1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved. 16 // Third party copyrights are property of their respective owners. 17 // 18 // Redistribution and use in source and binary forms, with or without modification, 19 // are permitted provided that the following conditions are met: 20 // 21 // * Redistribution's of source code must retain the above copyright notice, 22 // this list of conditions and the following disclaimer. 23 // 24 // * Redistribution's in binary form must reproduce the above copyright notice, 25 // this list of conditions and the following disclaimer in the documentation 26 // and/or other materials provided with the distribution. 27 // 28 // * The name of the copyright holders may not be used to endorse or promote products 29 // derived from this software without specific prior written permission. 30 // 31 // This software is provided by the copyright holders and contributors "as is" and 32 // any express or implied warranties, including, but not limited to, the implied 33 // warranties of merchantability and fitness for a particular purpose are disclaimed. 34 // In no event shall the Intel Corporation or contributors be liable for any direct, 35 // indirect, incidental, special, exemplary, or consequential damages 36 // (including, but not limited to, procurement of substitute goods or services; 37 // loss of use, data, or profits; or business interruption) however caused 38 // and on any theory of liability, whether in contract, strict liability, 39 // or tort (including negligence or otherwise) arising in any way out of 40 // the use of this software, even if advised of the possibility of such damage. 41 // 42 //M*/ 43 44 #ifndef __OPENCV_OBJDETECT_HPP__ 45 #define __OPENCV_OBJDETECT_HPP__ 46 47 #include "opencv2/core.hpp" 48 49 /** 50 @defgroup objdetect Object Detection 51 52 Haar Feature-based Cascade Classifier for Object Detection 53 ---------------------------------------------------------- 54 55 The object detector described below has been initially proposed by Paul Viola @cite Viola01 and 56 improved by Rainer Lienhart @cite Lienhart02 . 57 58 First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is 59 trained with a few hundred sample views of a particular object (i.e., a face or a car), called 60 positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary 61 images of the same size. 62 63 After a classifier is trained, it can be applied to a region of interest (of the same size as used 64 during the training) in an input image. The classifier outputs a "1" if the region is likely to show 65 the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can 66 move the search window across the image and check every location using the classifier. The 67 classifier is designed so that it can be easily "resized" in order to be able to find the objects of 68 interest at different sizes, which is more efficient than resizing the image itself. So, to find an 69 object of an unknown size in the image the scan procedure should be done several times at different 70 scales. 71 72 The word "cascade" in the classifier name means that the resultant classifier consists of several 73 simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some 74 stage the candidate is rejected or all the stages are passed. The word "boosted" means that the 75 classifiers at every stage of the cascade are complex themselves and they are built out of basic 76 classifiers using one of four different boosting techniques (weighted voting). Currently Discrete 77 Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are 78 decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic 79 classifiers, and are calculated as described below. The current algorithm uses the following 80 Haar-like features: 81 82 ![image](pics/haarfeatures.png) 83 84 The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within 85 the region of interest and the scale (this scale is not the same as the scale used at the detection 86 stage, though these two scales are multiplied). For example, in the case of the third line feature 87 (2c) the response is calculated as the difference between the sum of image pixels under the 88 rectangle covering the whole feature (including the two white stripes and the black stripe in the 89 middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to 90 compensate for the differences in the size of areas. The sums of pixel values over a rectangular 91 regions are calculated rapidly using integral images (see below and the integral description). 92 93 To see the object detector at work, have a look at the facedetect demo: 94 <https://github.com/Itseez/opencv/tree/master/samples/cpp/dbt_face_detection.cpp> 95 96 The following reference is for the detection part only. There is a separate application called 97 opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. 98 99 @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in 100 addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection 101 using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at 102 <http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf> 103 104 @{ 105 @defgroup objdetect_c C API 106 @} 107 */ 108 109 typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; 110 111 namespace cv 112 { 113 114 //! @addtogroup objdetect 115 //! @{ 116 117 ///////////////////////////// Object Detection //////////////////////////// 118 119 //! class for grouping object candidates, detected by Cascade Classifier, HOG etc. 120 //! instance of the class is to be passed to cv::partition (see cxoperations.hpp) 121 class CV_EXPORTS SimilarRects 122 { 123 public: 124 SimilarRects(double _eps) : eps(_eps) {} 125 inline bool operator()(const Rect& r1, const Rect& r2) const 126 { 127 double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5; 128 return std::abs(r1.x - r2.x) <= delta && 129 std::abs(r1.y - r2.y) <= delta && 130 std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && 131 std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; 132 } 133 double eps; 134 }; 135 136 /** @brief Groups the object candidate rectangles. 137 138 @param rectList Input/output vector of rectangles. Output vector includes retained and grouped 139 rectangles. (The Python list is not modified in place.) 140 @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a 141 group of rectangles to retain it. 142 @param eps Relative difference between sides of the rectangles to merge them into a group. 143 144 The function is a wrapper for the generic function partition . It clusters all the input rectangles 145 using the rectangle equivalence criteria that combines rectangles with similar sizes and similar 146 locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If 147 \f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small 148 clusters containing less than or equal to groupThreshold rectangles are rejected. In each other 149 cluster, the average rectangle is computed and put into the output rectangle list. 150 */ 151 CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); 152 /** @overload */ 153 CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, 154 int groupThreshold, double eps = 0.2); 155 /** @overload */ 156 CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, 157 double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); 158 /** @overload */ 159 CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, 160 std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); 161 /** @overload */ 162 CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, 163 std::vector<double>& foundScales, 164 double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); 165 166 template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const; 167 168 enum { CASCADE_DO_CANNY_PRUNING = 1, 169 CASCADE_SCALE_IMAGE = 2, 170 CASCADE_FIND_BIGGEST_OBJECT = 4, 171 CASCADE_DO_ROUGH_SEARCH = 8 172 }; 173 174 class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm 175 { 176 public: 177 virtual ~BaseCascadeClassifier(); 178 virtual bool empty() const = 0; 179 virtual bool load( const String& filename ) = 0; 180 virtual void detectMultiScale( InputArray image, 181 CV_OUT std::vector<Rect>& objects, 182 double scaleFactor, 183 int minNeighbors, int flags, 184 Size minSize, Size maxSize ) = 0; 185 186 virtual void detectMultiScale( InputArray image, 187 CV_OUT std::vector<Rect>& objects, 188 CV_OUT std::vector<int>& numDetections, 189 double scaleFactor, 190 int minNeighbors, int flags, 191 Size minSize, Size maxSize ) = 0; 192 193 virtual void detectMultiScale( InputArray image, 194 CV_OUT std::vector<Rect>& objects, 195 CV_OUT std::vector<int>& rejectLevels, 196 CV_OUT std::vector<double>& levelWeights, 197 double scaleFactor, 198 int minNeighbors, int flags, 199 Size minSize, Size maxSize, 200 bool outputRejectLevels ) = 0; 201 202 virtual bool isOldFormatCascade() const = 0; 203 virtual Size getOriginalWindowSize() const = 0; 204 virtual int getFeatureType() const = 0; 205 virtual void* getOldCascade() = 0; 206 207 class CV_EXPORTS MaskGenerator 208 { 209 public: 210 virtual ~MaskGenerator() {} 211 virtual Mat generateMask(const Mat& src)=0; 212 virtual void initializeMask(const Mat& /*src*/) { } 213 }; 214 virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0; 215 virtual Ptr<MaskGenerator> getMaskGenerator() = 0; 216 }; 217 218 /** @brief Cascade classifier class for object detection. 219 */ 220 class CV_EXPORTS_W CascadeClassifier 221 { 222 public: 223 CV_WRAP CascadeClassifier(); 224 /** @brief Loads a classifier from a file. 225 226 @param filename Name of the file from which the classifier is loaded. 227 */ 228 CV_WRAP CascadeClassifier(const String& filename); 229 ~CascadeClassifier(); 230 /** @brief Checks whether the classifier has been loaded. 231 */ 232 CV_WRAP bool empty() const; 233 /** @brief Loads a classifier from a file. 234 235 @param filename Name of the file from which the classifier is loaded. The file may contain an old 236 HAAR classifier trained by the haartraining application or a new cascade classifier trained by the 237 traincascade application. 238 */ 239 CV_WRAP bool load( const String& filename ); 240 /** @brief Reads a classifier from a FileStorage node. 241 242 @note The file may contain a new cascade classifier (trained traincascade application) only. 243 */ 244 CV_WRAP bool read( const FileNode& node ); 245 246 /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list 247 of rectangles. 248 249 @param image Matrix of the type CV_8U containing an image where objects are detected. 250 @param objects Vector of rectangles where each rectangle contains the detected object, the 251 rectangles may be partially outside the original image. 252 @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. 253 @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have 254 to retain it. 255 @param flags Parameter with the same meaning for an old cascade as in the function 256 cvHaarDetectObjects. It is not used for a new cascade. 257 @param minSize Minimum possible object size. Objects smaller than that are ignored. 258 @param maxSize Maximum possible object size. Objects larger than that are ignored. 259 260 The function is parallelized with the TBB library. 261 262 @note 263 - (Python) A face detection example using cascade classifiers can be found at 264 opencv_source_code/samples/python2/facedetect.py 265 */ 266 CV_WRAP void detectMultiScale( InputArray image, 267 CV_OUT std::vector<Rect>& objects, 268 double scaleFactor = 1.1, 269 int minNeighbors = 3, int flags = 0, 270 Size minSize = Size(), 271 Size maxSize = Size() ); 272 273 /** @overload 274 @param image Matrix of the type CV_8U containing an image where objects are detected. 275 @param objects Vector of rectangles where each rectangle contains the detected object, the 276 rectangles may be partially outside the original image. 277 @param numDetections Vector of detection numbers for the corresponding objects. An object's number 278 of detections is the number of neighboring positively classified rectangles that were joined 279 together to form the object. 280 @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. 281 @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have 282 to retain it. 283 @param flags Parameter with the same meaning for an old cascade as in the function 284 cvHaarDetectObjects. It is not used for a new cascade. 285 @param minSize Minimum possible object size. Objects smaller than that are ignored. 286 @param maxSize Maximum possible object size. Objects larger than that are ignored. 287 */ 288 CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, 289 CV_OUT std::vector<Rect>& objects, 290 CV_OUT std::vector<int>& numDetections, 291 double scaleFactor=1.1, 292 int minNeighbors=3, int flags=0, 293 Size minSize=Size(), 294 Size maxSize=Size() ); 295 296 /** @overload 297 if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights` 298 */ 299 CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, 300 CV_OUT std::vector<Rect>& objects, 301 CV_OUT std::vector<int>& rejectLevels, 302 CV_OUT std::vector<double>& levelWeights, 303 double scaleFactor = 1.1, 304 int minNeighbors = 3, int flags = 0, 305 Size minSize = Size(), 306 Size maxSize = Size(), 307 bool outputRejectLevels = false ); 308 309 CV_WRAP bool isOldFormatCascade() const; 310 CV_WRAP Size getOriginalWindowSize() const; 311 CV_WRAP int getFeatureType() const; 312 void* getOldCascade(); 313 314 CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); 315 316 void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator); 317 Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator(); 318 319 Ptr<BaseCascadeClassifier> cc; 320 }; 321 322 CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator(); 323 324 //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// 325 326 //! struct for detection region of interest (ROI) 327 struct DetectionROI 328 { 329 //! scale(size) of the bounding box 330 double scale; 331 //! set of requrested locations to be evaluated 332 std::vector<cv::Point> locations; 333 //! vector that will contain confidence values for each location 334 std::vector<double> confidences; 335 }; 336 337 struct CV_EXPORTS_W HOGDescriptor 338 { 339 public: 340 enum { L2Hys = 0 341 }; 342 enum { DEFAULT_NLEVELS = 64 343 }; 344 345 CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), 346 cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), 347 histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), 348 free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) 349 {} 350 351 CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, 352 Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, 353 int _histogramNormType=HOGDescriptor::L2Hys, 354 double _L2HysThreshold=0.2, bool _gammaCorrection=false, 355 int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) 356 : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), 357 nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), 358 histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), 359 gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) 360 {} 361 362 CV_WRAP HOGDescriptor(const String& filename) 363 { 364 load(filename); 365 } 366 367 HOGDescriptor(const HOGDescriptor& d) 368 { 369 d.copyTo(*this); 370 } 371 372 virtual ~HOGDescriptor() {} 373 374 CV_WRAP size_t getDescriptorSize() const; 375 CV_WRAP bool checkDetectorSize() const; 376 CV_WRAP double getWinSigma() const; 377 378 CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); 379 380 virtual bool read(FileNode& fn); 381 virtual void write(FileStorage& fs, const String& objname) const; 382 383 CV_WRAP virtual bool load(const String& filename, const String& objname = String()); 384 CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; 385 virtual void copyTo(HOGDescriptor& c) const; 386 387 CV_WRAP virtual void compute(InputArray img, 388 CV_OUT std::vector<float>& descriptors, 389 Size winStride = Size(), Size padding = Size(), 390 const std::vector<Point>& locations = std::vector<Point>()) const; 391 392 //! with found weights output 393 CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, 394 CV_OUT std::vector<double>& weights, 395 double hitThreshold = 0, Size winStride = Size(), 396 Size padding = Size(), 397 const std::vector<Point>& searchLocations = std::vector<Point>()) const; 398 //! without found weights output 399 virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, 400 double hitThreshold = 0, Size winStride = Size(), 401 Size padding = Size(), 402 const std::vector<Point>& searchLocations=std::vector<Point>()) const; 403 404 //! with result weights output 405 CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, 406 CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, 407 Size winStride = Size(), Size padding = Size(), double scale = 1.05, 408 double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; 409 //! without found weights output 410 virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, 411 double hitThreshold = 0, Size winStride = Size(), 412 Size padding = Size(), double scale = 1.05, 413 double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; 414 415 CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, 416 Size paddingTL = Size(), Size paddingBR = Size()) const; 417 418 CV_WRAP static std::vector<float> getDefaultPeopleDetector(); 419 CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); 420 421 CV_PROP Size winSize; 422 CV_PROP Size blockSize; 423 CV_PROP Size blockStride; 424 CV_PROP Size cellSize; 425 CV_PROP int nbins; 426 CV_PROP int derivAperture; 427 CV_PROP double winSigma; 428 CV_PROP int histogramNormType; 429 CV_PROP double L2HysThreshold; 430 CV_PROP bool gammaCorrection; 431 CV_PROP std::vector<float> svmDetector; 432 UMat oclSvmDetector; 433 float free_coef; 434 CV_PROP int nlevels; 435 CV_PROP bool signedGradient; 436 437 438 //! evaluate specified ROI and return confidence value for each location 439 virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations, 440 CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, 441 double hitThreshold = 0, cv::Size winStride = Size(), 442 cv::Size padding = Size()) const; 443 444 //! evaluate specified ROI and return confidence value for each location in multiple scales 445 virtual void detectMultiScaleROI(const cv::Mat& img, 446 CV_OUT std::vector<cv::Rect>& foundLocations, 447 std::vector<DetectionROI>& locations, 448 double hitThreshold = 0, 449 int groupThreshold = 0) const; 450 451 //! read/parse Dalal's alt model file 452 void readALTModel(String modelfile); 453 void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; 454 }; 455 456 //! @} objdetect 457 458 } 459 460 #include "opencv2/objdetect/detection_based_tracker.hpp" 461 462 #ifndef DISABLE_OPENCV_24_COMPATIBILITY 463 #include "opencv2/objdetect/objdetect_c.h" 464 #endif 465 466 #endif 467