Home | History | Annotate | Download | only in animator
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include <ctype.h>
     11 #include "SkDrawPath.h"
     12 #include "SkParse.h"
     13 #include "SkPoint.h"
     14 #include "SkUtils.h"
     15 #define QUADRATIC_APPROXIMATION 1
     16 
     17 #if QUADRATIC_APPROXIMATION
     18 ////////////////////////////////////////////////////////////////////////////////////
     19 //functions to approximate a cubic using two quadratics
     20 
     21 //      midPt sets the first argument to be the midpoint of the other two
     22 //      it is used by quadApprox
     23 static inline void midPt(SkPoint& dest,const SkPoint& a,const SkPoint& b)
     24 {
     25     dest.set(SkScalarAve(a.fX, b.fX),SkScalarAve(a.fY, b.fY));
     26 }
     27 //      quadApprox - makes an approximation, which we hope is faster
     28 static void quadApprox(SkPath &fPath, const SkPoint &p0, const SkPoint &p1, const SkPoint &p2)
     29 {
     30     //divide the cubic up into two cubics, then convert them into quadratics
     31     //define our points
     32     SkPoint c,j,k,l,m,n,o,p,q, mid;
     33     fPath.getLastPt(&c);
     34     midPt(j, p0, c);
     35     midPt(k, p0, p1);
     36     midPt(l, p1, p2);
     37     midPt(o, j, k);
     38     midPt(p, k, l);
     39     midPt(q, o, p);
     40     //compute the first half
     41     m.set(SkScalarHalf(3*j.fX - c.fX), SkScalarHalf(3*j.fY - c.fY));
     42     n.set(SkScalarHalf(3*o.fX -q.fX), SkScalarHalf(3*o.fY - q.fY));
     43     midPt(mid,m,n);
     44     fPath.quadTo(mid,q);
     45     c = q;
     46     //compute the second half
     47     m.set(SkScalarHalf(3*p.fX - c.fX), SkScalarHalf(3*p.fY - c.fY));
     48     n.set(SkScalarHalf(3*l.fX -p2.fX),SkScalarHalf(3*l.fY -p2.fY));
     49     midPt(mid,m,n);
     50     fPath.quadTo(mid,p2);
     51 }
     52 #endif
     53 
     54 
     55 static inline bool is_between(int c, int min, int max)
     56 {
     57     return (unsigned)(c - min) <= (unsigned)(max - min);
     58 }
     59 
     60 static inline bool is_ws(int c)
     61 {
     62     return is_between(c, 1, 32);
     63 }
     64 
     65 static inline bool is_digit(int c)
     66 {
     67     return is_between(c, '0', '9');
     68 }
     69 
     70 static inline bool is_sep(int c)
     71 {
     72     return is_ws(c) || c == ',';
     73 }
     74 
     75 static const char* skip_ws(const char str[])
     76 {
     77     SkASSERT(str);
     78     while (is_ws(*str))
     79         str++;
     80     return str;
     81 }
     82 
     83 static const char* skip_sep(const char str[])
     84 {
     85     SkASSERT(str);
     86     while (is_sep(*str))
     87         str++;
     88     return str;
     89 }
     90 
     91 static const char* find_points(const char str[], SkPoint value[], int count,
     92      bool isRelative, SkPoint* relative)
     93 {
     94     str = SkParse::FindScalars(str, &value[0].fX, count * 2);
     95     if (isRelative) {
     96         for (int index = 0; index < count; index++) {
     97             value[index].fX += relative->fX;
     98             value[index].fY += relative->fY;
     99         }
    100     }
    101     return str;
    102 }
    103 
    104 static const char* find_scalar(const char str[], SkScalar* value,
    105     bool isRelative, SkScalar relative)
    106 {
    107     str = SkParse::FindScalar(str, value);
    108     if (isRelative)
    109         *value += relative;
    110     return str;
    111 }
    112 
    113 void SkDrawPath::parseSVG() {
    114     fPath.reset();
    115     const char* data = d.c_str();
    116     SkPoint f = {0, 0};
    117     SkPoint c = {0, 0};
    118     SkPoint lastc = {0, 0};
    119     SkPoint points[3];
    120     char op = '\0';
    121     char previousOp = '\0';
    122     bool relative = false;
    123     do {
    124         data = skip_ws(data);
    125         if (data[0] == '\0')
    126             break;
    127         char ch = data[0];
    128         if (is_digit(ch) || ch == '-' || ch == '+') {
    129             if (op == '\0')
    130                 return;
    131         }
    132         else {
    133             op = ch;
    134             relative = false;
    135             if (islower(op)) {
    136                 op = (char) toupper(op);
    137                 relative = true;
    138             }
    139             data++;
    140             data = skip_sep(data);
    141         }
    142         switch (op) {
    143             case 'M':
    144                 data = find_points(data, points, 1, relative, &c);
    145                 fPath.moveTo(points[0]);
    146                 op = 'L';
    147                 c = points[0];
    148                 break;
    149             case 'L':
    150                 data = find_points(data, points, 1, relative, &c);
    151                 fPath.lineTo(points[0]);
    152                 c = points[0];
    153                 break;
    154             case 'H': {
    155                 SkScalar x;
    156                 data = find_scalar(data, &x, relative, c.fX);
    157                 fPath.lineTo(x, c.fY);
    158                 c.fX = x;
    159             }
    160                 break;
    161             case 'V': {
    162                 SkScalar y;
    163                 data = find_scalar(data, &y, relative, c.fY);
    164                 fPath.lineTo(c.fX, y);
    165                 c.fY = y;
    166             }
    167                 break;
    168             case 'C':
    169                 data = find_points(data, points, 3, relative, &c);
    170                 goto cubicCommon;
    171             case 'S':
    172                 data = find_points(data, &points[1], 2, relative, &c);
    173                 points[0] = c;
    174                 if (previousOp == 'C' || previousOp == 'S') {
    175                     points[0].fX -= lastc.fX - c.fX;
    176                     points[0].fY -= lastc.fY - c.fY;
    177                 }
    178             cubicCommon:
    179     //          if (data[0] == '\0')
    180     //              return;
    181 #if QUADRATIC_APPROXIMATION
    182                     quadApprox(fPath, points[0], points[1], points[2]);
    183 #else   //this way just does a boring, slow old cubic
    184                     fPath.cubicTo(points[0], points[1], points[2]);
    185 #endif
    186         //if we are using the quadApprox, lastc is what it would have been if we had used
    187         //cubicTo
    188                     lastc = points[1];
    189                     c = points[2];
    190                 break;
    191             case 'Q':  // Quadratic Bezier Curve
    192                 data = find_points(data, points, 2, relative, &c);
    193                 goto quadraticCommon;
    194             case 'T':
    195                 data = find_points(data, &points[1], 1, relative, &c);
    196                 points[0] = points[1];
    197                 if (previousOp == 'Q' || previousOp == 'T') {
    198                     points[0].fX = c.fX * 2 - lastc.fX;
    199                     points[0].fY = c.fY * 2 - lastc.fY;
    200                 }
    201             quadraticCommon:
    202                 fPath.quadTo(points[0], points[1]);
    203                 lastc = points[0];
    204                 c = points[1];
    205                 break;
    206             case 'Z':
    207                 fPath.close();
    208 #if 0   // !!! still a bug?
    209                 if (fPath.isEmpty() && (f.fX != 0 || f.fY != 0)) {
    210                     c.fX -= SkScalar.Epsilon;   // !!! enough?
    211                     fPath.moveTo(c);
    212                     fPath.lineTo(f);
    213                     fPath.close();
    214                 }
    215 #endif
    216                 c = f;
    217                 op = '\0';
    218                 break;
    219             case '~': {
    220                 SkPoint args[2];
    221                 data = find_points(data, args, 2, false, nullptr);
    222                 fPath.moveTo(args[0].fX, args[0].fY);
    223                 fPath.lineTo(args[1].fX, args[1].fY);
    224             }
    225                 break;
    226             default:
    227                 SkASSERT(0);
    228                 return;
    229         }
    230         if (previousOp == 0)
    231             f = c;
    232         previousOp = op;
    233     } while (data[0] > 0);
    234 }
    235