Home | History | Annotate | Download | only in src
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "precomp.hpp"
     44 
     45 using namespace cv;
     46 using namespace cv::cuda;
     47 
     48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
     49 
     50 void cv::cuda::calcHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
     51 
     52 void cv::cuda::equalizeHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
     53 
     54 cv::Ptr<cv::cuda::CLAHE> cv::cuda::createCLAHE(double, cv::Size) { throw_no_cuda(); return cv::Ptr<cv::cuda::CLAHE>(); }
     55 
     56 void cv::cuda::evenLevels(OutputArray, int, int, int, Stream&) { throw_no_cuda(); }
     57 
     58 void cv::cuda::histEven(InputArray, OutputArray, InputOutputArray, int, int, int, Stream&) { throw_no_cuda(); }
     59 void cv::cuda::histEven(InputArray, GpuMat*, InputOutputArray, int*, int*, int*, Stream&) { throw_no_cuda(); }
     60 
     61 void cv::cuda::histRange(InputArray, OutputArray, InputArray, InputOutputArray, Stream&) { throw_no_cuda(); }
     62 void cv::cuda::histRange(InputArray, GpuMat*, const GpuMat*, InputOutputArray, Stream&) { throw_no_cuda(); }
     63 
     64 #else /* !defined (HAVE_CUDA) */
     65 
     66 ////////////////////////////////////////////////////////////////////////
     67 // calcHist
     68 
     69 namespace hist
     70 {
     71     void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream);
     72 }
     73 
     74 void cv::cuda::calcHist(InputArray _src, OutputArray _hist, Stream& stream)
     75 {
     76     GpuMat src = _src.getGpuMat();
     77 
     78     CV_Assert( src.type() == CV_8UC1 );
     79 
     80     _hist.create(1, 256, CV_32SC1);
     81     GpuMat hist = _hist.getGpuMat();
     82 
     83     hist.setTo(Scalar::all(0), stream);
     84 
     85     hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream));
     86 }
     87 
     88 ////////////////////////////////////////////////////////////////////////
     89 // equalizeHist
     90 
     91 namespace hist
     92 {
     93     void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream);
     94 }
     95 
     96 void cv::cuda::equalizeHist(InputArray _src, OutputArray _dst, Stream& _stream)
     97 {
     98     GpuMat src = _src.getGpuMat();
     99 
    100     CV_Assert( src.type() == CV_8UC1 );
    101 
    102     _dst.create(src.size(), src.type());
    103     GpuMat dst = _dst.getGpuMat();
    104 
    105     int intBufSize;
    106     nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) );
    107 
    108     size_t bufSize = intBufSize + 2 * 256 * sizeof(int);
    109 
    110     BufferPool pool(_stream);
    111     GpuMat buf = pool.getBuffer(1, static_cast<int>(bufSize), CV_8UC1);
    112 
    113     GpuMat hist(1, 256, CV_32SC1, buf.data);
    114     GpuMat lut(1, 256, CV_32SC1, buf.data + 256 * sizeof(int));
    115     GpuMat intBuf(1, intBufSize, CV_8UC1, buf.data + 2 * 256 * sizeof(int));
    116 
    117     cuda::calcHist(src, hist, _stream);
    118 
    119     cudaStream_t stream = StreamAccessor::getStream(_stream);
    120     NppStreamHandler h(stream);
    121 
    122     nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );
    123 
    124     hist::equalizeHist(src, dst, lut.ptr<int>(), stream);
    125 }
    126 
    127 ////////////////////////////////////////////////////////////////////////
    128 // CLAHE
    129 
    130 namespace clahe
    131 {
    132     void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream);
    133     void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream);
    134 }
    135 
    136 namespace
    137 {
    138     class CLAHE_Impl : public cv::cuda::CLAHE
    139     {
    140     public:
    141         CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
    142 
    143         void apply(cv::InputArray src, cv::OutputArray dst);
    144         void apply(InputArray src, OutputArray dst, Stream& stream);
    145 
    146         void setClipLimit(double clipLimit);
    147         double getClipLimit() const;
    148 
    149         void setTilesGridSize(cv::Size tileGridSize);
    150         cv::Size getTilesGridSize() const;
    151 
    152         void collectGarbage();
    153 
    154     private:
    155         double clipLimit_;
    156         int tilesX_;
    157         int tilesY_;
    158 
    159         GpuMat srcExt_;
    160         GpuMat lut_;
    161     };
    162 
    163     CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
    164         clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
    165     {
    166     }
    167 
    168     void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
    169     {
    170         apply(_src, _dst, Stream::Null());
    171     }
    172 
    173     void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s)
    174     {
    175         GpuMat src = _src.getGpuMat();
    176 
    177         CV_Assert( src.type() == CV_8UC1 );
    178 
    179         _dst.create( src.size(), src.type() );
    180         GpuMat dst = _dst.getGpuMat();
    181 
    182         const int histSize = 256;
    183 
    184         ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
    185 
    186         cudaStream_t stream = StreamAccessor::getStream(s);
    187 
    188         cv::Size tileSize;
    189         GpuMat srcForLut;
    190 
    191         if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
    192         {
    193             tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
    194             srcForLut = src;
    195         }
    196         else
    197         {
    198 #ifndef HAVE_OPENCV_CUDAARITHM
    199             throw_no_cuda();
    200 #else
    201             cv::cuda::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s);
    202 #endif
    203 
    204             tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
    205             srcForLut = srcExt_;
    206         }
    207 
    208         const int tileSizeTotal = tileSize.area();
    209         const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
    210 
    211         int clipLimit = 0;
    212         if (clipLimit_ > 0.0)
    213         {
    214             clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
    215             clipLimit = std::max(clipLimit, 1);
    216         }
    217 
    218         clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream);
    219 
    220         clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream);
    221     }
    222 
    223     void CLAHE_Impl::setClipLimit(double clipLimit)
    224     {
    225         clipLimit_ = clipLimit;
    226     }
    227 
    228     double CLAHE_Impl::getClipLimit() const
    229     {
    230         return clipLimit_;
    231     }
    232 
    233     void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
    234     {
    235         tilesX_ = tileGridSize.width;
    236         tilesY_ = tileGridSize.height;
    237     }
    238 
    239     cv::Size CLAHE_Impl::getTilesGridSize() const
    240     {
    241         return cv::Size(tilesX_, tilesY_);
    242     }
    243 
    244     void CLAHE_Impl::collectGarbage()
    245     {
    246         srcExt_.release();
    247         lut_.release();
    248     }
    249 }
    250 
    251 cv::Ptr<cv::cuda::CLAHE> cv::cuda::createCLAHE(double clipLimit, cv::Size tileGridSize)
    252 {
    253     return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height);
    254 }
    255 
    256 ////////////////////////////////////////////////////////////////////////
    257 // NPP Histogram
    258 
    259 namespace
    260 {
    261     typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
    262     typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);
    263 
    264     template<int SDEPTH> struct NppHistogramEvenFuncC1
    265     {
    266         typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
    267 
    268     typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
    269             int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
    270     };
    271     template<int SDEPTH> struct NppHistogramEvenFuncC4
    272     {
    273         typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
    274 
    275         typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
    276             Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
    277     };
    278 
    279     template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
    280     struct NppHistogramEvenC1
    281     {
    282         typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;
    283 
    284         static void hist(const GpuMat& src, OutputArray _hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
    285         {
    286             const int levels = histSize + 1;
    287 
    288             _hist.create(1, histSize, CV_32S);
    289             GpuMat hist = _hist.getGpuMat();
    290 
    291             NppiSize sz;
    292             sz.width = src.cols;
    293             sz.height = src.rows;
    294 
    295             int buf_size;
    296             get_buf_size(sz, levels, &buf_size);
    297 
    298             BufferPool pool(stream);
    299             GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
    300 
    301             NppStreamHandler h(stream);
    302 
    303             nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels,
    304                 lowerLevel, upperLevel, buf.ptr<Npp8u>()) );
    305 
    306             if (!stream)
    307                 cudaSafeCall( cudaDeviceSynchronize() );
    308         }
    309     };
    310     template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
    311     struct NppHistogramEvenC4
    312     {
    313         typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;
    314 
    315         static void hist(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
    316         {
    317             int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
    318             hist[0].create(1, histSize[0], CV_32S);
    319             hist[1].create(1, histSize[1], CV_32S);
    320             hist[2].create(1, histSize[2], CV_32S);
    321             hist[3].create(1, histSize[3], CV_32S);
    322 
    323             NppiSize sz;
    324             sz.width = src.cols;
    325             sz.height = src.rows;
    326 
    327             Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
    328 
    329             int buf_size;
    330             get_buf_size(sz, levels, &buf_size);
    331 
    332             BufferPool pool(stream);
    333             GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
    334 
    335             NppStreamHandler h(stream);
    336 
    337             nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buf.ptr<Npp8u>()) );
    338 
    339             if (!stream)
    340                 cudaSafeCall( cudaDeviceSynchronize() );
    341         }
    342     };
    343 
    344     template<int SDEPTH> struct NppHistogramRangeFuncC1
    345     {
    346         typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
    347         typedef Npp32s level_t;
    348         enum {LEVEL_TYPE_CODE=CV_32SC1};
    349 
    350         typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
    351             const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
    352     };
    353     template<> struct NppHistogramRangeFuncC1<CV_32F>
    354     {
    355         typedef Npp32f src_t;
    356         typedef Npp32f level_t;
    357         enum {LEVEL_TYPE_CODE=CV_32FC1};
    358 
    359         typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
    360             const Npp32f* pLevels, int nLevels, Npp8u* pBuffer);
    361     };
    362     template<int SDEPTH> struct NppHistogramRangeFuncC4
    363     {
    364         typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
    365         typedef Npp32s level_t;
    366         enum {LEVEL_TYPE_CODE=CV_32SC1};
    367 
    368         typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
    369             const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
    370     };
    371     template<> struct NppHistogramRangeFuncC4<CV_32F>
    372     {
    373         typedef Npp32f src_t;
    374         typedef Npp32f level_t;
    375         enum {LEVEL_TYPE_CODE=CV_32FC1};
    376 
    377         typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
    378             const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer);
    379     };
    380 
    381     template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
    382     struct NppHistogramRangeC1
    383     {
    384         typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
    385         typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
    386         enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
    387 
    388         static void hist(const GpuMat& src, OutputArray _hist, const GpuMat& levels, Stream& stream)
    389         {
    390             CV_Assert( levels.type() == LEVEL_TYPE_CODE && levels.rows == 1 );
    391 
    392             _hist.create(1, levels.cols - 1, CV_32S);
    393             GpuMat hist = _hist.getGpuMat();
    394 
    395             NppiSize sz;
    396             sz.width = src.cols;
    397             sz.height = src.rows;
    398 
    399             int buf_size;
    400             get_buf_size(sz, levels.cols, &buf_size);
    401 
    402             BufferPool pool(stream);
    403             GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
    404 
    405             NppStreamHandler h(stream);
    406 
    407             nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buf.ptr<Npp8u>()) );
    408 
    409             if (stream == 0)
    410                 cudaSafeCall( cudaDeviceSynchronize() );
    411         }
    412     };
    413     template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
    414     struct NppHistogramRangeC4
    415     {
    416         typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
    417         typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
    418         enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
    419 
    420         static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
    421         {
    422             CV_Assert( levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1 );
    423             CV_Assert( levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1 );
    424             CV_Assert( levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1 );
    425             CV_Assert( levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1 );
    426 
    427             hist[0].create(1, levels[0].cols - 1, CV_32S);
    428             hist[1].create(1, levels[1].cols - 1, CV_32S);
    429             hist[2].create(1, levels[2].cols - 1, CV_32S);
    430             hist[3].create(1, levels[3].cols - 1, CV_32S);
    431 
    432             Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
    433             int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
    434             const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()};
    435 
    436             NppiSize sz;
    437             sz.width = src.cols;
    438             sz.height = src.rows;
    439 
    440             int buf_size;
    441             get_buf_size(sz, nLevels, &buf_size);
    442 
    443             BufferPool pool(stream);
    444             GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
    445 
    446             NppStreamHandler h(stream);
    447 
    448             nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buf.ptr<Npp8u>()) );
    449 
    450             if (stream == 0)
    451                 cudaSafeCall( cudaDeviceSynchronize() );
    452         }
    453     };
    454 }
    455 
    456 void cv::cuda::evenLevels(OutputArray _levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream)
    457 {
    458     const int kind = _levels.kind();
    459 
    460     _levels.create(1, nLevels, CV_32SC1);
    461 
    462     Mat host_levels;
    463     if (kind == _InputArray::CUDA_GPU_MAT)
    464         host_levels.create(1, nLevels, CV_32SC1);
    465     else
    466         host_levels = _levels.getMat();
    467 
    468     nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
    469 
    470     if (kind == _InputArray::CUDA_GPU_MAT)
    471         _levels.getGpuMatRef().upload(host_levels, stream);
    472 }
    473 
    474 namespace hist
    475 {
    476     void histEven8u(PtrStepSzb src, int* hist, int binCount, int lowerLevel, int upperLevel, cudaStream_t stream);
    477 }
    478 
    479 namespace
    480 {
    481     void histEven8u(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream)
    482     {
    483         hist.create(1, histSize, CV_32S);
    484         cudaSafeCall( cudaMemsetAsync(hist.data, 0, histSize * sizeof(int), stream) );
    485         hist::histEven8u(src, hist.ptr<int>(), histSize, lowerLevel, upperLevel, stream);
    486     }
    487 }
    488 
    489 void cv::cuda::histEven(InputArray _src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
    490 {
    491     typedef void (*hist_t)(const GpuMat& src, OutputArray hist, int levels, int lowerLevel, int upperLevel, Stream& stream);
    492     static const hist_t hist_callers[] =
    493     {
    494         NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
    495         0,
    496         NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
    497         NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
    498     };
    499 
    500     GpuMat src = _src.getGpuMat();
    501 
    502     if (src.depth() == CV_8U && deviceSupports(FEATURE_SET_COMPUTE_30))
    503     {
    504         histEven8u(src, hist.getGpuMatRef(), histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
    505         return;
    506     }
    507 
    508     CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );
    509 
    510     hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream);
    511 }
    512 
    513 void cv::cuda::histEven(InputArray _src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
    514 {
    515     typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], int levels[4], int lowerLevel[4], int upperLevel[4], Stream& stream);
    516     static const hist_t hist_callers[] =
    517     {
    518         NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
    519         0,
    520         NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
    521         NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
    522     };
    523 
    524     GpuMat src = _src.getGpuMat();
    525 
    526     CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );
    527 
    528     hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream);
    529 }
    530 
    531 void cv::cuda::histRange(InputArray _src, OutputArray hist, InputArray _levels, Stream& stream)
    532 {
    533     typedef void (*hist_t)(const GpuMat& src, OutputArray hist, const GpuMat& levels, Stream& stream);
    534     static const hist_t hist_callers[] =
    535     {
    536         NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
    537         0,
    538         NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
    539         NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist,
    540         0,
    541         NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist
    542     };
    543 
    544     GpuMat src = _src.getGpuMat();
    545     GpuMat levels = _levels.getGpuMat();
    546 
    547     CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1 );
    548 
    549     hist_callers[src.depth()](src, hist, levels, stream);
    550 }
    551 
    552 void cv::cuda::histRange(InputArray _src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
    553 {
    554     typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream);
    555     static const hist_t hist_callers[] =
    556     {
    557         NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
    558         0,
    559         NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
    560         NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist,
    561         0,
    562         NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist
    563     };
    564 
    565     GpuMat src = _src.getGpuMat();
    566 
    567     CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4 );
    568 
    569     hist_callers[src.depth()](src, hist, levels, stream);
    570 }
    571 
    572 #endif /* !defined (HAVE_CUDA) */
    573