Home | History | Annotate | Download | only in test
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                        Intel License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
     14 // Third party copyrights are property of their respective owners.
     15 //
     16 // Redistribution and use in source and binary forms, with or without modification,
     17 // are permitted provided that the following conditions are met:
     18 //
     19 //   * Redistribution's of source code must retain the above copyright notice,
     20 //     this list of conditions and the following disclaimer.
     21 //
     22 //   * Redistribution's in binary form must reproduce the above copyright notice,
     23 //     this list of conditions and the following disclaimer in the documentation
     24 //     and/or other materials provided with the distribution.
     25 //
     26 //   * The name of Intel Corporation may not be used to endorse or promote products
     27 //     derived from this software without specific prior written permission.
     28 //
     29 // This software is provided by the copyright holders and contributors "as is" and
     30 // any express or implied warranties, including, but not limited to, the implied
     31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     32 // In no event shall the Intel Corporation or contributors be liable for any direct,
     33 // indirect, incidental, special, exemplary, or consequential damages
     34 // (including, but not limited to, procurement of substitute goods or services;
     35 // loss of use, data, or profits; or business interruption) however caused
     36 // and on any theory of liability, whether in contract, strict liability,
     37 // or tort (including negligence or otherwise) arising in any way out of
     38 // the use of this software, even if advised of the possibility of such damage.
     39 //
     40 //M*/
     41 
     42 #include "test_precomp.hpp"
     43 
     44 using namespace std;
     45 using namespace cv;
     46 
     47 const string FEATURES2D_DIR = "features2d";
     48 const string IMAGE_FILENAME = "tsukuba.png";
     49 const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors";
     50 
     51 /****************************************************************************************\
     52 *                     Regression tests for descriptor extractors.                        *
     53 \****************************************************************************************/
     54 static void writeMatInBin( const Mat& mat, const string& filename )
     55 {
     56     FILE* f = fopen( filename.c_str(), "wb");
     57     if( f )
     58     {
     59         int type = mat.type();
     60         fwrite( (void*)&mat.rows, sizeof(int), 1, f );
     61         fwrite( (void*)&mat.cols, sizeof(int), 1, f );
     62         fwrite( (void*)&type, sizeof(int), 1, f );
     63         int dataSize = (int)(mat.step * mat.rows * mat.channels());
     64         fwrite( (void*)&dataSize, sizeof(int), 1, f );
     65         fwrite( (void*)mat.ptr(), 1, dataSize, f );
     66         fclose(f);
     67     }
     68 }
     69 
     70 static Mat readMatFromBin( const string& filename )
     71 {
     72     FILE* f = fopen( filename.c_str(), "rb" );
     73     if( f )
     74     {
     75         int rows, cols, type, dataSize;
     76         size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f );
     77         size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f );
     78         size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f );
     79         size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f );
     80         CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
     81 
     82         int step = dataSize / rows / CV_ELEM_SIZE(type);
     83         CV_Assert(step >= cols);
     84 
     85         Mat m = Mat(rows, step, type).colRange(0, cols);
     86 
     87         size_t elements_read = fread( m.ptr(), 1, dataSize, f );
     88         CV_Assert(elements_read == (size_t)(dataSize));
     89         fclose(f);
     90 
     91         return m;
     92     }
     93     return Mat();
     94 }
     95 
     96 template<class Distance>
     97 class CV_DescriptorExtractorTest : public cvtest::BaseTest
     98 {
     99 public:
    100     typedef typename Distance::ValueType ValueType;
    101     typedef typename Distance::ResultType DistanceType;
    102 
    103     CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor,
    104                                 Distance d = Distance(), Ptr<FeatureDetector> _detector = Ptr<FeatureDetector>()):
    105         name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) , detector(_detector) {}
    106 
    107     ~CV_DescriptorExtractorTest()
    108     {
    109     }
    110 protected:
    111     virtual void createDescriptorExtractor() {}
    112 
    113     void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors )
    114     {
    115         if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() )
    116         {
    117             ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n");
    118             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
    119             return;
    120         }
    121 
    122         CV_Assert( DataType<ValueType>::type == validDescriptors.type() );
    123 
    124         int dimension = validDescriptors.cols;
    125         DistanceType curMaxDist = std::numeric_limits<DistanceType>::min();
    126         for( int y = 0; y < validDescriptors.rows; y++ )
    127         {
    128             DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension );
    129             if( dist > curMaxDist )
    130                 curMaxDist = dist;
    131         }
    132 
    133         stringstream ss;
    134         ss << "Max distance between valid and computed descriptors " << curMaxDist;
    135         if( curMaxDist <= maxDist )
    136             ss << "." << endl;
    137         else
    138         {
    139             ss << ">" << maxDist  << " - bad accuracy!"<< endl;
    140             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
    141         }
    142         ts->printf(cvtest::TS::LOG,  ss.str().c_str() );
    143     }
    144 
    145     void emptyDataTest()
    146     {
    147         assert( dextractor );
    148 
    149         // One image.
    150         Mat image;
    151         vector<KeyPoint> keypoints;
    152         Mat descriptors;
    153 
    154         try
    155         {
    156             dextractor->compute( image, keypoints, descriptors );
    157         }
    158         catch(...)
    159         {
    160             ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n");
    161             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
    162         }
    163 
    164         image.create( 50, 50, CV_8UC3 );
    165         try
    166         {
    167             dextractor->compute( image, keypoints, descriptors );
    168         }
    169         catch(...)
    170         {
    171             ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n");
    172             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
    173         }
    174 
    175         // Several images.
    176         vector<Mat> images;
    177         vector<vector<KeyPoint> > keypointsCollection;
    178         vector<Mat> descriptorsCollection;
    179         try
    180         {
    181             dextractor->compute( images, keypointsCollection, descriptorsCollection );
    182         }
    183         catch(...)
    184         {
    185             ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n");
    186             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
    187         }
    188     }
    189 
    190     void regressionTest()
    191     {
    192         assert( dextractor );
    193 
    194         // Read the test image.
    195         string imgFilename =  string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
    196         Mat img = imread( imgFilename );
    197         if( img.empty() )
    198         {
    199             ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
    200             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
    201             return;
    202         }
    203         vector<KeyPoint> keypoints;
    204         FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ );
    205         if(!detector.empty()) {
    206             detector->detect(img, keypoints);
    207         } else {
    208             read( fs.getFirstTopLevelNode(), keypoints );
    209         }
    210         if(!keypoints.empty())
    211         {
    212             Mat calcDescriptors;
    213             double t = (double)getTickCount();
    214             dextractor->compute( img, keypoints, calcDescriptors );
    215             t = getTickCount() - t;
    216             ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)getTickFrequency()*1000.)/calcDescriptors.rows);
    217 
    218             if( calcDescriptors.rows != (int)keypoints.size() )
    219             {
    220                 ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" );
    221                 ts->printf( cvtest::TS::LOG, "Count of keypoints is            %d.\n", (int)keypoints.size() );
    222                 ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows );
    223                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
    224                 return;
    225             }
    226 
    227             if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() )
    228             {
    229                 ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" );
    230                 ts->printf( cvtest::TS::LOG, "Expected size is   %d.\n", dextractor->descriptorSize() );
    231                 ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols );
    232                 ts->printf( cvtest::TS::LOG, "Expected type is   %d.\n", dextractor->descriptorType() );
    233                 ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() );
    234                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
    235                 return;
    236             }
    237 
    238             // TODO read and write descriptor extractor parameters and check them
    239             Mat validDescriptors = readDescriptors();
    240             if( !validDescriptors.empty() )
    241                 compareDescriptors( validDescriptors, calcDescriptors );
    242             else
    243             {
    244                 if( !writeDescriptors( calcDescriptors ) )
    245                 {
    246                     ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" );
    247                     ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
    248                     return;
    249                 }
    250             }
    251         }
    252         if(!fs.isOpened())
    253         {
    254             ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" );
    255             fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE );
    256             if( fs.isOpened() )
    257             {
    258                 Ptr<ORB> fd = ORB::create();
    259                 fd->detect(img, keypoints);
    260                 write( fs, "keypoints", keypoints );
    261             }
    262             else
    263             {
    264                 ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n");
    265                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
    266                 return;
    267             }
    268         }
    269     }
    270 
    271     void run(int)
    272     {
    273         createDescriptorExtractor();
    274         if( !dextractor )
    275         {
    276             ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n");
    277             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
    278             return;
    279         }
    280 
    281         emptyDataTest();
    282         regressionTest();
    283 
    284         ts->set_failed_test_info( cvtest::TS::OK );
    285     }
    286 
    287     virtual Mat readDescriptors()
    288     {
    289         Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
    290         return res;
    291     }
    292 
    293     virtual bool writeDescriptors( Mat& descs )
    294     {
    295         writeMatInBin( descs,  string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
    296         return true;
    297     }
    298 
    299     string name;
    300     const DistanceType maxDist;
    301     Ptr<DescriptorExtractor> dextractor;
    302     Distance distance;
    303     Ptr<FeatureDetector> detector;
    304 
    305 private:
    306     CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; }
    307 };
    308 
    309 /****************************************************************************************\
    310 *                                Tests registrations                                     *
    311 \****************************************************************************************/
    312 
    313 TEST( Features2d_DescriptorExtractor_BRISK, regression )
    314 {
    315     CV_DescriptorExtractorTest<Hamming> test( "descriptor-brisk",
    316                                              (CV_DescriptorExtractorTest<Hamming>::DistanceType)2.f,
    317                                             BRISK::create() );
    318     test.safe_run();
    319 }
    320 
    321 TEST( Features2d_DescriptorExtractor_ORB, regression )
    322 {
    323     // TODO adjust the parameters below
    324     CV_DescriptorExtractorTest<Hamming> test( "descriptor-orb",
    325 #if CV_NEON
    326                                               (CV_DescriptorExtractorTest<Hamming>::DistanceType)25.f,
    327 #else
    328                                               (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
    329 #endif
    330                                              ORB::create() );
    331     test.safe_run();
    332 }
    333 
    334 TEST( Features2d_DescriptorExtractor_KAZE, regression )
    335 {
    336     CV_DescriptorExtractorTest< L2<float> > test( "descriptor-kaze",  0.03f,
    337                                                  KAZE::create(),
    338                                                  L2<float>(), KAZE::create() );
    339     test.safe_run();
    340 }
    341 
    342 TEST( Features2d_DescriptorExtractor_AKAZE, regression )
    343 {
    344     CV_DescriptorExtractorTest<Hamming> test( "descriptor-akaze",
    345                                               (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
    346                                               AKAZE::create(),
    347                                               Hamming(), AKAZE::create());
    348     test.safe_run();
    349 }
    350 
    351 TEST( Features2d_DescriptorExtractor, batch )
    352 {
    353     string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf");
    354     vector<Mat> imgs, descriptors;
    355     vector<vector<KeyPoint> > keypoints;
    356     int i, n = 6;
    357     Ptr<ORB> orb = ORB::create();
    358 
    359     for( i = 0; i < n; i++ )
    360     {
    361         string imgname = format("%s/img%d.png", path.c_str(), i+1);
    362         Mat img = imread(imgname, 0);
    363         imgs.push_back(img);
    364     }
    365 
    366     orb->detect(imgs, keypoints);
    367     orb->compute(imgs, keypoints, descriptors);
    368 
    369     ASSERT_EQ((int)keypoints.size(), n);
    370     ASSERT_EQ((int)descriptors.size(), n);
    371 
    372     for( i = 0; i < n; i++ )
    373     {
    374         EXPECT_GT((int)keypoints[i].size(), 100);
    375         EXPECT_GT(descriptors[i].rows, 100);
    376     }
    377 }
    378 
    379 TEST( Features2d_Feature2d, no_crash )
    380 {
    381     const String& pattern = string(cvtest::TS::ptr()->get_data_path() + "shared/*.png");
    382     vector<String> fnames;
    383     glob(pattern, fnames, false);
    384     sort(fnames.begin(), fnames.end());
    385 
    386     Ptr<AKAZE> akaze = AKAZE::create();
    387     Ptr<ORB> orb = ORB::create();
    388     Ptr<KAZE> kaze = KAZE::create();
    389     Ptr<BRISK> brisk = BRISK::create();
    390     size_t i, n = fnames.size();
    391     vector<KeyPoint> keypoints;
    392     Mat descriptors;
    393     orb->setMaxFeatures(5000);
    394 
    395     for( i = 0; i < n; i++ )
    396     {
    397         printf("%d. image: %s:\n", (int)i, fnames[i].c_str());
    398         if( strstr(fnames[i].c_str(), "MP.png") != 0 )
    399             continue;
    400         bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0;
    401 
    402         Mat img = imread(fnames[i], -1);
    403         printf("\tAKAZE ... "); fflush(stdout);
    404         akaze->detectAndCompute(img, noArray(), keypoints, descriptors);
    405         printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
    406         if( checkCount )
    407         {
    408             EXPECT_GT((int)keypoints.size(), 0);
    409         }
    410         ASSERT_EQ(descriptors.rows, (int)keypoints.size());
    411         printf("ok\n");
    412 
    413         printf("\tKAZE ... "); fflush(stdout);
    414         kaze->detectAndCompute(img, noArray(), keypoints, descriptors);
    415         printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
    416         if( checkCount )
    417         {
    418             EXPECT_GT((int)keypoints.size(), 0);
    419         }
    420         ASSERT_EQ(descriptors.rows, (int)keypoints.size());
    421         printf("ok\n");
    422 
    423         printf("\tORB ... "); fflush(stdout);
    424         orb->detectAndCompute(img, noArray(), keypoints, descriptors);
    425         printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
    426         if( checkCount )
    427         {
    428             EXPECT_GT((int)keypoints.size(), 0);
    429         }
    430         ASSERT_EQ(descriptors.rows, (int)keypoints.size());
    431         printf("ok\n");
    432 
    433         printf("\tBRISK ... "); fflush(stdout);
    434         brisk->detectAndCompute(img, noArray(), keypoints, descriptors);
    435         printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
    436         if( checkCount )
    437         {
    438             EXPECT_GT((int)keypoints.size(), 0);
    439         }
    440         ASSERT_EQ(descriptors.rows, (int)keypoints.size());
    441         printf("ok\n");
    442     }
    443 }
    444