Home | History | Annotate | Download | only in src
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "precomp.hpp"
     44 
     45 using namespace cv;
     46 using namespace cv::cuda;
     47 
     48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
     49 
     50 Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); }
     51 
     52 Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); }
     53 
     54 #else /* !defined (HAVE_CUDA) */
     55 
     56 namespace pyrlk
     57 {
     58     void loadConstants(int2 winSize, int iters, cudaStream_t stream);
     59 
     60     void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
     61                  int level, dim3 block, dim3 patch, cudaStream_t stream);
     62     void sparse4(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
     63                  int level, dim3 block, dim3 patch, cudaStream_t stream);
     64 
     65     void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV,
     66                PtrStepSzf err, int2 winSize, cudaStream_t stream);
     67 }
     68 
     69 namespace
     70 {
     71     class PyrLKOpticalFlowBase
     72     {
     73     public:
     74         PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow);
     75 
     76         void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
     77             GpuMat& status, GpuMat* err, Stream& stream);
     78 
     79         void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream);
     80 
     81     protected:
     82         Size winSize_;
     83         int maxLevel_;
     84         int iters_;
     85         bool useInitialFlow_;
     86 
     87     private:
     88         std::vector<GpuMat> prevPyr_;
     89         std::vector<GpuMat> nextPyr_;
     90     };
     91 
     92     PyrLKOpticalFlowBase::PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
     93         winSize_(winSize), maxLevel_(maxLevel), iters_(iters), useInitialFlow_(useInitialFlow)
     94     {
     95     }
     96 
     97     void calcPatchSize(Size winSize, dim3& block, dim3& patch)
     98     {
     99         if (winSize.width > 32 && winSize.width > 2 * winSize.height)
    100         {
    101             block.x = deviceSupports(FEATURE_SET_COMPUTE_12) ? 32 : 16;
    102             block.y = 8;
    103         }
    104         else
    105         {
    106             block.x = 16;
    107             block.y = deviceSupports(FEATURE_SET_COMPUTE_12) ? 16 : 8;
    108         }
    109 
    110         patch.x = (winSize.width  + block.x - 1) / block.x;
    111         patch.y = (winSize.height + block.y - 1) / block.y;
    112 
    113         block.z = patch.z = 1;
    114     }
    115 
    116     void PyrLKOpticalFlowBase::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err, Stream& stream)
    117     {
    118         if (prevPts.empty())
    119         {
    120             nextPts.release();
    121             status.release();
    122             if (err) err->release();
    123             return;
    124         }
    125 
    126         dim3 block, patch;
    127         calcPatchSize(winSize_, block, patch);
    128 
    129         CV_Assert( prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4 );
    130         CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() );
    131         CV_Assert( maxLevel_ >= 0 );
    132         CV_Assert( winSize_.width > 2 && winSize_.height > 2 );
    133         CV_Assert( patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6 );
    134         CV_Assert( prevPts.rows == 1 && prevPts.type() == CV_32FC2 );
    135 
    136         if (useInitialFlow_)
    137             CV_Assert( nextPts.size() == prevPts.size() && nextPts.type() == prevPts.type() );
    138         else
    139             ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts);
    140 
    141         GpuMat temp1 = (useInitialFlow_ ? nextPts : prevPts).reshape(1);
    142         GpuMat temp2 = nextPts.reshape(1);
    143         cuda::multiply(temp1, Scalar::all(1.0 / (1 << maxLevel_) / 2.0), temp2, 1, -1, stream);
    144 
    145         ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
    146         status.setTo(Scalar::all(1), stream);
    147 
    148         if (err)
    149             ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
    150 
    151         // build the image pyramids.
    152 
    153         BufferPool pool(stream);
    154 
    155         prevPyr_.resize(maxLevel_ + 1);
    156         nextPyr_.resize(maxLevel_ + 1);
    157 
    158         int cn = prevImg.channels();
    159 
    160         if (cn == 1 || cn == 4)
    161         {
    162             prevImg.convertTo(prevPyr_[0], CV_32F, stream);
    163             nextImg.convertTo(nextPyr_[0], CV_32F, stream);
    164         }
    165         else
    166         {
    167             GpuMat buf = pool.getBuffer(prevImg.size(), CV_MAKE_TYPE(prevImg.depth(), 4));
    168 
    169             cuda::cvtColor(prevImg, buf, COLOR_BGR2BGRA, 0, stream);
    170             buf.convertTo(prevPyr_[0], CV_32F, stream);
    171 
    172             cuda::cvtColor(nextImg, buf, COLOR_BGR2BGRA, 0, stream);
    173             buf.convertTo(nextPyr_[0], CV_32F, stream);
    174         }
    175 
    176         for (int level = 1; level <= maxLevel_; ++level)
    177         {
    178             cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream);
    179             cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream);
    180         }
    181 
    182         pyrlk::loadConstants(make_int2(winSize_.width, winSize_.height), iters_, StreamAccessor::getStream(stream));
    183 
    184         for (int level = maxLevel_; level >= 0; level--)
    185         {
    186             if (cn == 1)
    187             {
    188                 pyrlk::sparse1(prevPyr_[level], nextPyr_[level],
    189                                prevPts.ptr<float2>(), nextPts.ptr<float2>(),
    190                                status.ptr(),
    191                                level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
    192                                level, block, patch,
    193                                StreamAccessor::getStream(stream));
    194             }
    195             else
    196             {
    197                 pyrlk::sparse4(prevPyr_[level], nextPyr_[level],
    198                                prevPts.ptr<float2>(), nextPts.ptr<float2>(),
    199                                status.ptr(),
    200                                level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
    201                                level, block, patch,
    202                                StreamAccessor::getStream(stream));
    203             }
    204         }
    205     }
    206 
    207     void PyrLKOpticalFlowBase::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream)
    208     {
    209         CV_Assert( prevImg.type() == CV_8UC1 );
    210         CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() );
    211         CV_Assert( maxLevel_ >= 0 );
    212         CV_Assert( winSize_.width > 2 && winSize_.height > 2 );
    213 
    214         // build the image pyramids.
    215 
    216         prevPyr_.resize(maxLevel_ + 1);
    217         nextPyr_.resize(maxLevel_ + 1);
    218 
    219         prevPyr_[0] = prevImg;
    220         nextImg.convertTo(nextPyr_[0], CV_32F, stream);
    221 
    222         for (int level = 1; level <= maxLevel_; ++level)
    223         {
    224             cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream);
    225             cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream);
    226         }
    227 
    228         BufferPool pool(stream);
    229 
    230         GpuMat uPyr[] = {
    231             pool.getBuffer(prevImg.size(), CV_32FC1),
    232             pool.getBuffer(prevImg.size(), CV_32FC1),
    233         };
    234         GpuMat vPyr[] = {
    235             pool.getBuffer(prevImg.size(), CV_32FC1),
    236             pool.getBuffer(prevImg.size(), CV_32FC1),
    237         };
    238 
    239         uPyr[0].setTo(Scalar::all(0), stream);
    240         vPyr[0].setTo(Scalar::all(0), stream);
    241         uPyr[1].setTo(Scalar::all(0), stream);
    242         vPyr[1].setTo(Scalar::all(0), stream);
    243 
    244         int2 winSize2i = make_int2(winSize_.width, winSize_.height);
    245         pyrlk::loadConstants(winSize2i, iters_, StreamAccessor::getStream(stream));
    246 
    247         int idx = 0;
    248 
    249         for (int level = maxLevel_; level >= 0; level--)
    250         {
    251             int idx2 = (idx + 1) & 1;
    252 
    253             pyrlk::dense(prevPyr_[level], nextPyr_[level],
    254                          uPyr[idx], vPyr[idx], uPyr[idx2], vPyr[idx2],
    255                          PtrStepSzf(), winSize2i,
    256                          StreamAccessor::getStream(stream));
    257 
    258             if (level > 0)
    259                 idx = idx2;
    260         }
    261 
    262         uPyr[idx].copyTo(u, stream);
    263         vPyr[idx].copyTo(v, stream);
    264     }
    265 
    266     class SparsePyrLKOpticalFlowImpl : public SparsePyrLKOpticalFlow, private PyrLKOpticalFlowBase
    267     {
    268     public:
    269         SparsePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
    270             PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow)
    271         {
    272         }
    273 
    274         virtual Size getWinSize() const { return winSize_; }
    275         virtual void setWinSize(Size winSize) { winSize_ = winSize; }
    276 
    277         virtual int getMaxLevel() const { return maxLevel_; }
    278         virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; }
    279 
    280         virtual int getNumIters() const { return iters_; }
    281         virtual void setNumIters(int iters) { iters_ = iters; }
    282 
    283         virtual bool getUseInitialFlow() const { return useInitialFlow_; }
    284         virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }
    285 
    286         virtual void calc(InputArray _prevImg, InputArray _nextImg,
    287                           InputArray _prevPts, InputOutputArray _nextPts,
    288                           OutputArray _status,
    289                           OutputArray _err,
    290                           Stream& stream)
    291         {
    292             const GpuMat prevImg = _prevImg.getGpuMat();
    293             const GpuMat nextImg = _nextImg.getGpuMat();
    294             const GpuMat prevPts = _prevPts.getGpuMat();
    295             GpuMat& nextPts = _nextPts.getGpuMatRef();
    296             GpuMat& status = _status.getGpuMatRef();
    297             GpuMat* err = _err.needed() ? &(_err.getGpuMatRef()) : NULL;
    298 
    299             sparse(prevImg, nextImg, prevPts, nextPts, status, err, stream);
    300         }
    301     };
    302 
    303     class DensePyrLKOpticalFlowImpl : public DensePyrLKOpticalFlow, private PyrLKOpticalFlowBase
    304     {
    305     public:
    306         DensePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
    307             PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow)
    308         {
    309         }
    310 
    311         virtual Size getWinSize() const { return winSize_; }
    312         virtual void setWinSize(Size winSize) { winSize_ = winSize; }
    313 
    314         virtual int getMaxLevel() const { return maxLevel_; }
    315         virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; }
    316 
    317         virtual int getNumIters() const { return iters_; }
    318         virtual void setNumIters(int iters) { iters_ = iters; }
    319 
    320         virtual bool getUseInitialFlow() const { return useInitialFlow_; }
    321         virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }
    322 
    323         virtual void calc(InputArray _prevImg, InputArray _nextImg, InputOutputArray _flow, Stream& stream)
    324         {
    325             const GpuMat prevImg = _prevImg.getGpuMat();
    326             const GpuMat nextImg = _nextImg.getGpuMat();
    327 
    328             BufferPool pool(stream);
    329             GpuMat u = pool.getBuffer(prevImg.size(), CV_32FC1);
    330             GpuMat v = pool.getBuffer(prevImg.size(), CV_32FC1);
    331 
    332             dense(prevImg, nextImg, u, v, stream);
    333 
    334             GpuMat flows[] = {u, v};
    335             cuda::merge(flows, 2, _flow, stream);
    336         }
    337     };
    338 }
    339 
    340 Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow)
    341 {
    342     return makePtr<SparsePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow);
    343 }
    344 
    345 Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow)
    346 {
    347     return makePtr<DensePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow);
    348 }
    349 
    350 #endif /* !defined (HAVE_CUDA) */
    351