1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #include "test_precomp.hpp" 44 45 #ifdef HAVE_CUDA 46 47 using namespace cvtest; 48 49 ////////////////////////////////////////////////////// 50 // BroxOpticalFlow 51 52 //#define BROX_DUMP 53 54 struct BroxOpticalFlow : testing::TestWithParam<cv::cuda::DeviceInfo> 55 { 56 cv::cuda::DeviceInfo devInfo; 57 58 virtual void SetUp() 59 { 60 devInfo = GetParam(); 61 62 cv::cuda::setDevice(devInfo.deviceID()); 63 } 64 }; 65 66 CUDA_TEST_P(BroxOpticalFlow, Regression) 67 { 68 cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); 69 ASSERT_FALSE(frame0.empty()); 70 71 cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); 72 ASSERT_FALSE(frame1.empty()); 73 74 cv::Ptr<cv::cuda::BroxOpticalFlow> brox = 75 cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/, 76 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); 77 78 cv::cuda::GpuMat flow; 79 brox->calc(loadMat(frame0), loadMat(frame1), flow); 80 81 cv::cuda::GpuMat flows[2]; 82 cv::cuda::split(flow, flows); 83 84 cv::cuda::GpuMat u = flows[0]; 85 cv::cuda::GpuMat v = flows[1]; 86 87 std::string fname(cvtest::TS::ptr()->get_data_path()); 88 if (devInfo.majorVersion() >= 2) 89 fname += "opticalflow/brox_optical_flow_cc20.bin"; 90 else 91 fname += "opticalflow/brox_optical_flow.bin"; 92 93 #ifndef BROX_DUMP 94 std::ifstream f(fname.c_str(), std::ios_base::binary); 95 96 int rows, cols; 97 98 f.read((char*) &rows, sizeof(rows)); 99 f.read((char*) &cols, sizeof(cols)); 100 101 cv::Mat u_gold(rows, cols, CV_32FC1); 102 103 for (int i = 0; i < u_gold.rows; ++i) 104 f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float)); 105 106 cv::Mat v_gold(rows, cols, CV_32FC1); 107 108 for (int i = 0; i < v_gold.rows; ++i) 109 f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float)); 110 111 EXPECT_MAT_SIMILAR(u_gold, u, 1e-3); 112 EXPECT_MAT_SIMILAR(v_gold, v, 1e-3); 113 #else 114 std::ofstream f(fname.c_str(), std::ios_base::binary); 115 116 f.write((char*) &u.rows, sizeof(u.rows)); 117 f.write((char*) &u.cols, sizeof(u.cols)); 118 119 cv::Mat h_u(u); 120 cv::Mat h_v(v); 121 122 for (int i = 0; i < u.rows; ++i) 123 f.write(h_u.ptr<char>(i), u.cols * sizeof(float)); 124 125 for (int i = 0; i < v.rows; ++i) 126 f.write(h_v.ptr<char>(i), v.cols * sizeof(float)); 127 #endif 128 } 129 130 CUDA_TEST_P(BroxOpticalFlow, OpticalFlowNan) 131 { 132 cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); 133 ASSERT_FALSE(frame0.empty()); 134 135 cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); 136 ASSERT_FALSE(frame1.empty()); 137 138 cv::Mat r_frame0, r_frame1; 139 cv::resize(frame0, r_frame0, cv::Size(1380,1000)); 140 cv::resize(frame1, r_frame1, cv::Size(1380,1000)); 141 142 cv::Ptr<cv::cuda::BroxOpticalFlow> brox = 143 cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/, 144 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); 145 146 cv::cuda::GpuMat flow; 147 brox->calc(loadMat(frame0), loadMat(frame1), flow); 148 149 cv::cuda::GpuMat flows[2]; 150 cv::cuda::split(flow, flows); 151 152 cv::cuda::GpuMat u = flows[0]; 153 cv::cuda::GpuMat v = flows[1]; 154 155 cv::Mat h_u, h_v; 156 u.download(h_u); 157 v.download(h_v); 158 159 EXPECT_TRUE(cv::checkRange(h_u)); 160 EXPECT_TRUE(cv::checkRange(h_v)); 161 }; 162 163 INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, BroxOpticalFlow, ALL_DEVICES); 164 165 ////////////////////////////////////////////////////// 166 // PyrLKOpticalFlow 167 168 namespace 169 { 170 IMPLEMENT_PARAM_CLASS(UseGray, bool) 171 } 172 173 PARAM_TEST_CASE(PyrLKOpticalFlow, cv::cuda::DeviceInfo, UseGray) 174 { 175 cv::cuda::DeviceInfo devInfo; 176 bool useGray; 177 178 virtual void SetUp() 179 { 180 devInfo = GET_PARAM(0); 181 useGray = GET_PARAM(1); 182 183 cv::cuda::setDevice(devInfo.deviceID()); 184 } 185 }; 186 187 CUDA_TEST_P(PyrLKOpticalFlow, Sparse) 188 { 189 cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); 190 ASSERT_FALSE(frame0.empty()); 191 192 cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); 193 ASSERT_FALSE(frame1.empty()); 194 195 cv::Mat gray_frame; 196 if (useGray) 197 gray_frame = frame0; 198 else 199 cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); 200 201 std::vector<cv::Point2f> pts; 202 cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); 203 204 cv::cuda::GpuMat d_pts; 205 cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]); 206 d_pts.upload(pts_mat); 207 208 cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> pyrLK = 209 cv::cuda::SparsePyrLKOpticalFlow::create(); 210 211 cv::cuda::GpuMat d_nextPts; 212 cv::cuda::GpuMat d_status; 213 pyrLK->calc(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status); 214 215 std::vector<cv::Point2f> nextPts(d_nextPts.cols); 216 cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*) &nextPts[0]); 217 d_nextPts.download(nextPts_mat); 218 219 std::vector<unsigned char> status(d_status.cols); 220 cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*) &status[0]); 221 d_status.download(status_mat); 222 223 std::vector<cv::Point2f> nextPts_gold; 224 std::vector<unsigned char> status_gold; 225 cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray()); 226 227 ASSERT_EQ(nextPts_gold.size(), nextPts.size()); 228 ASSERT_EQ(status_gold.size(), status.size()); 229 230 size_t mistmatch = 0; 231 for (size_t i = 0; i < nextPts.size(); ++i) 232 { 233 cv::Point2i a = nextPts[i]; 234 cv::Point2i b = nextPts_gold[i]; 235 236 if (status[i] != status_gold[i]) 237 { 238 ++mistmatch; 239 continue; 240 } 241 242 if (status[i]) 243 { 244 bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1; 245 246 if (!eq) 247 ++mistmatch; 248 } 249 } 250 251 double bad_ratio = static_cast<double>(mistmatch) / nextPts.size(); 252 253 ASSERT_LE(bad_ratio, 0.01); 254 } 255 256 INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, PyrLKOpticalFlow, testing::Combine( 257 ALL_DEVICES, 258 testing::Values(UseGray(true), UseGray(false)))); 259 260 ////////////////////////////////////////////////////// 261 // FarnebackOpticalFlow 262 263 namespace 264 { 265 IMPLEMENT_PARAM_CLASS(PyrScale, double) 266 IMPLEMENT_PARAM_CLASS(PolyN, int) 267 CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN) 268 IMPLEMENT_PARAM_CLASS(UseInitFlow, bool) 269 } 270 271 PARAM_TEST_CASE(FarnebackOpticalFlow, cv::cuda::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow) 272 { 273 cv::cuda::DeviceInfo devInfo; 274 double pyrScale; 275 int polyN; 276 int flags; 277 bool useInitFlow; 278 279 virtual void SetUp() 280 { 281 devInfo = GET_PARAM(0); 282 pyrScale = GET_PARAM(1); 283 polyN = GET_PARAM(2); 284 flags = GET_PARAM(3); 285 useInitFlow = GET_PARAM(4); 286 287 cv::cuda::setDevice(devInfo.deviceID()); 288 } 289 }; 290 291 CUDA_TEST_P(FarnebackOpticalFlow, Accuracy) 292 { 293 cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); 294 ASSERT_FALSE(frame0.empty()); 295 296 cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); 297 ASSERT_FALSE(frame1.empty()); 298 299 double polySigma = polyN <= 5 ? 1.1 : 1.5; 300 301 cv::Ptr<cv::cuda::FarnebackOpticalFlow> farn = 302 cv::cuda::FarnebackOpticalFlow::create(); 303 farn->setPyrScale(pyrScale); 304 farn->setPolyN(polyN); 305 farn->setPolySigma(polySigma); 306 farn->setFlags(flags); 307 308 cv::cuda::GpuMat d_flow; 309 farn->calc(loadMat(frame0), loadMat(frame1), d_flow); 310 311 cv::Mat flow; 312 if (useInitFlow) 313 { 314 d_flow.download(flow); 315 316 farn->setFlags(farn->getFlags() | cv::OPTFLOW_USE_INITIAL_FLOW); 317 farn->calc(loadMat(frame0), loadMat(frame1), d_flow); 318 } 319 320 cv::calcOpticalFlowFarneback( 321 frame0, frame1, flow, farn->getPyrScale(), farn->getNumLevels(), farn->getWinSize(), 322 farn->getNumIters(), farn->getPolyN(), farn->getPolySigma(), farn->getFlags()); 323 324 EXPECT_MAT_SIMILAR(flow, d_flow, 0.1); 325 } 326 327 INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, FarnebackOpticalFlow, testing::Combine( 328 ALL_DEVICES, 329 testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)), 330 testing::Values(PolyN(5), PolyN(7)), 331 testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)), 332 testing::Values(UseInitFlow(false), UseInitFlow(true)))); 333 334 ////////////////////////////////////////////////////// 335 // OpticalFlowDual_TVL1 336 337 namespace 338 { 339 IMPLEMENT_PARAM_CLASS(Gamma, double) 340 } 341 342 PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::cuda::DeviceInfo, Gamma) 343 { 344 cv::cuda::DeviceInfo devInfo; 345 double gamma; 346 347 virtual void SetUp() 348 { 349 devInfo = GET_PARAM(0); 350 gamma = GET_PARAM(1); 351 352 cv::cuda::setDevice(devInfo.deviceID()); 353 } 354 }; 355 356 CUDA_TEST_P(OpticalFlowDual_TVL1, Accuracy) 357 { 358 cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); 359 ASSERT_FALSE(frame0.empty()); 360 361 cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); 362 ASSERT_FALSE(frame1.empty()); 363 364 cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg = 365 cv::cuda::OpticalFlowDual_TVL1::create(); 366 d_alg->setNumIterations(10); 367 d_alg->setGamma(gamma); 368 369 cv::cuda::GpuMat d_flow; 370 d_alg->calc(loadMat(frame0), loadMat(frame1), d_flow); 371 372 cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1(); 373 alg->setMedianFiltering(1); 374 alg->setInnerIterations(1); 375 alg->setOuterIterations(d_alg->getNumIterations()); 376 alg->setGamma(gamma); 377 378 cv::Mat flow; 379 alg->calc(frame0, frame1, flow); 380 381 EXPECT_MAT_SIMILAR(flow, d_flow, 4e-3); 382 } 383 384 INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, OpticalFlowDual_TVL1, testing::Combine( 385 ALL_DEVICES, 386 testing::Values(Gamma(0.0), Gamma(1.0)))); 387 388 #endif // HAVE_CUDA 389