Home | History | Annotate | Download | only in src
      1 
      2 //
      3 // This file is auto-generated. Please don't modify it!
      4 //
      5 package org.opencv.ml;
      6 
      7 import org.opencv.core.Mat;
      8 import org.opencv.core.TermCriteria;
      9 
     10 // C++: class EM
     11 //javadoc: EM
     12 public class EM extends StatModel {
     13 
     14     protected EM(long addr) { super(addr); }
     15 
     16 
     17     public static final int
     18             COV_MAT_SPHERICAL = 0,
     19             COV_MAT_DIAGONAL = 1,
     20             COV_MAT_GENERIC = 2,
     21             COV_MAT_DEFAULT = COV_MAT_DIAGONAL,
     22             DEFAULT_NCLUSTERS = 5,
     23             DEFAULT_MAX_ITERS = 100,
     24             START_E_STEP = 1,
     25             START_M_STEP = 2,
     26             START_AUTO_STEP = 0;
     27 
     28 
     29     //
     30     // C++:  int getClustersNumber()
     31     //
     32 
     33     //javadoc: EM::getClustersNumber()
     34     public  int getClustersNumber()
     35     {
     36 
     37         int retVal = getClustersNumber_0(nativeObj);
     38 
     39         return retVal;
     40     }
     41 
     42 
     43     //
     44     // C++:  void setClustersNumber(int val)
     45     //
     46 
     47     //javadoc: EM::setClustersNumber(val)
     48     public  void setClustersNumber(int val)
     49     {
     50 
     51         setClustersNumber_0(nativeObj, val);
     52 
     53         return;
     54     }
     55 
     56 
     57     //
     58     // C++:  int getCovarianceMatrixType()
     59     //
     60 
     61     //javadoc: EM::getCovarianceMatrixType()
     62     public  int getCovarianceMatrixType()
     63     {
     64 
     65         int retVal = getCovarianceMatrixType_0(nativeObj);
     66 
     67         return retVal;
     68     }
     69 
     70 
     71     //
     72     // C++:  void setCovarianceMatrixType(int val)
     73     //
     74 
     75     //javadoc: EM::setCovarianceMatrixType(val)
     76     public  void setCovarianceMatrixType(int val)
     77     {
     78 
     79         setCovarianceMatrixType_0(nativeObj, val);
     80 
     81         return;
     82     }
     83 
     84 
     85     //
     86     // C++:  TermCriteria getTermCriteria()
     87     //
     88 
     89     //javadoc: EM::getTermCriteria()
     90     public  TermCriteria getTermCriteria()
     91     {
     92 
     93         TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj));
     94 
     95         return retVal;
     96     }
     97 
     98 
     99     //
    100     // C++:  void setTermCriteria(TermCriteria val)
    101     //
    102 
    103     //javadoc: EM::setTermCriteria(val)
    104     public  void setTermCriteria(TermCriteria val)
    105     {
    106 
    107         setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon);
    108 
    109         return;
    110     }
    111 
    112 
    113     //
    114     // C++:  Mat getWeights()
    115     //
    116 
    117     //javadoc: EM::getWeights()
    118     public  Mat getWeights()
    119     {
    120 
    121         Mat retVal = new Mat(getWeights_0(nativeObj));
    122 
    123         return retVal;
    124     }
    125 
    126 
    127     //
    128     // C++:  Mat getMeans()
    129     //
    130 
    131     //javadoc: EM::getMeans()
    132     public  Mat getMeans()
    133     {
    134 
    135         Mat retVal = new Mat(getMeans_0(nativeObj));
    136 
    137         return retVal;
    138     }
    139 
    140 
    141     //
    142     // C++:  Vec2d predict2(Mat sample, Mat& probs)
    143     //
    144 
    145     //javadoc: EM::predict2(sample, probs)
    146     public  double[] predict2(Mat sample, Mat probs)
    147     {
    148 
    149         double[] retVal = predict2_0(nativeObj, sample.nativeObj, probs.nativeObj);
    150 
    151         return retVal;
    152     }
    153 
    154 
    155     //
    156     // C++:  bool trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
    157     //
    158 
    159     //javadoc: EM::trainEM(samples, logLikelihoods, labels, probs)
    160     public  boolean trainEM(Mat samples, Mat logLikelihoods, Mat labels, Mat probs)
    161     {
    162 
    163         boolean retVal = trainEM_0(nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
    164 
    165         return retVal;
    166     }
    167 
    168     //javadoc: EM::trainEM(samples)
    169     public  boolean trainEM(Mat samples)
    170     {
    171 
    172         boolean retVal = trainEM_1(nativeObj, samples.nativeObj);
    173 
    174         return retVal;
    175     }
    176 
    177 
    178     //
    179     // C++:  bool trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
    180     //
    181 
    182     //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels, probs)
    183     public  boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs)
    184     {
    185 
    186         boolean retVal = trainE_0(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
    187 
    188         return retVal;
    189     }
    190 
    191     //javadoc: EM::trainE(samples, means0)
    192     public  boolean trainE(Mat samples, Mat means0)
    193     {
    194 
    195         boolean retVal = trainE_1(nativeObj, samples.nativeObj, means0.nativeObj);
    196 
    197         return retVal;
    198     }
    199 
    200 
    201     //
    202     // C++:  bool trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
    203     //
    204 
    205     //javadoc: EM::trainM(samples, probs0, logLikelihoods, labels, probs)
    206     public  boolean trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels, Mat probs)
    207     {
    208 
    209         boolean retVal = trainM_0(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
    210 
    211         return retVal;
    212     }
    213 
    214     //javadoc: EM::trainM(samples, probs0)
    215     public  boolean trainM(Mat samples, Mat probs0)
    216     {
    217 
    218         boolean retVal = trainM_1(nativeObj, samples.nativeObj, probs0.nativeObj);
    219 
    220         return retVal;
    221     }
    222 
    223 
    224     //
    225     // C++: static Ptr_EM create()
    226     //
    227 
    228     //javadoc: EM::create()
    229     public static EM create()
    230     {
    231 
    232         EM retVal = new EM(create_0());
    233 
    234         return retVal;
    235     }
    236 
    237 
    238     @Override
    239     protected void finalize() throws Throwable {
    240         delete(nativeObj);
    241     }
    242 
    243 
    244 
    245     // C++:  int getClustersNumber()
    246     private static native int getClustersNumber_0(long nativeObj);
    247 
    248     // C++:  void setClustersNumber(int val)
    249     private static native void setClustersNumber_0(long nativeObj, int val);
    250 
    251     // C++:  int getCovarianceMatrixType()
    252     private static native int getCovarianceMatrixType_0(long nativeObj);
    253 
    254     // C++:  void setCovarianceMatrixType(int val)
    255     private static native void setCovarianceMatrixType_0(long nativeObj, int val);
    256 
    257     // C++:  TermCriteria getTermCriteria()
    258     private static native double[] getTermCriteria_0(long nativeObj);
    259 
    260     // C++:  void setTermCriteria(TermCriteria val)
    261     private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon);
    262 
    263     // C++:  Mat getWeights()
    264     private static native long getWeights_0(long nativeObj);
    265 
    266     // C++:  Mat getMeans()
    267     private static native long getMeans_0(long nativeObj);
    268 
    269     // C++:  Vec2d predict2(Mat sample, Mat& probs)
    270     private static native double[] predict2_0(long nativeObj, long sample_nativeObj, long probs_nativeObj);
    271 
    272     // C++:  bool trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
    273     private static native boolean trainEM_0(long nativeObj, long samples_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
    274     private static native boolean trainEM_1(long nativeObj, long samples_nativeObj);
    275 
    276     // C++:  bool trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
    277     private static native boolean trainE_0(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
    278     private static native boolean trainE_1(long nativeObj, long samples_nativeObj, long means0_nativeObj);
    279 
    280     // C++:  bool trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
    281     private static native boolean trainM_0(long nativeObj, long samples_nativeObj, long probs0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
    282     private static native boolean trainM_1(long nativeObj, long samples_nativeObj, long probs0_nativeObj);
    283 
    284     // C++: static Ptr_EM create()
    285     private static native long create_0();
    286 
    287     // native support for java finalize()
    288     private static native void delete(long nativeObj);
    289 
    290 }
    291