Home | History | Annotate | Download | only in perf
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "perf_precomp.hpp"
     44 
     45 using namespace std;
     46 using namespace testing;
     47 using namespace perf;
     48 
     49 ///////////////////////////////////////////////////////////////
     50 // HOG
     51 
     52 DEF_PARAM_TEST_1(Image, string);
     53 
     54 PERF_TEST_P(Image, ObjDetect_HOG,
     55             Values<string>("gpu/hog/road.png",
     56                            "gpu/caltech/image_00000009_0.png",
     57                            "gpu/caltech/image_00000032_0.png",
     58                            "gpu/caltech/image_00000165_0.png",
     59                            "gpu/caltech/image_00000261_0.png",
     60                            "gpu/caltech/image_00000469_0.png",
     61                            "gpu/caltech/image_00000527_0.png",
     62                            "gpu/caltech/image_00000574_0.png"))
     63 {
     64     declare.time(300.0);
     65 
     66     const cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
     67     ASSERT_FALSE(img.empty());
     68 
     69     if (PERF_RUN_CUDA())
     70     {
     71         const cv::cuda::GpuMat d_img(img);
     72         std::vector<cv::Rect> gpu_found_locations;
     73 
     74         cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
     75         d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector());
     76 
     77         TEST_CYCLE() d_hog->detectMultiScale(d_img, gpu_found_locations);
     78 
     79         SANITY_CHECK(gpu_found_locations);
     80     }
     81     else
     82     {
     83         std::vector<cv::Rect> cpu_found_locations;
     84 
     85         cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
     86 
     87         cv::HOGDescriptor hog;
     88         hog.setSVMDetector(d_hog->getDefaultPeopleDetector());
     89 
     90         TEST_CYCLE() hog.detectMultiScale(img, cpu_found_locations);
     91 
     92         SANITY_CHECK(cpu_found_locations);
     93     }
     94 }
     95 
     96 ///////////////////////////////////////////////////////////////
     97 // HaarClassifier
     98 
     99 typedef pair<string, string> pair_string;
    100 DEF_PARAM_TEST_1(ImageAndCascade, pair_string);
    101 
    102 PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
    103             Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
    104 {
    105     const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
    106     ASSERT_FALSE(img.empty());
    107 
    108     if (PERF_RUN_CUDA())
    109     {
    110         cv::Ptr<cv::cuda::CascadeClassifier> d_cascade =
    111                 cv::cuda::CascadeClassifier::create(perf::TestBase::getDataPath(GetParam().second));
    112 
    113         const cv::cuda::GpuMat d_img(img);
    114         cv::cuda::GpuMat objects_buffer;
    115 
    116         TEST_CYCLE() d_cascade->detectMultiScale(d_img, objects_buffer);
    117 
    118         std::vector<cv::Rect> gpu_rects;
    119         d_cascade->convert(objects_buffer, gpu_rects);
    120 
    121         cv::groupRectangles(gpu_rects, 3, 0.2);
    122         SANITY_CHECK(gpu_rects);
    123     }
    124     else
    125     {
    126         cv::CascadeClassifier cascade;
    127         ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
    128 
    129         std::vector<cv::Rect> cpu_rects;
    130 
    131         TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects);
    132 
    133         SANITY_CHECK(cpu_rects);
    134     }
    135 }
    136 
    137 ///////////////////////////////////////////////////////////////
    138 // LBP cascade
    139 
    140 PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
    141             Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
    142 {
    143     const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
    144     ASSERT_FALSE(img.empty());
    145 
    146     if (PERF_RUN_CUDA())
    147     {
    148         cv::Ptr<cv::cuda::CascadeClassifier> d_cascade =
    149                 cv::cuda::CascadeClassifier::create(perf::TestBase::getDataPath(GetParam().second));
    150 
    151         const cv::cuda::GpuMat d_img(img);
    152         cv::cuda::GpuMat objects_buffer;
    153 
    154         TEST_CYCLE() d_cascade->detectMultiScale(d_img, objects_buffer);
    155 
    156         std::vector<cv::Rect> gpu_rects;
    157         d_cascade->convert(objects_buffer, gpu_rects);
    158 
    159         cv::groupRectangles(gpu_rects, 3, 0.2);
    160         SANITY_CHECK(gpu_rects);
    161     }
    162     else
    163     {
    164         cv::CascadeClassifier cascade;
    165         ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
    166 
    167         std::vector<cv::Rect> cpu_rects;
    168 
    169         TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects);
    170 
    171         SANITY_CHECK(cpu_rects);
    172     }
    173 }
    174