Home | History | Annotate | Download | only in perf
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "perf_precomp.hpp"
     44 
     45 using namespace std;
     46 using namespace testing;
     47 using namespace perf;
     48 
     49 DEF_PARAM_TEST_1(Image, string);
     50 
     51 struct GreedyLabeling
     52 {
     53     struct dot
     54     {
     55         int x;
     56         int y;
     57 
     58         static dot make(int i, int j)
     59         {
     60             dot d; d.x = i; d.y = j;
     61             return d;
     62         }
     63     };
     64 
     65     struct InInterval
     66     {
     67         InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {}
     68         const int lo, hi;
     69 
     70         bool operator() (const unsigned char a, const unsigned char b) const
     71         {
     72             int d = a - b;
     73             return lo <= d && d <= hi;
     74         }
     75 
     76     private:
     77         InInterval& operator=(const InInterval&);
     78 
     79 
     80     };
     81 
     82     GreedyLabeling(cv::Mat img)
     83     : image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {stack = new dot[image.cols * image.rows];}
     84 
     85     ~GreedyLabeling(){delete[] stack;}
     86 
     87     void operator() (cv::Mat labels) const
     88     {
     89         labels.setTo(cv::Scalar::all(-1));
     90         InInterval inInt(0, 2);
     91         int cc = -1;
     92 
     93         int* dist_labels = (int*)labels.data;
     94         int pitch = static_cast<int>(labels.step1());
     95 
     96         unsigned char* source = (unsigned char*)image.data;
     97         int width = image.cols;
     98         int height = image.rows;
     99 
    100         for (int j = 0; j < image.rows; ++j)
    101             for (int i = 0; i < image.cols; ++i)
    102             {
    103                 if (dist_labels[j * pitch + i] != -1) continue;
    104 
    105                 dot* top = stack;
    106                 dot p = dot::make(i, j);
    107                 cc++;
    108 
    109                 dist_labels[j * pitch + i] = cc;
    110 
    111                 while (top >= stack)
    112                 {
    113                     int*  dl = &dist_labels[p.y * pitch + p.x];
    114                     unsigned char* sp = &source[p.y * image.step1() + p.x];
    115 
    116                     dl[0] = cc;
    117 
    118                     //right
    119                     if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1]))
    120                         *top++ = dot::make(p.x + 1, p.y);
    121 
    122                     //left
    123                     if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1]))
    124                         *top++ = dot::make(p.x - 1, p.y);
    125 
    126                     //bottom
    127                     if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+image.step1()]))
    128                         *top++ = dot::make(p.x, p.y + 1);
    129 
    130                     //top
    131                     if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-static_cast<int>(image.step1())]))
    132                         *top++ = dot::make(p.x, p.y - 1);
    133 
    134                     p = *--top;
    135                 }
    136             }
    137     }
    138 
    139     cv::Mat image;
    140     cv::Mat _labels;
    141     dot* stack;
    142 };
    143 
    144 PERF_TEST_P(Image, DISABLED_Labeling_ConnectivityMask,
    145             Values<string>("gpu/labeling/aloe-disp.png"))
    146 {
    147     declare.time(1.0);
    148 
    149     const cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
    150     ASSERT_FALSE(image.empty());
    151 
    152     if (PERF_RUN_CUDA())
    153     {
    154         cv::cuda::GpuMat d_image(image);
    155         cv::cuda::GpuMat mask;
    156 
    157         TEST_CYCLE() cv::cuda::connectivityMask(d_image, mask, cv::Scalar::all(0), cv::Scalar::all(2));
    158 
    159         CUDA_SANITY_CHECK(mask);
    160     }
    161     else
    162     {
    163         FAIL_NO_CPU();
    164     }
    165 }
    166 
    167 PERF_TEST_P(Image, DISABLED_Labeling_ConnectedComponents,
    168             Values<string>("gpu/labeling/aloe-disp.png"))
    169 {
    170     declare.time(1.0);
    171 
    172     const cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
    173     ASSERT_FALSE(image.empty());
    174 
    175     if (PERF_RUN_CUDA())
    176     {
    177         cv::cuda::GpuMat d_mask;
    178         cv::cuda::connectivityMask(cv::cuda::GpuMat(image), d_mask, cv::Scalar::all(0), cv::Scalar::all(2));
    179 
    180         cv::cuda::GpuMat components;
    181 
    182         TEST_CYCLE() cv::cuda::labelComponents(d_mask, components);
    183 
    184         CUDA_SANITY_CHECK(components);
    185     }
    186     else
    187     {
    188         GreedyLabeling host(image);
    189 
    190         TEST_CYCLE() host(host._labels);
    191 
    192         cv::Mat components = host._labels;
    193         CPU_SANITY_CHECK(components);
    194     }
    195 }
    196