1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #ifndef __OPENCV_CUDAOPTFLOW_HPP__ 44 #define __OPENCV_CUDAOPTFLOW_HPP__ 45 46 #ifndef __cplusplus 47 # error cudaoptflow.hpp header must be compiled as C++ 48 #endif 49 50 #include "opencv2/core/cuda.hpp" 51 52 /** 53 @addtogroup cuda 54 @{ 55 @defgroup cudaoptflow Optical Flow 56 @} 57 */ 58 59 namespace cv { namespace cuda { 60 61 //! @addtogroup cudaoptflow 62 //! @{ 63 64 // 65 // Interface 66 // 67 68 /** @brief Base interface for dense optical flow algorithms. 69 */ 70 class CV_EXPORTS DenseOpticalFlow : public Algorithm 71 { 72 public: 73 /** @brief Calculates a dense optical flow. 74 75 @param I0 first input image. 76 @param I1 second input image of the same size and the same type as I0. 77 @param flow computed flow image that has the same size as I0 and type CV_32FC2. 78 @param stream Stream for the asynchronous version. 79 */ 80 virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0; 81 }; 82 83 /** @brief Base interface for sparse optical flow algorithms. 84 */ 85 class CV_EXPORTS SparseOpticalFlow : public Algorithm 86 { 87 public: 88 /** @brief Calculates a sparse optical flow. 89 90 @param prevImg First input image. 91 @param nextImg Second input image of the same size and the same type as prevImg. 92 @param prevPts Vector of 2D points for which the flow needs to be found. 93 @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image. 94 @param status Output status vector. Each element of the vector is set to 1 if the 95 flow for the corresponding features has been found. Otherwise, it is set to 0. 96 @param err Optional output vector that contains error response for each point (inverse confidence). 97 @param stream Stream for the asynchronous version. 98 */ 99 virtual void calc(InputArray prevImg, InputArray nextImg, 100 InputArray prevPts, InputOutputArray nextPts, 101 OutputArray status, 102 OutputArray err = cv::noArray(), 103 Stream& stream = Stream::Null()) = 0; 104 }; 105 106 // 107 // BroxOpticalFlow 108 // 109 110 /** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004). 111 */ 112 class CV_EXPORTS BroxOpticalFlow : public DenseOpticalFlow 113 { 114 public: 115 virtual double getFlowSmoothness() const = 0; 116 virtual void setFlowSmoothness(double alpha) = 0; 117 118 virtual double getGradientConstancyImportance() const = 0; 119 virtual void setGradientConstancyImportance(double gamma) = 0; 120 121 virtual double getPyramidScaleFactor() const = 0; 122 virtual void setPyramidScaleFactor(double scale_factor) = 0; 123 124 //! number of lagged non-linearity iterations (inner loop) 125 virtual int getInnerIterations() const = 0; 126 virtual void setInnerIterations(int inner_iterations) = 0; 127 128 //! number of warping iterations (number of pyramid levels) 129 virtual int getOuterIterations() const = 0; 130 virtual void setOuterIterations(int outer_iterations) = 0; 131 132 //! number of linear system solver iterations 133 virtual int getSolverIterations() const = 0; 134 virtual void setSolverIterations(int solver_iterations) = 0; 135 136 static Ptr<BroxOpticalFlow> create( 137 double alpha = 0.197, 138 double gamma = 50.0, 139 double scale_factor = 0.8, 140 int inner_iterations = 5, 141 int outer_iterations = 150, 142 int solver_iterations = 10); 143 }; 144 145 // 146 // PyrLKOpticalFlow 147 // 148 149 /** @brief Class used for calculating a sparse optical flow. 150 151 The class can calculate an optical flow for a sparse feature set using the 152 iterative Lucas-Kanade method with pyramids. 153 154 @sa calcOpticalFlowPyrLK 155 156 @note 157 - An example of the Lucas Kanade optical flow algorithm can be found at 158 opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp 159 */ 160 class CV_EXPORTS SparsePyrLKOpticalFlow : public SparseOpticalFlow 161 { 162 public: 163 virtual Size getWinSize() const = 0; 164 virtual void setWinSize(Size winSize) = 0; 165 166 virtual int getMaxLevel() const = 0; 167 virtual void setMaxLevel(int maxLevel) = 0; 168 169 virtual int getNumIters() const = 0; 170 virtual void setNumIters(int iters) = 0; 171 172 virtual bool getUseInitialFlow() const = 0; 173 virtual void setUseInitialFlow(bool useInitialFlow) = 0; 174 175 static Ptr<SparsePyrLKOpticalFlow> create( 176 Size winSize = Size(21, 21), 177 int maxLevel = 3, 178 int iters = 30, 179 bool useInitialFlow = false); 180 }; 181 182 /** @brief Class used for calculating a dense optical flow. 183 184 The class can calculate an optical flow for a dense optical flow using the 185 iterative Lucas-Kanade method with pyramids. 186 */ 187 class CV_EXPORTS DensePyrLKOpticalFlow : public DenseOpticalFlow 188 { 189 public: 190 virtual Size getWinSize() const = 0; 191 virtual void setWinSize(Size winSize) = 0; 192 193 virtual int getMaxLevel() const = 0; 194 virtual void setMaxLevel(int maxLevel) = 0; 195 196 virtual int getNumIters() const = 0; 197 virtual void setNumIters(int iters) = 0; 198 199 virtual bool getUseInitialFlow() const = 0; 200 virtual void setUseInitialFlow(bool useInitialFlow) = 0; 201 202 static Ptr<DensePyrLKOpticalFlow> create( 203 Size winSize = Size(13, 13), 204 int maxLevel = 3, 205 int iters = 30, 206 bool useInitialFlow = false); 207 }; 208 209 // 210 // FarnebackOpticalFlow 211 // 212 213 /** @brief Class computing a dense optical flow using the Gunnar Farnebacks algorithm. 214 */ 215 class CV_EXPORTS FarnebackOpticalFlow : public DenseOpticalFlow 216 { 217 public: 218 virtual int getNumLevels() const = 0; 219 virtual void setNumLevels(int numLevels) = 0; 220 221 virtual double getPyrScale() const = 0; 222 virtual void setPyrScale(double pyrScale) = 0; 223 224 virtual bool getFastPyramids() const = 0; 225 virtual void setFastPyramids(bool fastPyramids) = 0; 226 227 virtual int getWinSize() const = 0; 228 virtual void setWinSize(int winSize) = 0; 229 230 virtual int getNumIters() const = 0; 231 virtual void setNumIters(int numIters) = 0; 232 233 virtual int getPolyN() const = 0; 234 virtual void setPolyN(int polyN) = 0; 235 236 virtual double getPolySigma() const = 0; 237 virtual void setPolySigma(double polySigma) = 0; 238 239 virtual int getFlags() const = 0; 240 virtual void setFlags(int flags) = 0; 241 242 static Ptr<FarnebackOpticalFlow> create( 243 int numLevels = 5, 244 double pyrScale = 0.5, 245 bool fastPyramids = false, 246 int winSize = 13, 247 int numIters = 10, 248 int polyN = 5, 249 double polySigma = 1.1, 250 int flags = 0); 251 }; 252 253 // 254 // OpticalFlowDual_TVL1 255 // 256 257 /** @brief Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method. 258 * 259 * @sa C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow". 260 * @sa Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation". 261 */ 262 class CV_EXPORTS OpticalFlowDual_TVL1 : public DenseOpticalFlow 263 { 264 public: 265 /** 266 * Time step of the numerical scheme. 267 */ 268 virtual double getTau() const = 0; 269 virtual void setTau(double tau) = 0; 270 271 /** 272 * Weight parameter for the data term, attachment parameter. 273 * This is the most relevant parameter, which determines the smoothness of the output. 274 * The smaller this parameter is, the smoother the solutions we obtain. 275 * It depends on the range of motions of the images, so its value should be adapted to each image sequence. 276 */ 277 virtual double getLambda() const = 0; 278 virtual void setLambda(double lambda) = 0; 279 280 /** 281 * Weight parameter for (u - v)^2, tightness parameter. 282 * It serves as a link between the attachment and the regularization terms. 283 * In theory, it should have a small value in order to maintain both parts in correspondence. 284 * The method is stable for a large range of values of this parameter. 285 */ 286 virtual double getGamma() const = 0; 287 virtual void setGamma(double gamma) = 0; 288 289 /** 290 * parameter used for motion estimation. It adds a variable allowing for illumination variations 291 * Set this parameter to 1. if you have varying illumination. 292 * See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging 293 * Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145 294 */ 295 virtual double getTheta() const = 0; 296 virtual void setTheta(double theta) = 0; 297 298 /** 299 * Number of scales used to create the pyramid of images. 300 */ 301 virtual int getNumScales() const = 0; 302 virtual void setNumScales(int nscales) = 0; 303 304 /** 305 * Number of warpings per scale. 306 * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale. 307 * This is a parameter that assures the stability of the method. 308 * It also affects the running time, so it is a compromise between speed and accuracy. 309 */ 310 virtual int getNumWarps() const = 0; 311 virtual void setNumWarps(int warps) = 0; 312 313 /** 314 * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time. 315 * A small value will yield more accurate solutions at the expense of a slower convergence. 316 */ 317 virtual double getEpsilon() const = 0; 318 virtual void setEpsilon(double epsilon) = 0; 319 320 /** 321 * Stopping criterion iterations number used in the numerical scheme. 322 */ 323 virtual int getNumIterations() const = 0; 324 virtual void setNumIterations(int iterations) = 0; 325 326 virtual double getScaleStep() const = 0; 327 virtual void setScaleStep(double scaleStep) = 0; 328 329 virtual bool getUseInitialFlow() const = 0; 330 virtual void setUseInitialFlow(bool useInitialFlow) = 0; 331 332 static Ptr<OpticalFlowDual_TVL1> create( 333 double tau = 0.25, 334 double lambda = 0.15, 335 double theta = 0.3, 336 int nscales = 5, 337 int warps = 5, 338 double epsilon = 0.01, 339 int iterations = 300, 340 double scaleStep = 0.8, 341 double gamma = 0.0, 342 bool useInitialFlow = false); 343 }; 344 345 //! @} 346 347 }} // namespace cv { namespace cuda { 348 349 #endif /* __OPENCV_CUDAOPTFLOW_HPP__ */ 350