Home | History | Annotate | Download | only in test
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "test_precomp.hpp"
     44 
     45 #ifdef HAVE_CUDA
     46 
     47 using namespace cvtest;
     48 
     49 //////////////////////////////////////////////////////
     50 // BroxOpticalFlow
     51 
     52 //#define BROX_DUMP
     53 
     54 struct BroxOpticalFlow : testing::TestWithParam<cv::cuda::DeviceInfo>
     55 {
     56     cv::cuda::DeviceInfo devInfo;
     57 
     58     virtual void SetUp()
     59     {
     60         devInfo = GetParam();
     61 
     62         cv::cuda::setDevice(devInfo.deviceID());
     63     }
     64 };
     65 
     66 CUDA_TEST_P(BroxOpticalFlow, Regression)
     67 {
     68     cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
     69     ASSERT_FALSE(frame0.empty());
     70 
     71     cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
     72     ASSERT_FALSE(frame1.empty());
     73 
     74     cv::Ptr<cv::cuda::BroxOpticalFlow> brox =
     75             cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
     76                                               10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
     77 
     78     cv::cuda::GpuMat flow;
     79     brox->calc(loadMat(frame0), loadMat(frame1), flow);
     80 
     81     cv::cuda::GpuMat flows[2];
     82     cv::cuda::split(flow, flows);
     83 
     84     cv::cuda::GpuMat u = flows[0];
     85     cv::cuda::GpuMat v = flows[1];
     86 
     87     std::string fname(cvtest::TS::ptr()->get_data_path());
     88     if (devInfo.majorVersion() >= 2)
     89         fname += "opticalflow/brox_optical_flow_cc20.bin";
     90     else
     91         fname += "opticalflow/brox_optical_flow.bin";
     92 
     93 #ifndef BROX_DUMP
     94     std::ifstream f(fname.c_str(), std::ios_base::binary);
     95 
     96     int rows, cols;
     97 
     98     f.read((char*) &rows, sizeof(rows));
     99     f.read((char*) &cols, sizeof(cols));
    100 
    101     cv::Mat u_gold(rows, cols, CV_32FC1);
    102 
    103     for (int i = 0; i < u_gold.rows; ++i)
    104         f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
    105 
    106     cv::Mat v_gold(rows, cols, CV_32FC1);
    107 
    108     for (int i = 0; i < v_gold.rows; ++i)
    109         f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
    110 
    111     EXPECT_MAT_SIMILAR(u_gold, u, 1e-3);
    112     EXPECT_MAT_SIMILAR(v_gold, v, 1e-3);
    113 #else
    114     std::ofstream f(fname.c_str(), std::ios_base::binary);
    115 
    116     f.write((char*) &u.rows, sizeof(u.rows));
    117     f.write((char*) &u.cols, sizeof(u.cols));
    118 
    119     cv::Mat h_u(u);
    120     cv::Mat h_v(v);
    121 
    122     for (int i = 0; i < u.rows; ++i)
    123         f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
    124 
    125     for (int i = 0; i < v.rows; ++i)
    126         f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
    127 #endif
    128 }
    129 
    130 CUDA_TEST_P(BroxOpticalFlow, OpticalFlowNan)
    131 {
    132     cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
    133     ASSERT_FALSE(frame0.empty());
    134 
    135     cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
    136     ASSERT_FALSE(frame1.empty());
    137 
    138     cv::Mat r_frame0, r_frame1;
    139     cv::resize(frame0, r_frame0, cv::Size(1380,1000));
    140     cv::resize(frame1, r_frame1, cv::Size(1380,1000));
    141 
    142     cv::Ptr<cv::cuda::BroxOpticalFlow> brox =
    143             cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
    144                                               10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
    145 
    146     cv::cuda::GpuMat flow;
    147     brox->calc(loadMat(frame0), loadMat(frame1), flow);
    148 
    149     cv::cuda::GpuMat flows[2];
    150     cv::cuda::split(flow, flows);
    151 
    152     cv::cuda::GpuMat u = flows[0];
    153     cv::cuda::GpuMat v = flows[1];
    154 
    155     cv::Mat h_u, h_v;
    156     u.download(h_u);
    157     v.download(h_v);
    158 
    159     EXPECT_TRUE(cv::checkRange(h_u));
    160     EXPECT_TRUE(cv::checkRange(h_v));
    161 };
    162 
    163 INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, BroxOpticalFlow, ALL_DEVICES);
    164 
    165 //////////////////////////////////////////////////////
    166 // PyrLKOpticalFlow
    167 
    168 namespace
    169 {
    170     IMPLEMENT_PARAM_CLASS(UseGray, bool)
    171 }
    172 
    173 PARAM_TEST_CASE(PyrLKOpticalFlow, cv::cuda::DeviceInfo, UseGray)
    174 {
    175     cv::cuda::DeviceInfo devInfo;
    176     bool useGray;
    177 
    178     virtual void SetUp()
    179     {
    180         devInfo = GET_PARAM(0);
    181         useGray = GET_PARAM(1);
    182 
    183         cv::cuda::setDevice(devInfo.deviceID());
    184     }
    185 };
    186 
    187 CUDA_TEST_P(PyrLKOpticalFlow, Sparse)
    188 {
    189     cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
    190     ASSERT_FALSE(frame0.empty());
    191 
    192     cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
    193     ASSERT_FALSE(frame1.empty());
    194 
    195     cv::Mat gray_frame;
    196     if (useGray)
    197         gray_frame = frame0;
    198     else
    199         cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
    200 
    201     std::vector<cv::Point2f> pts;
    202     cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
    203 
    204     cv::cuda::GpuMat d_pts;
    205     cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
    206     d_pts.upload(pts_mat);
    207 
    208     cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> pyrLK =
    209             cv::cuda::SparsePyrLKOpticalFlow::create();
    210 
    211     cv::cuda::GpuMat d_nextPts;
    212     cv::cuda::GpuMat d_status;
    213     pyrLK->calc(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status);
    214 
    215     std::vector<cv::Point2f> nextPts(d_nextPts.cols);
    216     cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*) &nextPts[0]);
    217     d_nextPts.download(nextPts_mat);
    218 
    219     std::vector<unsigned char> status(d_status.cols);
    220     cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*) &status[0]);
    221     d_status.download(status_mat);
    222 
    223     std::vector<cv::Point2f> nextPts_gold;
    224     std::vector<unsigned char> status_gold;
    225     cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
    226 
    227     ASSERT_EQ(nextPts_gold.size(), nextPts.size());
    228     ASSERT_EQ(status_gold.size(), status.size());
    229 
    230     size_t mistmatch = 0;
    231     for (size_t i = 0; i < nextPts.size(); ++i)
    232     {
    233         cv::Point2i a = nextPts[i];
    234         cv::Point2i b = nextPts_gold[i];
    235 
    236         if (status[i] != status_gold[i])
    237         {
    238             ++mistmatch;
    239             continue;
    240         }
    241 
    242         if (status[i])
    243         {
    244             bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
    245 
    246             if (!eq)
    247                 ++mistmatch;
    248         }
    249     }
    250 
    251     double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
    252 
    253     ASSERT_LE(bad_ratio, 0.01);
    254 }
    255 
    256 INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, PyrLKOpticalFlow, testing::Combine(
    257     ALL_DEVICES,
    258     testing::Values(UseGray(true), UseGray(false))));
    259 
    260 //////////////////////////////////////////////////////
    261 // FarnebackOpticalFlow
    262 
    263 namespace
    264 {
    265     IMPLEMENT_PARAM_CLASS(PyrScale, double)
    266     IMPLEMENT_PARAM_CLASS(PolyN, int)
    267     CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
    268     IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
    269 }
    270 
    271 PARAM_TEST_CASE(FarnebackOpticalFlow, cv::cuda::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
    272 {
    273     cv::cuda::DeviceInfo devInfo;
    274     double pyrScale;
    275     int polyN;
    276     int flags;
    277     bool useInitFlow;
    278 
    279     virtual void SetUp()
    280     {
    281         devInfo = GET_PARAM(0);
    282         pyrScale = GET_PARAM(1);
    283         polyN = GET_PARAM(2);
    284         flags = GET_PARAM(3);
    285         useInitFlow = GET_PARAM(4);
    286 
    287         cv::cuda::setDevice(devInfo.deviceID());
    288     }
    289 };
    290 
    291 CUDA_TEST_P(FarnebackOpticalFlow, Accuracy)
    292 {
    293     cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
    294     ASSERT_FALSE(frame0.empty());
    295 
    296     cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
    297     ASSERT_FALSE(frame1.empty());
    298 
    299     double polySigma = polyN <= 5 ? 1.1 : 1.5;
    300 
    301     cv::Ptr<cv::cuda::FarnebackOpticalFlow> farn =
    302             cv::cuda::FarnebackOpticalFlow::create();
    303     farn->setPyrScale(pyrScale);
    304     farn->setPolyN(polyN);
    305     farn->setPolySigma(polySigma);
    306     farn->setFlags(flags);
    307 
    308     cv::cuda::GpuMat d_flow;
    309     farn->calc(loadMat(frame0), loadMat(frame1), d_flow);
    310 
    311     cv::Mat flow;
    312     if (useInitFlow)
    313     {
    314         d_flow.download(flow);
    315 
    316         farn->setFlags(farn->getFlags() | cv::OPTFLOW_USE_INITIAL_FLOW);
    317         farn->calc(loadMat(frame0), loadMat(frame1), d_flow);
    318     }
    319 
    320     cv::calcOpticalFlowFarneback(
    321         frame0, frame1, flow, farn->getPyrScale(), farn->getNumLevels(), farn->getWinSize(),
    322         farn->getNumIters(), farn->getPolyN(), farn->getPolySigma(), farn->getFlags());
    323 
    324     EXPECT_MAT_SIMILAR(flow, d_flow, 0.1);
    325 }
    326 
    327 INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, FarnebackOpticalFlow, testing::Combine(
    328     ALL_DEVICES,
    329     testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
    330     testing::Values(PolyN(5), PolyN(7)),
    331     testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
    332     testing::Values(UseInitFlow(false), UseInitFlow(true))));
    333 
    334 //////////////////////////////////////////////////////
    335 // OpticalFlowDual_TVL1
    336 
    337 namespace
    338 {
    339     IMPLEMENT_PARAM_CLASS(Gamma, double)
    340 }
    341 
    342 PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::cuda::DeviceInfo, Gamma)
    343 {
    344     cv::cuda::DeviceInfo devInfo;
    345     double gamma;
    346 
    347     virtual void SetUp()
    348     {
    349         devInfo = GET_PARAM(0);
    350         gamma = GET_PARAM(1);
    351 
    352         cv::cuda::setDevice(devInfo.deviceID());
    353     }
    354 };
    355 
    356 CUDA_TEST_P(OpticalFlowDual_TVL1, Accuracy)
    357 {
    358     cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
    359     ASSERT_FALSE(frame0.empty());
    360 
    361     cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
    362     ASSERT_FALSE(frame1.empty());
    363 
    364     cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg =
    365             cv::cuda::OpticalFlowDual_TVL1::create();
    366     d_alg->setNumIterations(10);
    367     d_alg->setGamma(gamma);
    368 
    369     cv::cuda::GpuMat d_flow;
    370     d_alg->calc(loadMat(frame0), loadMat(frame1), d_flow);
    371 
    372     cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1();
    373     alg->setMedianFiltering(1);
    374     alg->setInnerIterations(1);
    375     alg->setOuterIterations(d_alg->getNumIterations());
    376     alg->setGamma(gamma);
    377 
    378     cv::Mat flow;
    379     alg->calc(frame0, frame1, flow);
    380 
    381     EXPECT_MAT_SIMILAR(flow, d_flow, 4e-3);
    382 }
    383 
    384 INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, OpticalFlowDual_TVL1, testing::Combine(
    385     ALL_DEVICES,
    386     testing::Values(Gamma(0.0), Gamma(1.0))));
    387 
    388 #endif // HAVE_CUDA
    389