1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // Intel License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000, Intel Corporation, all rights reserved. 14 // Third party copyrights are property of their respective owners. 15 // 16 // Redistribution and use in source and binary forms, with or without modification, 17 // are permitted provided that the following conditions are met: 18 // 19 // * Redistribution's of source code must retain the above copyright notice, 20 // this list of conditions and the following disclaimer. 21 // 22 // * Redistribution's in binary form must reproduce the above copyright notice, 23 // this list of conditions and the following disclaimer in the documentation 24 // and/or other materials provided with the distribution. 25 // 26 // * The name of Intel Corporation may not be used to endorse or promote products 27 // derived from this software without specific prior written permission. 28 // 29 // This software is provided by the copyright holders and contributors "as is" and 30 // any express or implied warranties, including, but not limited to, the implied 31 // warranties of merchantability and fitness for a particular purpose are disclaimed. 32 // In no event shall the Intel Corporation or contributors be liable for any direct, 33 // indirect, incidental, special, exemplary, or consequential damages 34 // (including, but not limited to, procurement of substitute goods or services; 35 // loss of use, data, or profits; or business interruption) however caused 36 // and on any theory of liability, whether in contract, strict liability, 37 // or tort (including negligence or otherwise) arising in any way out of 38 // the use of this software, even if advised of the possibility of such damage. 39 // 40 //M*/ 41 42 #include "test_precomp.hpp" 43 #include "opencv2/highgui.hpp" 44 45 using namespace std; 46 using namespace cv; 47 48 const string FEATURES2D_DIR = "features2d"; 49 const string IMAGE_FILENAME = "tsukuba.png"; 50 51 /****************************************************************************************\ 52 * Algorithmic tests for descriptor matchers * 53 \****************************************************************************************/ 54 class CV_DescriptorMatcherTest : public cvtest::BaseTest 55 { 56 public: 57 CV_DescriptorMatcherTest( const string& _name, const Ptr<DescriptorMatcher>& _dmatcher, float _badPart ) : 58 badPart(_badPart), name(_name), dmatcher(_dmatcher) 59 {} 60 protected: 61 static const int dim = 500; 62 static const int queryDescCount = 300; // must be even number because we split train data in some cases in two 63 static const int countFactor = 4; // do not change it 64 const float badPart; 65 66 virtual void run( int ); 67 void generateData( Mat& query, Mat& train ); 68 69 void emptyDataTest(); 70 void matchTest( const Mat& query, const Mat& train ); 71 void knnMatchTest( const Mat& query, const Mat& train ); 72 void radiusMatchTest( const Mat& query, const Mat& train ); 73 74 string name; 75 Ptr<DescriptorMatcher> dmatcher; 76 77 private: 78 CV_DescriptorMatcherTest& operator=(const CV_DescriptorMatcherTest&) { return *this; } 79 }; 80 81 void CV_DescriptorMatcherTest::emptyDataTest() 82 { 83 assert( !dmatcher.empty() ); 84 Mat queryDescriptors, trainDescriptors, mask; 85 vector<Mat> trainDescriptorCollection, masks; 86 vector<DMatch> matches; 87 vector<vector<DMatch> > vmatches; 88 89 try 90 { 91 dmatcher->match( queryDescriptors, trainDescriptors, matches, mask ); 92 } 93 catch(...) 94 { 95 ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" ); 96 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 97 } 98 99 try 100 { 101 dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask ); 102 } 103 catch(...) 104 { 105 ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" ); 106 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 107 } 108 109 try 110 { 111 dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask ); 112 } 113 catch(...) 114 { 115 ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" ); 116 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 117 } 118 119 try 120 { 121 dmatcher->add( trainDescriptorCollection ); 122 } 123 catch(...) 124 { 125 ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" ); 126 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 127 } 128 129 try 130 { 131 dmatcher->match( queryDescriptors, matches, masks ); 132 } 133 catch(...) 134 { 135 ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" ); 136 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 137 } 138 139 try 140 { 141 dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks ); 142 } 143 catch(...) 144 { 145 ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" ); 146 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 147 } 148 149 try 150 { 151 dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks ); 152 } 153 catch(...) 154 { 155 ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" ); 156 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 157 } 158 159 } 160 161 void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train ) 162 { 163 RNG& rng = theRNG(); 164 165 // Generate query descriptors randomly. 166 // Descriptor vector elements are integer values. 167 Mat buf( queryDescCount, dim, CV_32SC1 ); 168 rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) ); 169 buf.convertTo( query, CV_32FC1 ); 170 171 // Generate train decriptors as follows: 172 // copy each query descriptor to train set countFactor times 173 // and perturb some one element of the copied descriptors in 174 // in ascending order. General boundaries of the perturbation 175 // are (0.f, 1.f). 176 train.create( query.rows*countFactor, query.cols, CV_32FC1 ); 177 float step = 1.f / countFactor; 178 for( int qIdx = 0; qIdx < query.rows; qIdx++ ) 179 { 180 Mat queryDescriptor = query.row(qIdx); 181 for( int c = 0; c < countFactor; c++ ) 182 { 183 int tIdx = qIdx * countFactor + c; 184 Mat trainDescriptor = train.row(tIdx); 185 queryDescriptor.copyTo( trainDescriptor ); 186 int elem = rng(dim); 187 float diff = rng.uniform( step*c, step*(c+1) ); 188 trainDescriptor.at<float>(0, elem) += diff; 189 } 190 } 191 } 192 193 void CV_DescriptorMatcherTest::matchTest( const Mat& query, const Mat& train ) 194 { 195 dmatcher->clear(); 196 197 // test const version of match() 198 { 199 vector<DMatch> matches; 200 dmatcher->match( query, train, matches ); 201 202 if( (int)matches.size() != queryDescCount ) 203 { 204 ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n"); 205 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 206 } 207 else 208 { 209 int badCount = 0; 210 for( size_t i = 0; i < matches.size(); i++ ) 211 { 212 DMatch& match = matches[i]; 213 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) 214 badCount++; 215 } 216 if( (float)badCount > (float)queryDescCount*badPart ) 217 { 218 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n", 219 (float)badCount/(float)queryDescCount ); 220 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 221 } 222 } 223 } 224 225 // test const version of match() for the same query and test descriptors 226 { 227 vector<DMatch> matches; 228 dmatcher->match( query, query, matches ); 229 230 if( (int)matches.size() != query.rows ) 231 { 232 ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function for the same query and test descriptors (1).\n"); 233 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 234 } 235 else 236 { 237 for( size_t i = 0; i < matches.size(); i++ ) 238 { 239 DMatch& match = matches[i]; 240 //std::cout << match.distance << std::endl; 241 242 if( match.queryIdx != (int)i || match.trainIdx != (int)i || std::abs(match.distance) > FLT_EPSILON ) 243 { 244 ts->printf( cvtest::TS::LOG, "Bad match (i=%d, queryIdx=%d, trainIdx=%d, distance=%f) while test match() function for the same query and test descriptors (1).\n", 245 i, match.queryIdx, match.trainIdx, match.distance ); 246 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 247 } 248 } 249 } 250 } 251 252 // test version of match() with add() 253 { 254 vector<DMatch> matches; 255 // make add() twice to test such case 256 dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) ); 257 dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) ); 258 // prepare masks (make first nearest match illegal) 259 vector<Mat> masks(2); 260 for(int mi = 0; mi < 2; mi++ ) 261 { 262 masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); 263 for( int di = 0; di < queryDescCount/2; di++ ) 264 masks[mi].col(di*countFactor).setTo(Scalar::all(0)); 265 } 266 267 dmatcher->match( query, matches, masks ); 268 269 if( (int)matches.size() != queryDescCount ) 270 { 271 ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n"); 272 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 273 } 274 else 275 { 276 int badCount = 0; 277 for( size_t i = 0; i < matches.size(); i++ ) 278 { 279 DMatch& match = matches[i]; 280 int shift = dmatcher->isMaskSupported() ? 1 : 0; 281 { 282 if( i < queryDescCount/2 ) 283 { 284 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) ) 285 badCount++; 286 } 287 else 288 { 289 if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) ) 290 badCount++; 291 } 292 } 293 } 294 if( (float)badCount > (float)queryDescCount*badPart ) 295 { 296 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n", 297 (float)badCount/(float)queryDescCount ); 298 ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); 299 } 300 } 301 } 302 } 303 304 void CV_DescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train ) 305 { 306 dmatcher->clear(); 307 308 // test const version of knnMatch() 309 { 310 const int knn = 3; 311 312 vector<vector<DMatch> > matches; 313 dmatcher->knnMatch( query, train, matches, knn ); 314 315 if( (int)matches.size() != queryDescCount ) 316 { 317 ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n"); 318 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 319 } 320 else 321 { 322 int badCount = 0; 323 for( size_t i = 0; i < matches.size(); i++ ) 324 { 325 if( (int)matches[i].size() != knn ) 326 badCount++; 327 else 328 { 329 int localBadCount = 0; 330 for( int k = 0; k < knn; k++ ) 331 { 332 DMatch& match = matches[i][k]; 333 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) ) 334 localBadCount++; 335 } 336 badCount += localBadCount > 0 ? 1 : 0; 337 } 338 } 339 if( (float)badCount > (float)queryDescCount*badPart ) 340 { 341 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n", 342 (float)badCount/(float)queryDescCount ); 343 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 344 } 345 } 346 } 347 348 // test version of knnMatch() with add() 349 { 350 const int knn = 2; 351 vector<vector<DMatch> > matches; 352 // make add() twice to test such case 353 dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) ); 354 dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) ); 355 // prepare masks (make first nearest match illegal) 356 vector<Mat> masks(2); 357 for(int mi = 0; mi < 2; mi++ ) 358 { 359 masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); 360 for( int di = 0; di < queryDescCount/2; di++ ) 361 masks[mi].col(di*countFactor).setTo(Scalar::all(0)); 362 } 363 364 dmatcher->knnMatch( query, matches, knn, masks ); 365 366 if( (int)matches.size() != queryDescCount ) 367 { 368 ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n"); 369 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 370 } 371 else 372 { 373 int badCount = 0; 374 int shift = dmatcher->isMaskSupported() ? 1 : 0; 375 for( size_t i = 0; i < matches.size(); i++ ) 376 { 377 if( (int)matches[i].size() != knn ) 378 badCount++; 379 else 380 { 381 int localBadCount = 0; 382 for( int k = 0; k < knn; k++ ) 383 { 384 DMatch& match = matches[i][k]; 385 { 386 if( i < queryDescCount/2 ) 387 { 388 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || 389 (match.imgIdx != 0) ) 390 localBadCount++; 391 } 392 else 393 { 394 if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || 395 (match.imgIdx != 1) ) 396 localBadCount++; 397 } 398 } 399 } 400 badCount += localBadCount > 0 ? 1 : 0; 401 } 402 } 403 if( (float)badCount > (float)queryDescCount*badPart ) 404 { 405 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n", 406 (float)badCount/(float)queryDescCount ); 407 ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); 408 } 409 } 410 } 411 } 412 413 void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train ) 414 { 415 dmatcher->clear(); 416 // test const version of match() 417 { 418 const float radius = 1.f/countFactor; 419 vector<vector<DMatch> > matches; 420 dmatcher->radiusMatch( query, train, matches, radius ); 421 422 if( (int)matches.size() != queryDescCount ) 423 { 424 ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); 425 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 426 } 427 else 428 { 429 int badCount = 0; 430 for( size_t i = 0; i < matches.size(); i++ ) 431 { 432 if( (int)matches[i].size() != 1 ) 433 badCount++; 434 else 435 { 436 DMatch& match = matches[i][0]; 437 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) 438 badCount++; 439 } 440 } 441 if( (float)badCount > (float)queryDescCount*badPart ) 442 { 443 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n", 444 (float)badCount/(float)queryDescCount ); 445 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 446 } 447 } 448 } 449 450 // test version of match() with add() 451 { 452 int n = 3; 453 const float radius = 1.f/countFactor * n; 454 vector<vector<DMatch> > matches; 455 // make add() twice to test such case 456 dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) ); 457 dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) ); 458 // prepare masks (make first nearest match illegal) 459 vector<Mat> masks(2); 460 for(int mi = 0; mi < 2; mi++ ) 461 { 462 masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); 463 for( int di = 0; di < queryDescCount/2; di++ ) 464 masks[mi].col(di*countFactor).setTo(Scalar::all(0)); 465 } 466 467 dmatcher->radiusMatch( query, matches, radius, masks ); 468 469 //int curRes = cvtest::TS::OK; 470 if( (int)matches.size() != queryDescCount ) 471 { 472 ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); 473 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); 474 } 475 476 int badCount = 0; 477 int shift = dmatcher->isMaskSupported() ? 1 : 0; 478 int needMatchCount = dmatcher->isMaskSupported() ? n-1 : n; 479 for( size_t i = 0; i < matches.size(); i++ ) 480 { 481 if( (int)matches[i].size() != needMatchCount ) 482 badCount++; 483 else 484 { 485 int localBadCount = 0; 486 for( int k = 0; k < needMatchCount; k++ ) 487 { 488 DMatch& match = matches[i][k]; 489 { 490 if( i < queryDescCount/2 ) 491 { 492 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || 493 (match.imgIdx != 0) ) 494 localBadCount++; 495 } 496 else 497 { 498 if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || 499 (match.imgIdx != 1) ) 500 localBadCount++; 501 } 502 } 503 } 504 badCount += localBadCount > 0 ? 1 : 0; 505 } 506 } 507 if( (float)badCount > (float)queryDescCount*badPart ) 508 { 509 //curRes = cvtest::TS::FAIL_INVALID_OUTPUT; 510 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n", 511 (float)badCount/(float)queryDescCount ); 512 ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); 513 } 514 } 515 } 516 517 void CV_DescriptorMatcherTest::run( int ) 518 { 519 Mat query, train; 520 generateData( query, train ); 521 522 matchTest( query, train ); 523 524 knnMatchTest( query, train ); 525 526 radiusMatchTest( query, train ); 527 } 528 529 /****************************************************************************************\ 530 * Tests registrations * 531 \****************************************************************************************/ 532 533 TEST( Features2d_DescriptorMatcher_BruteForce, regression ) 534 { 535 CV_DescriptorMatcherTest test( "descriptor-matcher-brute-force", 536 DescriptorMatcher::create("BruteForce"), 0.01f ); 537 test.safe_run(); 538 } 539 540 TEST( Features2d_DescriptorMatcher_FlannBased, regression ) 541 { 542 CV_DescriptorMatcherTest test( "descriptor-matcher-flann-based", 543 DescriptorMatcher::create("FlannBased"), 0.04f ); 544 test.safe_run(); 545 } 546 547 TEST( Features2d_DMatch, read_write ) 548 { 549 FileStorage fs(".xml", FileStorage::WRITE + FileStorage::MEMORY); 550 vector<DMatch> matches; 551 matches.push_back(DMatch(1,2,3,4.5f)); 552 fs << "Match" << matches; 553 String str = fs.releaseAndGetString(); 554 ASSERT_NE( strstr(str.c_str(), "4.5"), (char*)0 ); 555 } 556