1 Feature Detection {#tutorial_feature_detection} 2 ================= 3 4 Goal 5 ---- 6 7 In this tutorial you will learn how to: 8 9 - Use the @ref cv::FeatureDetector interface in order to find interest points. Specifically: 10 - Use the cv::xfeatures2d::SURF and its function cv::xfeatures2d::SURF::detect to perform the 11 detection process 12 - Use the function @ref cv::drawKeypoints to draw the detected keypoints 13 14 Theory 15 ------ 16 17 Code 18 ---- 19 20 This tutorial code's is shown lines below. 21 @code{.cpp} 22 #include <stdio.h> 23 #include <iostream> 24 #include "opencv2/core.hpp" 25 #include "opencv2/features2d.hpp" 26 #include "opencv2/xfeatures2d.hpp" 27 #include "opencv2/highgui.hpp" 28 29 using namespace cv; 30 using namespace cv::xfeatures2d; 31 32 void readme(); 33 34 /* @function main */ 35 int main( int argc, char** argv ) 36 { 37 if( argc != 3 ) 38 { readme(); return -1; } 39 40 Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE ); 41 Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE ); 42 43 if( !img_1.data || !img_2.data ) 44 { std::cout<< " --(!) Error reading images " << std::endl; return -1; } 45 46 //-- Step 1: Detect the keypoints using SURF Detector 47 int minHessian = 400; 48 49 Ptr<SURF> detector = SURF::create( minHessian ); 50 51 std::vector<KeyPoint> keypoints_1, keypoints_2; 52 53 detector->detect( img_1, keypoints_1 ); 54 detector->detect( img_2, keypoints_2 ); 55 56 //-- Draw keypoints 57 Mat img_keypoints_1; Mat img_keypoints_2; 58 59 drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); 60 drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); 61 62 //-- Show detected (drawn) keypoints 63 imshow("Keypoints 1", img_keypoints_1 ); 64 imshow("Keypoints 2", img_keypoints_2 ); 65 66 waitKey(0); 67 68 return 0; 69 } 70 71 /* @function readme */ 72 void readme() 73 { std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; } 74 @endcode 75 76 Explanation 77 ----------- 78 79 Result 80 ------ 81 82 -# Here is the result of the feature detection applied to the first image: 83 84 ![](images/Feature_Detection_Result_a.jpg) 85 86 -# And here is the result for the second image: 87 88 ![](images/Feature_Detection_Result_b.jpg) 89