================================== 702 * Scan a literal or distance tree to determine the frequencies of the codes 703 * in the bit length tree. 704 */ 705 local void scan_tree (s, tree, max_code) 706 deflate_state *s; 707 ct_data *tree; /* the tree to be scanned */ 708 int max_code; /* and its largest code of non zero frequency */ 709 { 710 int n; /* iterates over all tree elements */ 711 int prevlen = -1; /* last emitted length */ 712 int curlen; /* length of current code */ 713 int nextlen = tree[0].Len; /* length of next code */ 714 int count = 0; /* repeat count of the current code */ 715 int max_count = 7; /* max repeat count */ 716 int min_count = 4; /* min repeat count */ 717 718 if (nextlen == 0) max_count = 138, min_count = 3; 719 tree[max_code+1].Len = (ush)0xffff; /* guard */ 720 721 for (n = 0; n <= max_code; n++) { 722 curlen = nextlen; nextlen = tree[n+1].Len; 723 if (++count < max_count && curlen == nextlen) { 724 continue; 725 } else if (count < min_count) { 726 s->bl_tree[curlen].Freq += count; 727 } else if (curlen != 0) { 728 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 729 s->bl_tree[REP_3_6].Freq++; 730 } else if (count <= 10) { 731 s->bl_tree[REPZ_3_10].Freq++; 732 } else { 733 s->bl_tree[REPZ_11_138].Freq++; 734 } 735 count = 0; prevlen = curlen; 736 if (nextlen == 0) { 737 max_count = 138, min_count = 3; 738 } else if (curlen == nextlen) { 739 max_count = 6, min_count = 3; 740 } else { 741 max_count = 7, min_count = 4; 742 } 743 } 744 } 745 746 /* =========================================================================== 747 * Send a literal or distance tree in compressed form, using the codes in 748 * bl_tree. 749 */ 750 local void send_tree (s, tree, max_code) 751 deflate_state *s; 752 ct_data *tree; /* the tree to be scanned */ 753 int max_code; /* and its largest code of non zero frequency */ 754 { 755 int n; /* iterates over all tree elements */ 756 int prevlen = -1; /* last emitted length */ 757 int curlen; /* length of current code */ 758 int nextlen = tree[0].Len; /* length of next code */ 759 int count = 0; /* repeat count of the current code */ 760 int max_count = 7; /* max repeat count */ 761 int min_count = 4; /* min repeat count */ 762 763 /* tree[max_code+1].Len = -1; */ /* guard already set */ 764 if (nextlen == 0) max_count = 138, min_count = 3; 765 766 for (n = 0; n <= max_code; n++) { 767 curlen = nextlen; nextlen = tree[n+1].Len; 768 if (++count < max_count && curlen == nextlen) { 769 continue; 770 } else if (count < min_count) { 771 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 772 773 } else if (curlen != 0) { 774 if (curlen != prevlen) { 775 send_code(s, curlen, s->bl_tree); count--; 776 } 777 Assert(count >= 3 && count <= 6, " 3_6?"); 778 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); 779 780 } else if (count <= 10) { 781 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); 782 783 } else { 784 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); 785 } 786 count = 0; prevlen = curlen; 787 if (nextlen == 0) { 788 max_count = 138, min_count = 3; 789 } else if (curlen == nextlen) { 790 max_count = 6, min_count = 3; 791 } else { 792 max_count = 7, min_count = 4; 793 } 794 } 795 } 796 797 /* =========================================================================== 798 * Construct the Huffman tree for the bit lengths and return the index in 799 * bl_order of the last bit length code to send. 800 */ 801 local int build_bl_tree(s) 802 deflate_state *s; 803 { 804 int max_blindex; /* index of last bit length code of non zero freq */ 805 806 /* Determine the bit length frequencies for literal and distance trees */ 807 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 808 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 809 810 /* Build the bit length tree: */ 811 build_tree(s, (tree_desc *)(&(s->bl_desc))); 812 /* opt_len now includes the length of the tree representations, except 813 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. 814 */ 815 816 /* Determine the number of bit length codes to send. The pkzip format 817 * requires that at least 4 bit length codes be sent. (appnote.txt says 818 * 3 but the actual value used is 4.) 819 */ 820 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 821 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 822 } 823 /* Update opt_len to include the bit length tree and counts */ 824 s->opt_len += 3*(max_blindex+1) + 5+5+4; 825 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 826 s->opt_len, s->static_len)); 827 828 return max_blindex; 829 } 830 831 /* =========================================================================== 832 * Send the header for a block using dynamic Huffman trees: the counts, the 833 * lengths of the bit length codes, the literal tree and the distance tree. 834 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 835 */ 836 local void send_all_trees(s, lcodes, dcodes, blcodes) 837 deflate_state *s; 838 int lcodes, dcodes, blcodes; /* number of codes for each tree */ 839 { 840 int rank; /* index in bl_order */ 841 842 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 843 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 844 "too many codes"); 845 Tracev((stderr, "\nbl counts: ")); 846 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ 847 send_bits(s, dcodes-1, 5); 848 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ 849 for (rank = 0; rank < blcodes; rank++) { 850 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 851 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 852 } 853 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 854 855 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ 856 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 857 858 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ 859 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 860 } 861 862 /* =========================================================================== 863 * Send a stored block 864 */ 865 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) 866 deflate_state *s; 867 charf *buf; /* input block */ 868 ulg stored_len; /* length of input block */ 869 int last; /* one if this is the last block for a file */ 870 { 871 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ 872 #ifdef DEBUG 873 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 874 s->compressed_len += (stored_len + 4) << 3; 875 #endif 876 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ 877 } 878 879 /* =========================================================================== 880 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) 881 */ 882 void ZLIB_INTERNAL _tr_flush_bits(s) 883 deflate_state *s; 884 { 885 bi_flush(s); 886 } 887 888 /* =========================================================================== 889 * Send one empty static block to give enough lookahead for inflate. 890 * This takes 10 bits, of which 7 may remain in the bit buffer. 891 */ 892 void ZLIB_INTERNAL _tr_align(s) 893 deflate_state *s; 894 { 895 send_bits(s, STATIC_TREES<<1, 3); 896 send_code(s, END_BLOCK, static_ltree); 897 #ifdef DEBUG 898 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 899 #endif 900 bi_flush(s); 901 } 902 903 /* =========================================================================== 904 * Determine the best encoding for the current block: dynamic trees, static 905 * trees or store, and output the encoded block to the zip file. 906 */ 907 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) 908 deflate_state *s; 909 charf *buf; /* input block, or NULL if too old */ 910 ulg stored_len; /* length of input block */ 911 int last; /* one if this is the last block for a file */ 912 { 913 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 914 int max_blindex = 0; /* index of last bit length code of non zero freq */ 915 916 /* Build the Huffman trees unless a stored block is forced */ 917 if (s->level > 0) { 918 919 /* Check if the file is binary or text */ 920 if (s->strm->data_type == Z_UNKNOWN) 921 s->strm->data_type = detect_data_type(s); 922 923 /* Construct the literal and distance trees */ 924 build_tree(s, (tree_desc *)(&(s->l_desc))); 925 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 926 s->static_len)); 927 928 build_tree(s, (tree_desc *)(&(s->d_desc))); 929 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 930 s->static_len)); 931 /* At this point, opt_len and static_len are the total bit lengths of 932 * the compressed block data, excluding the tree representations. 933 */ 934 935 /* Build the bit length tree for the above two trees, and get the index 936 * in bl_order of the last bit length code to send. 937 */ 938 max_blindex = build_bl_tree(s); 939 940 /* Determine the best encoding. Compute the block lengths in bytes. */ 941 opt_lenb = (s->opt_len+3+7)>>3; 942 static_lenb = (s->static_len+3+7)>>3; 943 944 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 945 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 946 s->last_lit)); 947 948 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; 949 950 } else { 951 Assert(buf != (char*)0, "lost buf"); 952 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 953 } 954 955 #ifdef FORCE_STORED 956 if (buf != (char*)0) { /* force stored block */ 957 #else 958 if (stored_len+4 <= opt_lenb && buf != (char*)0) { 959 /* 4: two words for the lengths */ 960 #endif 961 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 962 * Otherwise we can't have processed more than WSIZE input bytes since 963 * the last block flush, because compression would have been 964 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 965 * transform a block into a stored block. 966 */ 967 _tr_stored_block(s, buf, stored_len, last); 968 969 #ifdef FORCE_STATIC 970 } else if (static_lenb >= 0) { /* force static trees */ 971 #else 972 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { 973 #endif 974 send_bits(s, (STATIC_TREES<<1)+last, 3); 975 compress_block(s, (const ct_data *)static_ltree, 976 (const ct_data *)static_dtree); 977 #ifdef DEBUG 978 s->compressed_len += 3 + s->static_len; 979 #endif 980 } else { 981 send_bits(s, (DYN_TREES<<1)+last, 3); 982 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, 983 max_blindex+1); 984 compress_block(s, (const ct_data *)s->dyn_ltree, 985 (const ct_data *)s->dyn_dtree); 986 #ifdef DEBUG 987 s->compressed_len += 3 + s->opt_len; 988 #endif 989 } 990 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 991 /* The above check is made mod 2^32, for files larger than 512 MB 992 * and uLong implemented on 32 bits. 993 */ 994 init_block(s); 995 996 if (last) { 997 bi_windup(s); 998 #ifdef DEBUG 999 s->compressed_len += 7; /* align on byte boundary */ 1000 #endif 1001 } 1002 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, 1003 s->compressed_len-7*last)); 1004 } 1005 1006 /* =========================================================================== 1007 * Save the match info and tally the frequency counts. Return true if 1008 * the current block must be flushed. 1009 */ 1010 int ZLIB_INTERNAL _tr_tally (s, dist, lc) 1011 deflate_state *s; 1012 unsigned dist; /* distance of matched string */ 1013 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ 1014 { 1015 s->d_buf[s->last_lit] = (ush)dist; 1016 s->l_buf[s->last_lit++] = (uch)lc; 1017 if (dist == 0) { 1018 /* lc is the unmatched char */ 1019 s->dyn_ltree[lc].Freq++; 1020 } else { 1021 s->matches++; 1022 /* Here, lc is the match length - MIN_MATCH */ 1023 dist--; /* dist = match distance - 1 */ 1024 Assert((ush)dist < (ush)MAX_DIST(s) && 1025 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 1026 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 1027 1028 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; 1029 s->dyn_dtree[d_code(dist)].Freq++; 1030 } 1031 1032 #ifdef TRUNCATE_BLOCK 1033 /* Try to guess if it is profitable to stop the current block here */ 1034 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { 1035 /* Compute an upper bound for the compressed length */ 1036 ulg out_length = (ulg)s->last_lit*8L; 1037 ulg in_length = (ulg)((long)s->strstart - s->block_start); 1038 int dcode; 1039 for (dcode = 0; dcode < D_CODES; dcode++) { 1040 out_length += (ulg)s->dyn_dtree[dcode].Freq * 1041 (5L+extra_dbits[dcode]); 1042 } 1043 out_length >>= 3; 1044 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", 1045 s->last_lit, in_length, out_length, 1046 100L - out_length*100L/in_length)); 1047 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; 1048 } 1049 #endif 1050 return (s->last_lit == s->lit_bufsize-1); 1051 /* We avoid equality with lit_bufsize because of wraparound at 64K 1052 * on 16 bit machines and because stored blocks are restricted to 1053 * 64K-1 bytes. 1054 */ 1055 } 1056 1057 /* =========================================================================== 1058 * Send the block data compressed using the given Huffman trees 1059 */ 1060 local void compress_block(s, ltree, dtree) 1061 deflate_state *s; 1062 const ct_data *ltree; /* literal tree */ 1063 const ct_data *dtree; /* distance tree */ 1064 { 1065 unsigned dist; /* distance of matched string */ 1066 int lc; /* match length or unmatched char (if dist == 0) */ 1067 unsigned lx = 0; /* running index in l_buf */ 1068 unsigned code; /* the code to send */ 1069 int extra; /* number of extra bits to send */ 1070 1071 if (s->last_lit != 0) do { 1072 dist = s->d_buf[lx]; 1073 lc = s->l_buf[lx++]; 1074 if (dist == 0) { 1075 send_code(s, lc, ltree); /* send a literal byte */ 1076 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 1077 } else { 1078 /* Here, lc is the match length - MIN_MATCH */ 1079 code = _length_code[lc]; 1080 send_code(s, code+LITERALS+1, ltree); /* send the length code */ 1081 extra = extra_lbits[code]; 1082 if (extra != 0) { 1083 lc -= base_length[code]; 1084 send_bits(s, lc, extra); /* send the extra length bits */ 1085 } 1086 dist--; /* dist is now the match distance - 1 */ 1087 code = d_code(dist); 1088 Assert (code < D_CODES, "bad d_code"); 1089 1090 send_code(s, code, dtree); /* send the distance code */ 1091 extra = extra_dbits[code]; 1092 if (extra != 0) { 1093 dist -= base_dist[code]; 1094 send_bits(s, dist, extra); /* send the extra distance bits */ 1095 } 1096 } /* literal or match pair ? */ 1097 1098 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ 1099 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, 1100 "pendingBuf overflow"); 1101 1102 } while (lx < s->last_lit); 1103 1104 send_code(s, END_BLOCK, ltree); 1105 } 1106 1107 /* =========================================================================== 1108 * Check if the data type is TEXT or BINARY, using the following algorithm: 1109 * - TEXT if the two conditions below are satisfied: 1110 * a) There are no non-portable control characters belonging to the 1111 * "black list" (0..6, 14..25, 28..31). 1112 * b) There is at least one printable character belonging to the 1113 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). 1114 * - BINARY otherwise. 1115 * - The following partially-portable control characters form a 1116 * "gray list" that is ignored in this detection algorithm: 1117 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). 1118 * IN assertion: the fields Freq of dyn_ltree are set. 1119 */ 1120 local int detect_data_type(s) 1121 deflate_state *s; 1122 { 1123 /* black_mask is the bit mask of black-listed bytes 1124 * set bits 0..6, 14..25, and 28..31 1125 * 0xf3ffc07f = binary 11110011111111111100000001111111 1126 */ 1127 unsigned long black_mask = 0xf3ffc07fUL; 1128 int n; 1129 1130 /* Check for non-textual ("black-listed") bytes. */ 1131 for (n = 0; n <= 31; n++, black_mask >>= 1) 1132 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) 1133 return Z_BINARY; 1134 1135 /* Check for textual ("white-listed") bytes. */ 1136 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 1137 || s->dyn_ltree[13].Freq != 0) 1138 return Z_TEXT; 1139 for (n = 32; n < LITERALS; n++) 1140 if (s->dyn_ltree[n].Freq != 0) 1141 return Z_TEXT; 1142 1143 /* There are no "black-listed" or "white-listed" bytes: 1144 * this stream either is empty or has tolerated ("gray-listed") bytes only. 1145 */ 1146 return Z_BINARY; 1147 } 1148 1149 /* =========================================================================== 1150 * Reverse the first len bits of a code, using straightforward code (a faster 1151 * method would use a table) 1152 * IN assertion: 1 <= len <= 15 1153 */ 1154 local unsigned bi_reverse(code, len) 1155 unsigned code; /* the value to invert */ 1156 int len; /* its bit length */ 1157 { 1158 register unsigned res = 0; 1159 do { 1160 res |= code & 1; 1161 code >>= 1, res <<= 1; 1162 } while (--len > 0); 1163 return res >> 1; 1164 } 1165 1166 /* =========================================================================== 1167 * Flush the bit buffer, keeping at most 7 bits in it. 1168 */ 1169 local void bi_flush(s) 1170 deflate_state *s; 1171 { 1172 if (s->bi_valid == 16) { 1173 put_short(s, s->bi_buf); 1174 s->bi_buf = 0; 1175 s->bi_valid = 0; 1176 } else if (s->bi_valid >= 8) { 1177 put_byte(s, (Byte)s->bi_buf); 1178 s->bi_buf >>= 8; 1179 s->bi_valid -= 8; 1180 } 1181 } 1182 1183 /* =========================================================================== 1184 * Flush the bit buffer and align the output on a byte boundary 1185 */ 1186 local void bi_windup(s) 1187 deflate_state *s; 1188 { 1189 if (s->bi_valid > 8) { 1190 put_short(s, s->bi_buf); 1191 } else if (s->bi_valid > 0) { 1192 put_byte(s, (Byte)s->bi_buf); 1193 } 1194 s->bi_buf = 0; 1195 s->bi_valid = 0; 1196 #ifdef DEBUG 1197 s->bits_sent = (s->bits_sent+7) & ~7; 1198 #endif 1199 } 1200 1201 /* =========================================================================== 1202 * Copy a stored block, storing first the length and its 1203 * one's complement if requested. 1204 */ 1205 local void copy_block(s, buf, len, header) 1206 deflate_state *s; 1207 charf *buf; /* the input data */ 1208 unsigned len; /* its length */ 1209 int header; /* true if block header must be written */ 1210 { 1211 bi_windup(s); /* align on byte boundary */ 1212 1213 if (header) { 1214 put_short(s, (ush)len); 1215 put_short(s, (ush)~len); 1216 #ifdef DEBUG 1217 s->bits_sent += 2*16; 1218 #endif 1219 } 1220 #ifdef DEBUG 1221 s->bits_sent += (ulg)len<<3; 1222 #endif 1223 while (len--) { 1224 put_byte(s, *buf++); 1225 } 1226 } 1227