1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #include "precomp.hpp" 44 45 using namespace cv; 46 using namespace cv::cuda; 47 48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) 49 50 Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); } 51 52 Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); } 53 54 #else /* !defined (HAVE_CUDA) */ 55 56 namespace pyrlk 57 { 58 void loadConstants(int2 winSize, int iters, cudaStream_t stream); 59 60 void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, 61 int level, dim3 block, dim3 patch, cudaStream_t stream); 62 void sparse4(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, 63 int level, dim3 block, dim3 patch, cudaStream_t stream); 64 65 void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV, 66 PtrStepSzf err, int2 winSize, cudaStream_t stream); 67 } 68 69 namespace 70 { 71 class PyrLKOpticalFlowBase 72 { 73 public: 74 PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow); 75 76 void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, 77 GpuMat& status, GpuMat* err, Stream& stream); 78 79 void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream); 80 81 protected: 82 Size winSize_; 83 int maxLevel_; 84 int iters_; 85 bool useInitialFlow_; 86 87 private: 88 std::vector<GpuMat> prevPyr_; 89 std::vector<GpuMat> nextPyr_; 90 }; 91 92 PyrLKOpticalFlowBase::PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow) : 93 winSize_(winSize), maxLevel_(maxLevel), iters_(iters), useInitialFlow_(useInitialFlow) 94 { 95 } 96 97 void calcPatchSize(Size winSize, dim3& block, dim3& patch) 98 { 99 if (winSize.width > 32 && winSize.width > 2 * winSize.height) 100 { 101 block.x = deviceSupports(FEATURE_SET_COMPUTE_12) ? 32 : 16; 102 block.y = 8; 103 } 104 else 105 { 106 block.x = 16; 107 block.y = deviceSupports(FEATURE_SET_COMPUTE_12) ? 16 : 8; 108 } 109 110 patch.x = (winSize.width + block.x - 1) / block.x; 111 patch.y = (winSize.height + block.y - 1) / block.y; 112 113 block.z = patch.z = 1; 114 } 115 116 void PyrLKOpticalFlowBase::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err, Stream& stream) 117 { 118 if (prevPts.empty()) 119 { 120 nextPts.release(); 121 status.release(); 122 if (err) err->release(); 123 return; 124 } 125 126 dim3 block, patch; 127 calcPatchSize(winSize_, block, patch); 128 129 CV_Assert( prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4 ); 130 CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() ); 131 CV_Assert( maxLevel_ >= 0 ); 132 CV_Assert( winSize_.width > 2 && winSize_.height > 2 ); 133 CV_Assert( patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6 ); 134 CV_Assert( prevPts.rows == 1 && prevPts.type() == CV_32FC2 ); 135 136 if (useInitialFlow_) 137 CV_Assert( nextPts.size() == prevPts.size() && nextPts.type() == prevPts.type() ); 138 else 139 ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts); 140 141 GpuMat temp1 = (useInitialFlow_ ? nextPts : prevPts).reshape(1); 142 GpuMat temp2 = nextPts.reshape(1); 143 cuda::multiply(temp1, Scalar::all(1.0 / (1 << maxLevel_) / 2.0), temp2, 1, -1, stream); 144 145 ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); 146 status.setTo(Scalar::all(1), stream); 147 148 if (err) 149 ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); 150 151 // build the image pyramids. 152 153 BufferPool pool(stream); 154 155 prevPyr_.resize(maxLevel_ + 1); 156 nextPyr_.resize(maxLevel_ + 1); 157 158 int cn = prevImg.channels(); 159 160 if (cn == 1 || cn == 4) 161 { 162 prevImg.convertTo(prevPyr_[0], CV_32F, stream); 163 nextImg.convertTo(nextPyr_[0], CV_32F, stream); 164 } 165 else 166 { 167 GpuMat buf = pool.getBuffer(prevImg.size(), CV_MAKE_TYPE(prevImg.depth(), 4)); 168 169 cuda::cvtColor(prevImg, buf, COLOR_BGR2BGRA, 0, stream); 170 buf.convertTo(prevPyr_[0], CV_32F, stream); 171 172 cuda::cvtColor(nextImg, buf, COLOR_BGR2BGRA, 0, stream); 173 buf.convertTo(nextPyr_[0], CV_32F, stream); 174 } 175 176 for (int level = 1; level <= maxLevel_; ++level) 177 { 178 cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream); 179 cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream); 180 } 181 182 pyrlk::loadConstants(make_int2(winSize_.width, winSize_.height), iters_, StreamAccessor::getStream(stream)); 183 184 for (int level = maxLevel_; level >= 0; level--) 185 { 186 if (cn == 1) 187 { 188 pyrlk::sparse1(prevPyr_[level], nextPyr_[level], 189 prevPts.ptr<float2>(), nextPts.ptr<float2>(), 190 status.ptr(), 191 level == 0 && err ? err->ptr<float>() : 0, prevPts.cols, 192 level, block, patch, 193 StreamAccessor::getStream(stream)); 194 } 195 else 196 { 197 pyrlk::sparse4(prevPyr_[level], nextPyr_[level], 198 prevPts.ptr<float2>(), nextPts.ptr<float2>(), 199 status.ptr(), 200 level == 0 && err ? err->ptr<float>() : 0, prevPts.cols, 201 level, block, patch, 202 StreamAccessor::getStream(stream)); 203 } 204 } 205 } 206 207 void PyrLKOpticalFlowBase::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream) 208 { 209 CV_Assert( prevImg.type() == CV_8UC1 ); 210 CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() ); 211 CV_Assert( maxLevel_ >= 0 ); 212 CV_Assert( winSize_.width > 2 && winSize_.height > 2 ); 213 214 // build the image pyramids. 215 216 prevPyr_.resize(maxLevel_ + 1); 217 nextPyr_.resize(maxLevel_ + 1); 218 219 prevPyr_[0] = prevImg; 220 nextImg.convertTo(nextPyr_[0], CV_32F, stream); 221 222 for (int level = 1; level <= maxLevel_; ++level) 223 { 224 cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream); 225 cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream); 226 } 227 228 BufferPool pool(stream); 229 230 GpuMat uPyr[] = { 231 pool.getBuffer(prevImg.size(), CV_32FC1), 232 pool.getBuffer(prevImg.size(), CV_32FC1), 233 }; 234 GpuMat vPyr[] = { 235 pool.getBuffer(prevImg.size(), CV_32FC1), 236 pool.getBuffer(prevImg.size(), CV_32FC1), 237 }; 238 239 uPyr[0].setTo(Scalar::all(0), stream); 240 vPyr[0].setTo(Scalar::all(0), stream); 241 uPyr[1].setTo(Scalar::all(0), stream); 242 vPyr[1].setTo(Scalar::all(0), stream); 243 244 int2 winSize2i = make_int2(winSize_.width, winSize_.height); 245 pyrlk::loadConstants(winSize2i, iters_, StreamAccessor::getStream(stream)); 246 247 int idx = 0; 248 249 for (int level = maxLevel_; level >= 0; level--) 250 { 251 int idx2 = (idx + 1) & 1; 252 253 pyrlk::dense(prevPyr_[level], nextPyr_[level], 254 uPyr[idx], vPyr[idx], uPyr[idx2], vPyr[idx2], 255 PtrStepSzf(), winSize2i, 256 StreamAccessor::getStream(stream)); 257 258 if (level > 0) 259 idx = idx2; 260 } 261 262 uPyr[idx].copyTo(u, stream); 263 vPyr[idx].copyTo(v, stream); 264 } 265 266 class SparsePyrLKOpticalFlowImpl : public SparsePyrLKOpticalFlow, private PyrLKOpticalFlowBase 267 { 268 public: 269 SparsePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) : 270 PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow) 271 { 272 } 273 274 virtual Size getWinSize() const { return winSize_; } 275 virtual void setWinSize(Size winSize) { winSize_ = winSize; } 276 277 virtual int getMaxLevel() const { return maxLevel_; } 278 virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; } 279 280 virtual int getNumIters() const { return iters_; } 281 virtual void setNumIters(int iters) { iters_ = iters; } 282 283 virtual bool getUseInitialFlow() const { return useInitialFlow_; } 284 virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; } 285 286 virtual void calc(InputArray _prevImg, InputArray _nextImg, 287 InputArray _prevPts, InputOutputArray _nextPts, 288 OutputArray _status, 289 OutputArray _err, 290 Stream& stream) 291 { 292 const GpuMat prevImg = _prevImg.getGpuMat(); 293 const GpuMat nextImg = _nextImg.getGpuMat(); 294 const GpuMat prevPts = _prevPts.getGpuMat(); 295 GpuMat& nextPts = _nextPts.getGpuMatRef(); 296 GpuMat& status = _status.getGpuMatRef(); 297 GpuMat* err = _err.needed() ? &(_err.getGpuMatRef()) : NULL; 298 299 sparse(prevImg, nextImg, prevPts, nextPts, status, err, stream); 300 } 301 }; 302 303 class DensePyrLKOpticalFlowImpl : public DensePyrLKOpticalFlow, private PyrLKOpticalFlowBase 304 { 305 public: 306 DensePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) : 307 PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow) 308 { 309 } 310 311 virtual Size getWinSize() const { return winSize_; } 312 virtual void setWinSize(Size winSize) { winSize_ = winSize; } 313 314 virtual int getMaxLevel() const { return maxLevel_; } 315 virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; } 316 317 virtual int getNumIters() const { return iters_; } 318 virtual void setNumIters(int iters) { iters_ = iters; } 319 320 virtual bool getUseInitialFlow() const { return useInitialFlow_; } 321 virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; } 322 323 virtual void calc(InputArray _prevImg, InputArray _nextImg, InputOutputArray _flow, Stream& stream) 324 { 325 const GpuMat prevImg = _prevImg.getGpuMat(); 326 const GpuMat nextImg = _nextImg.getGpuMat(); 327 328 BufferPool pool(stream); 329 GpuMat u = pool.getBuffer(prevImg.size(), CV_32FC1); 330 GpuMat v = pool.getBuffer(prevImg.size(), CV_32FC1); 331 332 dense(prevImg, nextImg, u, v, stream); 333 334 GpuMat flows[] = {u, v}; 335 cuda::merge(flows, 2, _flow, stream); 336 } 337 }; 338 } 339 340 Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow) 341 { 342 return makePtr<SparsePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow); 343 } 344 345 Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow) 346 { 347 return makePtr<DensePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow); 348 } 349 350 #endif /* !defined (HAVE_CUDA) */ 351