1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/crankshaft/arm64/lithium-codegen-arm64.h" 6 7 #include "src/arm64/frames-arm64.h" 8 #include "src/base/bits.h" 9 #include "src/code-factory.h" 10 #include "src/code-stubs.h" 11 #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h" 12 #include "src/crankshaft/hydrogen-osr.h" 13 #include "src/ic/ic.h" 14 #include "src/ic/stub-cache.h" 15 #include "src/profiler/cpu-profiler.h" 16 17 namespace v8 { 18 namespace internal { 19 20 21 class SafepointGenerator final : public CallWrapper { 22 public: 23 SafepointGenerator(LCodeGen* codegen, 24 LPointerMap* pointers, 25 Safepoint::DeoptMode mode) 26 : codegen_(codegen), 27 pointers_(pointers), 28 deopt_mode_(mode) { } 29 virtual ~SafepointGenerator() { } 30 31 virtual void BeforeCall(int call_size) const { } 32 33 virtual void AfterCall() const { 34 codegen_->RecordSafepoint(pointers_, deopt_mode_); 35 } 36 37 private: 38 LCodeGen* codegen_; 39 LPointerMap* pointers_; 40 Safepoint::DeoptMode deopt_mode_; 41 }; 42 43 44 #define __ masm()-> 45 46 // Emit code to branch if the given condition holds. 47 // The code generated here doesn't modify the flags and they must have 48 // been set by some prior instructions. 49 // 50 // The EmitInverted function simply inverts the condition. 51 class BranchOnCondition : public BranchGenerator { 52 public: 53 BranchOnCondition(LCodeGen* codegen, Condition cond) 54 : BranchGenerator(codegen), 55 cond_(cond) { } 56 57 virtual void Emit(Label* label) const { 58 __ B(cond_, label); 59 } 60 61 virtual void EmitInverted(Label* label) const { 62 if (cond_ != al) { 63 __ B(NegateCondition(cond_), label); 64 } 65 } 66 67 private: 68 Condition cond_; 69 }; 70 71 72 // Emit code to compare lhs and rhs and branch if the condition holds. 73 // This uses MacroAssembler's CompareAndBranch function so it will handle 74 // converting the comparison to Cbz/Cbnz if the right-hand side is 0. 75 // 76 // EmitInverted still compares the two operands but inverts the condition. 77 class CompareAndBranch : public BranchGenerator { 78 public: 79 CompareAndBranch(LCodeGen* codegen, 80 Condition cond, 81 const Register& lhs, 82 const Operand& rhs) 83 : BranchGenerator(codegen), 84 cond_(cond), 85 lhs_(lhs), 86 rhs_(rhs) { } 87 88 virtual void Emit(Label* label) const { 89 __ CompareAndBranch(lhs_, rhs_, cond_, label); 90 } 91 92 virtual void EmitInverted(Label* label) const { 93 __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label); 94 } 95 96 private: 97 Condition cond_; 98 const Register& lhs_; 99 const Operand& rhs_; 100 }; 101 102 103 // Test the input with the given mask and branch if the condition holds. 104 // If the condition is 'eq' or 'ne' this will use MacroAssembler's 105 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the 106 // conversion to Tbz/Tbnz when possible. 107 class TestAndBranch : public BranchGenerator { 108 public: 109 TestAndBranch(LCodeGen* codegen, 110 Condition cond, 111 const Register& value, 112 uint64_t mask) 113 : BranchGenerator(codegen), 114 cond_(cond), 115 value_(value), 116 mask_(mask) { } 117 118 virtual void Emit(Label* label) const { 119 switch (cond_) { 120 case eq: 121 __ TestAndBranchIfAllClear(value_, mask_, label); 122 break; 123 case ne: 124 __ TestAndBranchIfAnySet(value_, mask_, label); 125 break; 126 default: 127 __ Tst(value_, mask_); 128 __ B(cond_, label); 129 } 130 } 131 132 virtual void EmitInverted(Label* label) const { 133 // The inverse of "all clear" is "any set" and vice versa. 134 switch (cond_) { 135 case eq: 136 __ TestAndBranchIfAnySet(value_, mask_, label); 137 break; 138 case ne: 139 __ TestAndBranchIfAllClear(value_, mask_, label); 140 break; 141 default: 142 __ Tst(value_, mask_); 143 __ B(NegateCondition(cond_), label); 144 } 145 } 146 147 private: 148 Condition cond_; 149 const Register& value_; 150 uint64_t mask_; 151 }; 152 153 154 // Test the input and branch if it is non-zero and not a NaN. 155 class BranchIfNonZeroNumber : public BranchGenerator { 156 public: 157 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value, 158 const FPRegister& scratch) 159 : BranchGenerator(codegen), value_(value), scratch_(scratch) { } 160 161 virtual void Emit(Label* label) const { 162 __ Fabs(scratch_, value_); 163 // Compare with 0.0. Because scratch_ is positive, the result can be one of 164 // nZCv (equal), nzCv (greater) or nzCV (unordered). 165 __ Fcmp(scratch_, 0.0); 166 __ B(gt, label); 167 } 168 169 virtual void EmitInverted(Label* label) const { 170 __ Fabs(scratch_, value_); 171 __ Fcmp(scratch_, 0.0); 172 __ B(le, label); 173 } 174 175 private: 176 const FPRegister& value_; 177 const FPRegister& scratch_; 178 }; 179 180 181 // Test the input and branch if it is a heap number. 182 class BranchIfHeapNumber : public BranchGenerator { 183 public: 184 BranchIfHeapNumber(LCodeGen* codegen, const Register& value) 185 : BranchGenerator(codegen), value_(value) { } 186 187 virtual void Emit(Label* label) const { 188 __ JumpIfHeapNumber(value_, label); 189 } 190 191 virtual void EmitInverted(Label* label) const { 192 __ JumpIfNotHeapNumber(value_, label); 193 } 194 195 private: 196 const Register& value_; 197 }; 198 199 200 // Test the input and branch if it is the specified root value. 201 class BranchIfRoot : public BranchGenerator { 202 public: 203 BranchIfRoot(LCodeGen* codegen, const Register& value, 204 Heap::RootListIndex index) 205 : BranchGenerator(codegen), value_(value), index_(index) { } 206 207 virtual void Emit(Label* label) const { 208 __ JumpIfRoot(value_, index_, label); 209 } 210 211 virtual void EmitInverted(Label* label) const { 212 __ JumpIfNotRoot(value_, index_, label); 213 } 214 215 private: 216 const Register& value_; 217 const Heap::RootListIndex index_; 218 }; 219 220 221 void LCodeGen::WriteTranslation(LEnvironment* environment, 222 Translation* translation) { 223 if (environment == NULL) return; 224 225 // The translation includes one command per value in the environment. 226 int translation_size = environment->translation_size(); 227 228 WriteTranslation(environment->outer(), translation); 229 WriteTranslationFrame(environment, translation); 230 231 int object_index = 0; 232 int dematerialized_index = 0; 233 for (int i = 0; i < translation_size; ++i) { 234 LOperand* value = environment->values()->at(i); 235 AddToTranslation( 236 environment, translation, value, environment->HasTaggedValueAt(i), 237 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); 238 } 239 } 240 241 242 void LCodeGen::AddToTranslation(LEnvironment* environment, 243 Translation* translation, 244 LOperand* op, 245 bool is_tagged, 246 bool is_uint32, 247 int* object_index_pointer, 248 int* dematerialized_index_pointer) { 249 if (op == LEnvironment::materialization_marker()) { 250 int object_index = (*object_index_pointer)++; 251 if (environment->ObjectIsDuplicateAt(object_index)) { 252 int dupe_of = environment->ObjectDuplicateOfAt(object_index); 253 translation->DuplicateObject(dupe_of); 254 return; 255 } 256 int object_length = environment->ObjectLengthAt(object_index); 257 if (environment->ObjectIsArgumentsAt(object_index)) { 258 translation->BeginArgumentsObject(object_length); 259 } else { 260 translation->BeginCapturedObject(object_length); 261 } 262 int dematerialized_index = *dematerialized_index_pointer; 263 int env_offset = environment->translation_size() + dematerialized_index; 264 *dematerialized_index_pointer += object_length; 265 for (int i = 0; i < object_length; ++i) { 266 LOperand* value = environment->values()->at(env_offset + i); 267 AddToTranslation(environment, 268 translation, 269 value, 270 environment->HasTaggedValueAt(env_offset + i), 271 environment->HasUint32ValueAt(env_offset + i), 272 object_index_pointer, 273 dematerialized_index_pointer); 274 } 275 return; 276 } 277 278 if (op->IsStackSlot()) { 279 int index = op->index(); 280 if (index >= 0) { 281 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; 282 } 283 if (is_tagged) { 284 translation->StoreStackSlot(index); 285 } else if (is_uint32) { 286 translation->StoreUint32StackSlot(index); 287 } else { 288 translation->StoreInt32StackSlot(index); 289 } 290 } else if (op->IsDoubleStackSlot()) { 291 int index = op->index(); 292 if (index >= 0) { 293 index += StandardFrameConstants::kFixedFrameSize / kPointerSize; 294 } 295 translation->StoreDoubleStackSlot(index); 296 } else if (op->IsRegister()) { 297 Register reg = ToRegister(op); 298 if (is_tagged) { 299 translation->StoreRegister(reg); 300 } else if (is_uint32) { 301 translation->StoreUint32Register(reg); 302 } else { 303 translation->StoreInt32Register(reg); 304 } 305 } else if (op->IsDoubleRegister()) { 306 DoubleRegister reg = ToDoubleRegister(op); 307 translation->StoreDoubleRegister(reg); 308 } else if (op->IsConstantOperand()) { 309 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); 310 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); 311 translation->StoreLiteral(src_index); 312 } else { 313 UNREACHABLE(); 314 } 315 } 316 317 318 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, 319 Safepoint::DeoptMode mode) { 320 environment->set_has_been_used(); 321 if (!environment->HasBeenRegistered()) { 322 int frame_count = 0; 323 int jsframe_count = 0; 324 for (LEnvironment* e = environment; e != NULL; e = e->outer()) { 325 ++frame_count; 326 if (e->frame_type() == JS_FUNCTION) { 327 ++jsframe_count; 328 } 329 } 330 Translation translation(&translations_, frame_count, jsframe_count, zone()); 331 WriteTranslation(environment, &translation); 332 int deoptimization_index = deoptimizations_.length(); 333 int pc_offset = masm()->pc_offset(); 334 environment->Register(deoptimization_index, 335 translation.index(), 336 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); 337 deoptimizations_.Add(environment, zone()); 338 } 339 } 340 341 342 void LCodeGen::CallCode(Handle<Code> code, 343 RelocInfo::Mode mode, 344 LInstruction* instr) { 345 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); 346 } 347 348 349 void LCodeGen::CallCodeGeneric(Handle<Code> code, 350 RelocInfo::Mode mode, 351 LInstruction* instr, 352 SafepointMode safepoint_mode) { 353 DCHECK(instr != NULL); 354 355 Assembler::BlockPoolsScope scope(masm_); 356 __ Call(code, mode); 357 RecordSafepointWithLazyDeopt(instr, safepoint_mode); 358 359 if ((code->kind() == Code::BINARY_OP_IC) || 360 (code->kind() == Code::COMPARE_IC)) { 361 // Signal that we don't inline smi code before these stubs in the 362 // optimizing code generator. 363 InlineSmiCheckInfo::EmitNotInlined(masm()); 364 } 365 } 366 367 368 void LCodeGen::DoCallFunction(LCallFunction* instr) { 369 DCHECK(ToRegister(instr->context()).is(cp)); 370 DCHECK(ToRegister(instr->function()).Is(x1)); 371 DCHECK(ToRegister(instr->result()).Is(x0)); 372 373 int arity = instr->arity(); 374 ConvertReceiverMode mode = instr->hydrogen()->convert_mode(); 375 if (instr->hydrogen()->HasVectorAndSlot()) { 376 Register slot_register = ToRegister(instr->temp_slot()); 377 Register vector_register = ToRegister(instr->temp_vector()); 378 DCHECK(slot_register.is(x3)); 379 DCHECK(vector_register.is(x2)); 380 381 AllowDeferredHandleDereference vector_structure_check; 382 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); 383 int index = vector->GetIndex(instr->hydrogen()->slot()); 384 385 __ Mov(vector_register, vector); 386 __ Mov(slot_register, Operand(Smi::FromInt(index))); 387 388 Handle<Code> ic = 389 CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code(); 390 CallCode(ic, RelocInfo::CODE_TARGET, instr); 391 } else { 392 __ Mov(x0, arity); 393 CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr); 394 } 395 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); 396 } 397 398 399 void LCodeGen::DoCallNewArray(LCallNewArray* instr) { 400 DCHECK(instr->IsMarkedAsCall()); 401 DCHECK(ToRegister(instr->context()).is(cp)); 402 DCHECK(ToRegister(instr->constructor()).is(x1)); 403 404 __ Mov(x0, Operand(instr->arity())); 405 if (instr->arity() == 1) { 406 // We only need the allocation site for the case we have a length argument. 407 // The case may bail out to the runtime, which will determine the correct 408 // elements kind with the site. 409 __ Mov(x2, instr->hydrogen()->site()); 410 } else { 411 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); 412 } 413 414 415 ElementsKind kind = instr->hydrogen()->elements_kind(); 416 AllocationSiteOverrideMode override_mode = 417 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) 418 ? DISABLE_ALLOCATION_SITES 419 : DONT_OVERRIDE; 420 421 if (instr->arity() == 0) { 422 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); 423 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 424 } else if (instr->arity() == 1) { 425 Label done; 426 if (IsFastPackedElementsKind(kind)) { 427 Label packed_case; 428 429 // We might need to create a holey array; look at the first argument. 430 __ Peek(x10, 0); 431 __ Cbz(x10, &packed_case); 432 433 ElementsKind holey_kind = GetHoleyElementsKind(kind); 434 ArraySingleArgumentConstructorStub stub(isolate(), 435 holey_kind, 436 override_mode); 437 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 438 __ B(&done); 439 __ Bind(&packed_case); 440 } 441 442 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); 443 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 444 __ Bind(&done); 445 } else { 446 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); 447 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 448 } 449 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); 450 451 DCHECK(ToRegister(instr->result()).is(x0)); 452 } 453 454 455 void LCodeGen::CallRuntime(const Runtime::Function* function, 456 int num_arguments, 457 LInstruction* instr, 458 SaveFPRegsMode save_doubles) { 459 DCHECK(instr != NULL); 460 461 __ CallRuntime(function, num_arguments, save_doubles); 462 463 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 464 } 465 466 467 void LCodeGen::LoadContextFromDeferred(LOperand* context) { 468 if (context->IsRegister()) { 469 __ Mov(cp, ToRegister(context)); 470 } else if (context->IsStackSlot()) { 471 __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer)); 472 } else if (context->IsConstantOperand()) { 473 HConstant* constant = 474 chunk_->LookupConstant(LConstantOperand::cast(context)); 475 __ LoadHeapObject(cp, 476 Handle<HeapObject>::cast(constant->handle(isolate()))); 477 } else { 478 UNREACHABLE(); 479 } 480 } 481 482 483 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, 484 int argc, 485 LInstruction* instr, 486 LOperand* context) { 487 LoadContextFromDeferred(context); 488 __ CallRuntimeSaveDoubles(id); 489 RecordSafepointWithRegisters( 490 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); 491 } 492 493 494 void LCodeGen::RecordAndWritePosition(int position) { 495 if (position == RelocInfo::kNoPosition) return; 496 masm()->positions_recorder()->RecordPosition(position); 497 masm()->positions_recorder()->WriteRecordedPositions(); 498 } 499 500 501 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, 502 SafepointMode safepoint_mode) { 503 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { 504 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); 505 } else { 506 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 507 RecordSafepointWithRegisters( 508 instr->pointer_map(), 0, Safepoint::kLazyDeopt); 509 } 510 } 511 512 513 void LCodeGen::RecordSafepoint(LPointerMap* pointers, 514 Safepoint::Kind kind, 515 int arguments, 516 Safepoint::DeoptMode deopt_mode) { 517 DCHECK(expected_safepoint_kind_ == kind); 518 519 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); 520 Safepoint safepoint = safepoints_.DefineSafepoint( 521 masm(), kind, arguments, deopt_mode); 522 523 for (int i = 0; i < operands->length(); i++) { 524 LOperand* pointer = operands->at(i); 525 if (pointer->IsStackSlot()) { 526 safepoint.DefinePointerSlot(pointer->index(), zone()); 527 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { 528 safepoint.DefinePointerRegister(ToRegister(pointer), zone()); 529 } 530 } 531 } 532 533 void LCodeGen::RecordSafepoint(LPointerMap* pointers, 534 Safepoint::DeoptMode deopt_mode) { 535 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); 536 } 537 538 539 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { 540 LPointerMap empty_pointers(zone()); 541 RecordSafepoint(&empty_pointers, deopt_mode); 542 } 543 544 545 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, 546 int arguments, 547 Safepoint::DeoptMode deopt_mode) { 548 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); 549 } 550 551 552 bool LCodeGen::GenerateCode() { 553 LPhase phase("Z_Code generation", chunk()); 554 DCHECK(is_unused()); 555 status_ = GENERATING; 556 557 // Open a frame scope to indicate that there is a frame on the stack. The 558 // NONE indicates that the scope shouldn't actually generate code to set up 559 // the frame (that is done in GeneratePrologue). 560 FrameScope frame_scope(masm_, StackFrame::NONE); 561 562 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && 563 GenerateJumpTable() && GenerateSafepointTable(); 564 } 565 566 567 void LCodeGen::SaveCallerDoubles() { 568 DCHECK(info()->saves_caller_doubles()); 569 DCHECK(NeedsEagerFrame()); 570 Comment(";;; Save clobbered callee double registers"); 571 BitVector* doubles = chunk()->allocated_double_registers(); 572 BitVector::Iterator iterator(doubles); 573 int count = 0; 574 while (!iterator.Done()) { 575 // TODO(all): Is this supposed to save just the callee-saved doubles? It 576 // looks like it's saving all of them. 577 FPRegister value = FPRegister::from_code(iterator.Current()); 578 __ Poke(value, count * kDoubleSize); 579 iterator.Advance(); 580 count++; 581 } 582 } 583 584 585 void LCodeGen::RestoreCallerDoubles() { 586 DCHECK(info()->saves_caller_doubles()); 587 DCHECK(NeedsEagerFrame()); 588 Comment(";;; Restore clobbered callee double registers"); 589 BitVector* doubles = chunk()->allocated_double_registers(); 590 BitVector::Iterator iterator(doubles); 591 int count = 0; 592 while (!iterator.Done()) { 593 // TODO(all): Is this supposed to restore just the callee-saved doubles? It 594 // looks like it's restoring all of them. 595 FPRegister value = FPRegister::from_code(iterator.Current()); 596 __ Peek(value, count * kDoubleSize); 597 iterator.Advance(); 598 count++; 599 } 600 } 601 602 603 bool LCodeGen::GeneratePrologue() { 604 DCHECK(is_generating()); 605 606 if (info()->IsOptimizing()) { 607 ProfileEntryHookStub::MaybeCallEntryHook(masm_); 608 609 #ifdef DEBUG 610 if (strlen(FLAG_stop_at) > 0 && 611 info()->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { 612 __ Debug("stop-at", __LINE__, BREAK); 613 } 614 #endif 615 } 616 617 DCHECK(__ StackPointer().Is(jssp)); 618 info()->set_prologue_offset(masm_->pc_offset()); 619 if (NeedsEagerFrame()) { 620 if (info()->IsStub()) { 621 __ StubPrologue(); 622 } else { 623 __ Prologue(info()->GeneratePreagedPrologue()); 624 } 625 frame_is_built_ = true; 626 } 627 628 // Reserve space for the stack slots needed by the code. 629 int slots = GetStackSlotCount(); 630 if (slots > 0) { 631 __ Claim(slots, kPointerSize); 632 } 633 634 if (info()->saves_caller_doubles()) { 635 SaveCallerDoubles(); 636 } 637 return !is_aborted(); 638 } 639 640 641 void LCodeGen::DoPrologue(LPrologue* instr) { 642 Comment(";;; Prologue begin"); 643 644 // Allocate a local context if needed. 645 if (info()->num_heap_slots() > 0) { 646 Comment(";;; Allocate local context"); 647 bool need_write_barrier = true; 648 // Argument to NewContext is the function, which is in x1. 649 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; 650 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; 651 if (info()->scope()->is_script_scope()) { 652 __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate()))); 653 __ Push(x1, x10); 654 __ CallRuntime(Runtime::kNewScriptContext); 655 deopt_mode = Safepoint::kLazyDeopt; 656 } else if (slots <= FastNewContextStub::kMaximumSlots) { 657 FastNewContextStub stub(isolate(), slots); 658 __ CallStub(&stub); 659 // Result of FastNewContextStub is always in new space. 660 need_write_barrier = false; 661 } else { 662 __ Push(x1); 663 __ CallRuntime(Runtime::kNewFunctionContext); 664 } 665 RecordSafepoint(deopt_mode); 666 // Context is returned in x0. It replaces the context passed to us. It's 667 // saved in the stack and kept live in cp. 668 __ Mov(cp, x0); 669 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); 670 // Copy any necessary parameters into the context. 671 int num_parameters = scope()->num_parameters(); 672 int first_parameter = scope()->has_this_declaration() ? -1 : 0; 673 for (int i = first_parameter; i < num_parameters; i++) { 674 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); 675 if (var->IsContextSlot()) { 676 Register value = x0; 677 Register scratch = x3; 678 679 int parameter_offset = StandardFrameConstants::kCallerSPOffset + 680 (num_parameters - 1 - i) * kPointerSize; 681 // Load parameter from stack. 682 __ Ldr(value, MemOperand(fp, parameter_offset)); 683 // Store it in the context. 684 MemOperand target = ContextMemOperand(cp, var->index()); 685 __ Str(value, target); 686 // Update the write barrier. This clobbers value and scratch. 687 if (need_write_barrier) { 688 __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()), 689 value, scratch, GetLinkRegisterState(), 690 kSaveFPRegs); 691 } else if (FLAG_debug_code) { 692 Label done; 693 __ JumpIfInNewSpace(cp, &done); 694 __ Abort(kExpectedNewSpaceObject); 695 __ bind(&done); 696 } 697 } 698 } 699 Comment(";;; End allocate local context"); 700 } 701 702 Comment(";;; Prologue end"); 703 } 704 705 706 void LCodeGen::GenerateOsrPrologue() { 707 // Generate the OSR entry prologue at the first unknown OSR value, or if there 708 // are none, at the OSR entrypoint instruction. 709 if (osr_pc_offset_ >= 0) return; 710 711 osr_pc_offset_ = masm()->pc_offset(); 712 713 // Adjust the frame size, subsuming the unoptimized frame into the 714 // optimized frame. 715 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); 716 DCHECK(slots >= 0); 717 __ Claim(slots); 718 } 719 720 721 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { 722 if (instr->IsCall()) { 723 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); 724 } 725 if (!instr->IsLazyBailout() && !instr->IsGap()) { 726 safepoints_.BumpLastLazySafepointIndex(); 727 } 728 } 729 730 731 bool LCodeGen::GenerateDeferredCode() { 732 DCHECK(is_generating()); 733 if (deferred_.length() > 0) { 734 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) { 735 LDeferredCode* code = deferred_[i]; 736 737 HValue* value = 738 instructions_->at(code->instruction_index())->hydrogen_value(); 739 RecordAndWritePosition( 740 chunk()->graph()->SourcePositionToScriptPosition(value->position())); 741 742 Comment(";;; <@%d,#%d> " 743 "-------------------- Deferred %s --------------------", 744 code->instruction_index(), 745 code->instr()->hydrogen_value()->id(), 746 code->instr()->Mnemonic()); 747 748 __ Bind(code->entry()); 749 750 if (NeedsDeferredFrame()) { 751 Comment(";;; Build frame"); 752 DCHECK(!frame_is_built_); 753 DCHECK(info()->IsStub()); 754 frame_is_built_ = true; 755 __ Push(lr, fp, cp); 756 __ Mov(fp, Smi::FromInt(StackFrame::STUB)); 757 __ Push(fp); 758 __ Add(fp, __ StackPointer(), 759 StandardFrameConstants::kFixedFrameSizeFromFp); 760 Comment(";;; Deferred code"); 761 } 762 763 code->Generate(); 764 765 if (NeedsDeferredFrame()) { 766 Comment(";;; Destroy frame"); 767 DCHECK(frame_is_built_); 768 __ Pop(xzr, cp, fp, lr); 769 frame_is_built_ = false; 770 } 771 772 __ B(code->exit()); 773 } 774 } 775 776 // Force constant pool emission at the end of the deferred code to make 777 // sure that no constant pools are emitted after deferred code because 778 // deferred code generation is the last step which generates code. The two 779 // following steps will only output data used by crakshaft. 780 masm()->CheckConstPool(true, false); 781 782 return !is_aborted(); 783 } 784 785 786 bool LCodeGen::GenerateJumpTable() { 787 Label needs_frame, call_deopt_entry; 788 789 if (jump_table_.length() > 0) { 790 Comment(";;; -------------------- Jump table --------------------"); 791 Address base = jump_table_[0]->address; 792 793 UseScratchRegisterScope temps(masm()); 794 Register entry_offset = temps.AcquireX(); 795 796 int length = jump_table_.length(); 797 for (int i = 0; i < length; i++) { 798 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i]; 799 __ Bind(&table_entry->label); 800 801 Address entry = table_entry->address; 802 DeoptComment(table_entry->deopt_info); 803 804 // Second-level deopt table entries are contiguous and small, so instead 805 // of loading the full, absolute address of each one, load the base 806 // address and add an immediate offset. 807 __ Mov(entry_offset, entry - base); 808 809 if (table_entry->needs_frame) { 810 DCHECK(!info()->saves_caller_doubles()); 811 Comment(";;; call deopt with frame"); 812 // Save lr before Bl, fp will be adjusted in the needs_frame code. 813 __ Push(lr, fp); 814 // Reuse the existing needs_frame code. 815 __ Bl(&needs_frame); 816 } else { 817 // There is nothing special to do, so just continue to the second-level 818 // table. 819 __ Bl(&call_deopt_entry); 820 } 821 info()->LogDeoptCallPosition(masm()->pc_offset(), 822 table_entry->deopt_info.inlining_id); 823 824 masm()->CheckConstPool(false, false); 825 } 826 827 if (needs_frame.is_linked()) { 828 // This variant of deopt can only be used with stubs. Since we don't 829 // have a function pointer to install in the stack frame that we're 830 // building, install a special marker there instead. 831 DCHECK(info()->IsStub()); 832 833 Comment(";;; needs_frame common code"); 834 UseScratchRegisterScope temps(masm()); 835 Register stub_marker = temps.AcquireX(); 836 __ Bind(&needs_frame); 837 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB)); 838 __ Push(cp, stub_marker); 839 __ Add(fp, __ StackPointer(), 2 * kPointerSize); 840 } 841 842 // Generate common code for calling the second-level deopt table. 843 __ Bind(&call_deopt_entry); 844 845 if (info()->saves_caller_doubles()) { 846 DCHECK(info()->IsStub()); 847 RestoreCallerDoubles(); 848 } 849 850 Register deopt_entry = temps.AcquireX(); 851 __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base), 852 RelocInfo::RUNTIME_ENTRY)); 853 __ Add(deopt_entry, deopt_entry, entry_offset); 854 __ Br(deopt_entry); 855 } 856 857 // Force constant pool emission at the end of the deopt jump table to make 858 // sure that no constant pools are emitted after. 859 masm()->CheckConstPool(true, false); 860 861 // The deoptimization jump table is the last part of the instruction 862 // sequence. Mark the generated code as done unless we bailed out. 863 if (!is_aborted()) status_ = DONE; 864 return !is_aborted(); 865 } 866 867 868 bool LCodeGen::GenerateSafepointTable() { 869 DCHECK(is_done()); 870 // We do not know how much data will be emitted for the safepoint table, so 871 // force emission of the veneer pool. 872 masm()->CheckVeneerPool(true, true); 873 safepoints_.Emit(masm(), GetStackSlotCount()); 874 return !is_aborted(); 875 } 876 877 878 void LCodeGen::FinishCode(Handle<Code> code) { 879 DCHECK(is_done()); 880 code->set_stack_slots(GetStackSlotCount()); 881 code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); 882 PopulateDeoptimizationData(code); 883 } 884 885 886 void LCodeGen::DeoptimizeBranch( 887 LInstruction* instr, Deoptimizer::DeoptReason deopt_reason, 888 BranchType branch_type, Register reg, int bit, 889 Deoptimizer::BailoutType* override_bailout_type) { 890 LEnvironment* environment = instr->environment(); 891 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 892 Deoptimizer::BailoutType bailout_type = 893 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; 894 895 if (override_bailout_type != NULL) { 896 bailout_type = *override_bailout_type; 897 } 898 899 DCHECK(environment->HasBeenRegistered()); 900 int id = environment->deoptimization_index(); 901 Address entry = 902 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); 903 904 if (entry == NULL) { 905 Abort(kBailoutWasNotPrepared); 906 } 907 908 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { 909 Label not_zero; 910 ExternalReference count = ExternalReference::stress_deopt_count(isolate()); 911 912 __ Push(x0, x1, x2); 913 __ Mrs(x2, NZCV); 914 __ Mov(x0, count); 915 __ Ldr(w1, MemOperand(x0)); 916 __ Subs(x1, x1, 1); 917 __ B(gt, ¬_zero); 918 __ Mov(w1, FLAG_deopt_every_n_times); 919 __ Str(w1, MemOperand(x0)); 920 __ Pop(x2, x1, x0); 921 DCHECK(frame_is_built_); 922 __ Call(entry, RelocInfo::RUNTIME_ENTRY); 923 __ Unreachable(); 924 925 __ Bind(¬_zero); 926 __ Str(w1, MemOperand(x0)); 927 __ Msr(NZCV, x2); 928 __ Pop(x2, x1, x0); 929 } 930 931 if (info()->ShouldTrapOnDeopt()) { 932 Label dont_trap; 933 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit); 934 __ Debug("trap_on_deopt", __LINE__, BREAK); 935 __ Bind(&dont_trap); 936 } 937 938 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason); 939 940 DCHECK(info()->IsStub() || frame_is_built_); 941 // Go through jump table if we need to build frame, or restore caller doubles. 942 if (branch_type == always && 943 frame_is_built_ && !info()->saves_caller_doubles()) { 944 DeoptComment(deopt_info); 945 __ Call(entry, RelocInfo::RUNTIME_ENTRY); 946 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id); 947 } else { 948 Deoptimizer::JumpTableEntry* table_entry = 949 new (zone()) Deoptimizer::JumpTableEntry( 950 entry, deopt_info, bailout_type, !frame_is_built_); 951 // We often have several deopts to the same entry, reuse the last 952 // jump entry if this is the case. 953 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() || 954 jump_table_.is_empty() || 955 !table_entry->IsEquivalentTo(*jump_table_.last())) { 956 jump_table_.Add(table_entry, zone()); 957 } 958 __ B(&jump_table_.last()->label, branch_type, reg, bit); 959 } 960 } 961 962 963 void LCodeGen::Deoptimize(LInstruction* instr, 964 Deoptimizer::DeoptReason deopt_reason, 965 Deoptimizer::BailoutType* override_bailout_type) { 966 DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1, 967 override_bailout_type); 968 } 969 970 971 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, 972 Deoptimizer::DeoptReason deopt_reason) { 973 DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond)); 974 } 975 976 977 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr, 978 Deoptimizer::DeoptReason deopt_reason) { 979 DeoptimizeBranch(instr, deopt_reason, reg_zero, rt); 980 } 981 982 983 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr, 984 Deoptimizer::DeoptReason deopt_reason) { 985 DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt); 986 } 987 988 989 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr, 990 Deoptimizer::DeoptReason deopt_reason) { 991 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit; 992 DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason); 993 } 994 995 996 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr, 997 Deoptimizer::DeoptReason deopt_reason) { 998 DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); 999 } 1000 1001 1002 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr, 1003 Deoptimizer::DeoptReason deopt_reason) { 1004 DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); 1005 } 1006 1007 1008 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index, 1009 LInstruction* instr, 1010 Deoptimizer::DeoptReason deopt_reason) { 1011 __ CompareRoot(rt, index); 1012 DeoptimizeIf(eq, instr, deopt_reason); 1013 } 1014 1015 1016 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index, 1017 LInstruction* instr, 1018 Deoptimizer::DeoptReason deopt_reason) { 1019 __ CompareRoot(rt, index); 1020 DeoptimizeIf(ne, instr, deopt_reason); 1021 } 1022 1023 1024 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr, 1025 Deoptimizer::DeoptReason deopt_reason) { 1026 __ TestForMinusZero(input); 1027 DeoptimizeIf(vs, instr, deopt_reason); 1028 } 1029 1030 1031 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) { 1032 __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex); 1033 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber); 1034 } 1035 1036 1037 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr, 1038 Deoptimizer::DeoptReason deopt_reason) { 1039 DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit); 1040 } 1041 1042 1043 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr, 1044 Deoptimizer::DeoptReason deopt_reason) { 1045 DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit); 1046 } 1047 1048 1049 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { 1050 if (info()->ShouldEnsureSpaceForLazyDeopt()) { 1051 // Ensure that we have enough space after the previous lazy-bailout 1052 // instruction for patching the code here. 1053 intptr_t current_pc = masm()->pc_offset(); 1054 1055 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) { 1056 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; 1057 DCHECK((padding_size % kInstructionSize) == 0); 1058 InstructionAccurateScope instruction_accurate( 1059 masm(), padding_size / kInstructionSize); 1060 1061 while (padding_size > 0) { 1062 __ nop(); 1063 padding_size -= kInstructionSize; 1064 } 1065 } 1066 } 1067 last_lazy_deopt_pc_ = masm()->pc_offset(); 1068 } 1069 1070 1071 Register LCodeGen::ToRegister(LOperand* op) const { 1072 // TODO(all): support zero register results, as ToRegister32. 1073 DCHECK((op != NULL) && op->IsRegister()); 1074 return Register::from_code(op->index()); 1075 } 1076 1077 1078 Register LCodeGen::ToRegister32(LOperand* op) const { 1079 DCHECK(op != NULL); 1080 if (op->IsConstantOperand()) { 1081 // If this is a constant operand, the result must be the zero register. 1082 DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0); 1083 return wzr; 1084 } else { 1085 return ToRegister(op).W(); 1086 } 1087 } 1088 1089 1090 Smi* LCodeGen::ToSmi(LConstantOperand* op) const { 1091 HConstant* constant = chunk_->LookupConstant(op); 1092 return Smi::FromInt(constant->Integer32Value()); 1093 } 1094 1095 1096 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { 1097 DCHECK((op != NULL) && op->IsDoubleRegister()); 1098 return DoubleRegister::from_code(op->index()); 1099 } 1100 1101 1102 Operand LCodeGen::ToOperand(LOperand* op) { 1103 DCHECK(op != NULL); 1104 if (op->IsConstantOperand()) { 1105 LConstantOperand* const_op = LConstantOperand::cast(op); 1106 HConstant* constant = chunk()->LookupConstant(const_op); 1107 Representation r = chunk_->LookupLiteralRepresentation(const_op); 1108 if (r.IsSmi()) { 1109 DCHECK(constant->HasSmiValue()); 1110 return Operand(Smi::FromInt(constant->Integer32Value())); 1111 } else if (r.IsInteger32()) { 1112 DCHECK(constant->HasInteger32Value()); 1113 return Operand(constant->Integer32Value()); 1114 } else if (r.IsDouble()) { 1115 Abort(kToOperandUnsupportedDoubleImmediate); 1116 } 1117 DCHECK(r.IsTagged()); 1118 return Operand(constant->handle(isolate())); 1119 } else if (op->IsRegister()) { 1120 return Operand(ToRegister(op)); 1121 } else if (op->IsDoubleRegister()) { 1122 Abort(kToOperandIsDoubleRegisterUnimplemented); 1123 return Operand(0); 1124 } 1125 // Stack slots not implemented, use ToMemOperand instead. 1126 UNREACHABLE(); 1127 return Operand(0); 1128 } 1129 1130 1131 Operand LCodeGen::ToOperand32(LOperand* op) { 1132 DCHECK(op != NULL); 1133 if (op->IsRegister()) { 1134 return Operand(ToRegister32(op)); 1135 } else if (op->IsConstantOperand()) { 1136 LConstantOperand* const_op = LConstantOperand::cast(op); 1137 HConstant* constant = chunk()->LookupConstant(const_op); 1138 Representation r = chunk_->LookupLiteralRepresentation(const_op); 1139 if (r.IsInteger32()) { 1140 return Operand(constant->Integer32Value()); 1141 } else { 1142 // Other constants not implemented. 1143 Abort(kToOperand32UnsupportedImmediate); 1144 } 1145 } 1146 // Other cases are not implemented. 1147 UNREACHABLE(); 1148 return Operand(0); 1149 } 1150 1151 1152 static int64_t ArgumentsOffsetWithoutFrame(int index) { 1153 DCHECK(index < 0); 1154 return -(index + 1) * kPointerSize; 1155 } 1156 1157 1158 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const { 1159 DCHECK(op != NULL); 1160 DCHECK(!op->IsRegister()); 1161 DCHECK(!op->IsDoubleRegister()); 1162 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); 1163 if (NeedsEagerFrame()) { 1164 int fp_offset = StackSlotOffset(op->index()); 1165 // Loads and stores have a bigger reach in positive offset than negative. 1166 // We try to access using jssp (positive offset) first, then fall back to 1167 // fp (negative offset) if that fails. 1168 // 1169 // We can reference a stack slot from jssp only if we know how much we've 1170 // put on the stack. We don't know this in the following cases: 1171 // - stack_mode != kCanUseStackPointer: this is the case when deferred 1172 // code has saved the registers. 1173 // - saves_caller_doubles(): some double registers have been pushed, jssp 1174 // references the end of the double registers and not the end of the stack 1175 // slots. 1176 // In both of the cases above, we _could_ add the tracking information 1177 // required so that we can use jssp here, but in practice it isn't worth it. 1178 if ((stack_mode == kCanUseStackPointer) && 1179 !info()->saves_caller_doubles()) { 1180 int jssp_offset_to_fp = 1181 StandardFrameConstants::kFixedFrameSizeFromFp + 1182 (pushed_arguments_ + GetStackSlotCount()) * kPointerSize; 1183 int jssp_offset = fp_offset + jssp_offset_to_fp; 1184 if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) { 1185 return MemOperand(masm()->StackPointer(), jssp_offset); 1186 } 1187 } 1188 return MemOperand(fp, fp_offset); 1189 } else { 1190 // Retrieve parameter without eager stack-frame relative to the 1191 // stack-pointer. 1192 return MemOperand(masm()->StackPointer(), 1193 ArgumentsOffsetWithoutFrame(op->index())); 1194 } 1195 } 1196 1197 1198 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { 1199 HConstant* constant = chunk_->LookupConstant(op); 1200 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); 1201 return constant->handle(isolate()); 1202 } 1203 1204 1205 template <class LI> 1206 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) { 1207 if (shift_info->shift() == NO_SHIFT) { 1208 return ToOperand32(right); 1209 } else { 1210 return Operand( 1211 ToRegister32(right), 1212 shift_info->shift(), 1213 JSShiftAmountFromLConstant(shift_info->shift_amount())); 1214 } 1215 } 1216 1217 1218 bool LCodeGen::IsSmi(LConstantOperand* op) const { 1219 return chunk_->LookupLiteralRepresentation(op).IsSmi(); 1220 } 1221 1222 1223 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { 1224 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); 1225 } 1226 1227 1228 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { 1229 HConstant* constant = chunk_->LookupConstant(op); 1230 return constant->Integer32Value(); 1231 } 1232 1233 1234 double LCodeGen::ToDouble(LConstantOperand* op) const { 1235 HConstant* constant = chunk_->LookupConstant(op); 1236 DCHECK(constant->HasDoubleValue()); 1237 return constant->DoubleValue(); 1238 } 1239 1240 1241 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { 1242 Condition cond = nv; 1243 switch (op) { 1244 case Token::EQ: 1245 case Token::EQ_STRICT: 1246 cond = eq; 1247 break; 1248 case Token::NE: 1249 case Token::NE_STRICT: 1250 cond = ne; 1251 break; 1252 case Token::LT: 1253 cond = is_unsigned ? lo : lt; 1254 break; 1255 case Token::GT: 1256 cond = is_unsigned ? hi : gt; 1257 break; 1258 case Token::LTE: 1259 cond = is_unsigned ? ls : le; 1260 break; 1261 case Token::GTE: 1262 cond = is_unsigned ? hs : ge; 1263 break; 1264 case Token::IN: 1265 case Token::INSTANCEOF: 1266 default: 1267 UNREACHABLE(); 1268 } 1269 return cond; 1270 } 1271 1272 1273 template<class InstrType> 1274 void LCodeGen::EmitBranchGeneric(InstrType instr, 1275 const BranchGenerator& branch) { 1276 int left_block = instr->TrueDestination(chunk_); 1277 int right_block = instr->FalseDestination(chunk_); 1278 1279 int next_block = GetNextEmittedBlock(); 1280 1281 if (right_block == left_block) { 1282 EmitGoto(left_block); 1283 } else if (left_block == next_block) { 1284 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block)); 1285 } else { 1286 branch.Emit(chunk_->GetAssemblyLabel(left_block)); 1287 if (right_block != next_block) { 1288 __ B(chunk_->GetAssemblyLabel(right_block)); 1289 } 1290 } 1291 } 1292 1293 1294 template<class InstrType> 1295 void LCodeGen::EmitBranch(InstrType instr, Condition condition) { 1296 DCHECK((condition != al) && (condition != nv)); 1297 BranchOnCondition branch(this, condition); 1298 EmitBranchGeneric(instr, branch); 1299 } 1300 1301 1302 template<class InstrType> 1303 void LCodeGen::EmitCompareAndBranch(InstrType instr, 1304 Condition condition, 1305 const Register& lhs, 1306 const Operand& rhs) { 1307 DCHECK((condition != al) && (condition != nv)); 1308 CompareAndBranch branch(this, condition, lhs, rhs); 1309 EmitBranchGeneric(instr, branch); 1310 } 1311 1312 1313 template<class InstrType> 1314 void LCodeGen::EmitTestAndBranch(InstrType instr, 1315 Condition condition, 1316 const Register& value, 1317 uint64_t mask) { 1318 DCHECK((condition != al) && (condition != nv)); 1319 TestAndBranch branch(this, condition, value, mask); 1320 EmitBranchGeneric(instr, branch); 1321 } 1322 1323 1324 template<class InstrType> 1325 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr, 1326 const FPRegister& value, 1327 const FPRegister& scratch) { 1328 BranchIfNonZeroNumber branch(this, value, scratch); 1329 EmitBranchGeneric(instr, branch); 1330 } 1331 1332 1333 template<class InstrType> 1334 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr, 1335 const Register& value) { 1336 BranchIfHeapNumber branch(this, value); 1337 EmitBranchGeneric(instr, branch); 1338 } 1339 1340 1341 template<class InstrType> 1342 void LCodeGen::EmitBranchIfRoot(InstrType instr, 1343 const Register& value, 1344 Heap::RootListIndex index) { 1345 BranchIfRoot branch(this, value, index); 1346 EmitBranchGeneric(instr, branch); 1347 } 1348 1349 1350 void LCodeGen::DoGap(LGap* gap) { 1351 for (int i = LGap::FIRST_INNER_POSITION; 1352 i <= LGap::LAST_INNER_POSITION; 1353 i++) { 1354 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); 1355 LParallelMove* move = gap->GetParallelMove(inner_pos); 1356 if (move != NULL) { 1357 resolver_.Resolve(move); 1358 } 1359 } 1360 } 1361 1362 1363 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { 1364 Register arguments = ToRegister(instr->arguments()); 1365 Register result = ToRegister(instr->result()); 1366 1367 // The pointer to the arguments array come from DoArgumentsElements. 1368 // It does not point directly to the arguments and there is an offest of 1369 // two words that we must take into account when accessing an argument. 1370 // Subtracting the index from length accounts for one, so we add one more. 1371 1372 if (instr->length()->IsConstantOperand() && 1373 instr->index()->IsConstantOperand()) { 1374 int index = ToInteger32(LConstantOperand::cast(instr->index())); 1375 int length = ToInteger32(LConstantOperand::cast(instr->length())); 1376 int offset = ((length - index) + 1) * kPointerSize; 1377 __ Ldr(result, MemOperand(arguments, offset)); 1378 } else if (instr->index()->IsConstantOperand()) { 1379 Register length = ToRegister32(instr->length()); 1380 int index = ToInteger32(LConstantOperand::cast(instr->index())); 1381 int loc = index - 1; 1382 if (loc != 0) { 1383 __ Sub(result.W(), length, loc); 1384 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); 1385 } else { 1386 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2)); 1387 } 1388 } else { 1389 Register length = ToRegister32(instr->length()); 1390 Operand index = ToOperand32(instr->index()); 1391 __ Sub(result.W(), length, index); 1392 __ Add(result.W(), result.W(), 1); 1393 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); 1394 } 1395 } 1396 1397 1398 void LCodeGen::DoAddE(LAddE* instr) { 1399 Register result = ToRegister(instr->result()); 1400 Register left = ToRegister(instr->left()); 1401 Operand right = Operand(x0); // Dummy initialization. 1402 if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) { 1403 right = Operand(ToRegister(instr->right())); 1404 } else if (instr->right()->IsConstantOperand()) { 1405 right = ToInteger32(LConstantOperand::cast(instr->right())); 1406 } else { 1407 right = Operand(ToRegister32(instr->right()), SXTW); 1408 } 1409 1410 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); 1411 __ Add(result, left, right); 1412 } 1413 1414 1415 void LCodeGen::DoAddI(LAddI* instr) { 1416 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 1417 Register result = ToRegister32(instr->result()); 1418 Register left = ToRegister32(instr->left()); 1419 Operand right = ToShiftedRightOperand32(instr->right(), instr); 1420 1421 if (can_overflow) { 1422 __ Adds(result, left, right); 1423 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 1424 } else { 1425 __ Add(result, left, right); 1426 } 1427 } 1428 1429 1430 void LCodeGen::DoAddS(LAddS* instr) { 1431 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 1432 Register result = ToRegister(instr->result()); 1433 Register left = ToRegister(instr->left()); 1434 Operand right = ToOperand(instr->right()); 1435 if (can_overflow) { 1436 __ Adds(result, left, right); 1437 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 1438 } else { 1439 __ Add(result, left, right); 1440 } 1441 } 1442 1443 1444 void LCodeGen::DoAllocate(LAllocate* instr) { 1445 class DeferredAllocate: public LDeferredCode { 1446 public: 1447 DeferredAllocate(LCodeGen* codegen, LAllocate* instr) 1448 : LDeferredCode(codegen), instr_(instr) { } 1449 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } 1450 virtual LInstruction* instr() { return instr_; } 1451 private: 1452 LAllocate* instr_; 1453 }; 1454 1455 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); 1456 1457 Register result = ToRegister(instr->result()); 1458 Register temp1 = ToRegister(instr->temp1()); 1459 Register temp2 = ToRegister(instr->temp2()); 1460 1461 // Allocate memory for the object. 1462 AllocationFlags flags = TAG_OBJECT; 1463 if (instr->hydrogen()->MustAllocateDoubleAligned()) { 1464 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); 1465 } 1466 1467 if (instr->hydrogen()->IsOldSpaceAllocation()) { 1468 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 1469 flags = static_cast<AllocationFlags>(flags | PRETENURE); 1470 } 1471 1472 if (instr->size()->IsConstantOperand()) { 1473 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); 1474 CHECK(size <= Page::kMaxRegularHeapObjectSize); 1475 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); 1476 } else { 1477 Register size = ToRegister32(instr->size()); 1478 __ Sxtw(size.X(), size); 1479 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags); 1480 } 1481 1482 __ Bind(deferred->exit()); 1483 1484 if (instr->hydrogen()->MustPrefillWithFiller()) { 1485 Register start = temp1; 1486 Register end = temp2; 1487 Register filler = ToRegister(instr->temp3()); 1488 1489 __ Sub(start, result, kHeapObjectTag); 1490 1491 if (instr->size()->IsConstantOperand()) { 1492 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); 1493 __ Add(end, start, size); 1494 } else { 1495 __ Add(end, start, ToRegister(instr->size())); 1496 } 1497 __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex); 1498 __ InitializeFieldsWithFiller(start, end, filler); 1499 } else { 1500 DCHECK(instr->temp3() == NULL); 1501 } 1502 } 1503 1504 1505 void LCodeGen::DoDeferredAllocate(LAllocate* instr) { 1506 // TODO(3095996): Get rid of this. For now, we need to make the 1507 // result register contain a valid pointer because it is already 1508 // contained in the register pointer map. 1509 __ Mov(ToRegister(instr->result()), Smi::FromInt(0)); 1510 1511 PushSafepointRegistersScope scope(this); 1512 // We're in a SafepointRegistersScope so we can use any scratch registers. 1513 Register size = x0; 1514 if (instr->size()->IsConstantOperand()) { 1515 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size()))); 1516 } else { 1517 __ SmiTag(size, ToRegister32(instr->size()).X()); 1518 } 1519 int flags = AllocateDoubleAlignFlag::encode( 1520 instr->hydrogen()->MustAllocateDoubleAligned()); 1521 if (instr->hydrogen()->IsOldSpaceAllocation()) { 1522 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 1523 flags = AllocateTargetSpace::update(flags, OLD_SPACE); 1524 } else { 1525 flags = AllocateTargetSpace::update(flags, NEW_SPACE); 1526 } 1527 __ Mov(x10, Smi::FromInt(flags)); 1528 __ Push(size, x10); 1529 1530 CallRuntimeFromDeferred( 1531 Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); 1532 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result())); 1533 } 1534 1535 1536 void LCodeGen::DoApplyArguments(LApplyArguments* instr) { 1537 Register receiver = ToRegister(instr->receiver()); 1538 Register function = ToRegister(instr->function()); 1539 Register length = ToRegister32(instr->length()); 1540 1541 Register elements = ToRegister(instr->elements()); 1542 Register scratch = x5; 1543 DCHECK(receiver.Is(x0)); // Used for parameter count. 1544 DCHECK(function.Is(x1)); // Required by InvokeFunction. 1545 DCHECK(ToRegister(instr->result()).Is(x0)); 1546 DCHECK(instr->IsMarkedAsCall()); 1547 1548 // Copy the arguments to this function possibly from the 1549 // adaptor frame below it. 1550 const uint32_t kArgumentsLimit = 1 * KB; 1551 __ Cmp(length, kArgumentsLimit); 1552 DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments); 1553 1554 // Push the receiver and use the register to keep the original 1555 // number of arguments. 1556 __ Push(receiver); 1557 Register argc = receiver; 1558 receiver = NoReg; 1559 __ Sxtw(argc, length); 1560 // The arguments are at a one pointer size offset from elements. 1561 __ Add(elements, elements, 1 * kPointerSize); 1562 1563 // Loop through the arguments pushing them onto the execution 1564 // stack. 1565 Label invoke, loop; 1566 // length is a small non-negative integer, due to the test above. 1567 __ Cbz(length, &invoke); 1568 __ Bind(&loop); 1569 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2)); 1570 __ Push(scratch); 1571 __ Subs(length, length, 1); 1572 __ B(ne, &loop); 1573 1574 __ Bind(&invoke); 1575 DCHECK(instr->HasPointerMap()); 1576 LPointerMap* pointers = instr->pointer_map(); 1577 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); 1578 // The number of arguments is stored in argc (receiver) which is x0, as 1579 // expected by InvokeFunction. 1580 ParameterCount actual(argc); 1581 __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION, 1582 safepoint_generator); 1583 } 1584 1585 1586 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { 1587 Register result = ToRegister(instr->result()); 1588 1589 if (instr->hydrogen()->from_inlined()) { 1590 // When we are inside an inlined function, the arguments are the last things 1591 // that have been pushed on the stack. Therefore the arguments array can be 1592 // accessed directly from jssp. 1593 // However in the normal case, it is accessed via fp but there are two words 1594 // on the stack between fp and the arguments (the saved lr and fp) and the 1595 // LAccessArgumentsAt implementation take that into account. 1596 // In the inlined case we need to subtract the size of 2 words to jssp to 1597 // get a pointer which will work well with LAccessArgumentsAt. 1598 DCHECK(masm()->StackPointer().Is(jssp)); 1599 __ Sub(result, jssp, 2 * kPointerSize); 1600 } else { 1601 DCHECK(instr->temp() != NULL); 1602 Register previous_fp = ToRegister(instr->temp()); 1603 1604 __ Ldr(previous_fp, 1605 MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1606 __ Ldr(result, 1607 MemOperand(previous_fp, StandardFrameConstants::kContextOffset)); 1608 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 1609 __ Csel(result, fp, previous_fp, ne); 1610 } 1611 } 1612 1613 1614 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { 1615 Register elements = ToRegister(instr->elements()); 1616 Register result = ToRegister32(instr->result()); 1617 Label done; 1618 1619 // If no arguments adaptor frame the number of arguments is fixed. 1620 __ Cmp(fp, elements); 1621 __ Mov(result, scope()->num_parameters()); 1622 __ B(eq, &done); 1623 1624 // Arguments adaptor frame present. Get argument length from there. 1625 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1626 __ Ldr(result, 1627 UntagSmiMemOperand(result.X(), 1628 ArgumentsAdaptorFrameConstants::kLengthOffset)); 1629 1630 // Argument length is in result register. 1631 __ Bind(&done); 1632 } 1633 1634 1635 void LCodeGen::DoArithmeticD(LArithmeticD* instr) { 1636 DoubleRegister left = ToDoubleRegister(instr->left()); 1637 DoubleRegister right = ToDoubleRegister(instr->right()); 1638 DoubleRegister result = ToDoubleRegister(instr->result()); 1639 1640 switch (instr->op()) { 1641 case Token::ADD: __ Fadd(result, left, right); break; 1642 case Token::SUB: __ Fsub(result, left, right); break; 1643 case Token::MUL: __ Fmul(result, left, right); break; 1644 case Token::DIV: __ Fdiv(result, left, right); break; 1645 case Token::MOD: { 1646 // The ECMA-262 remainder operator is the remainder from a truncating 1647 // (round-towards-zero) division. Note that this differs from IEEE-754. 1648 // 1649 // TODO(jbramley): See if it's possible to do this inline, rather than by 1650 // calling a helper function. With frintz (to produce the intermediate 1651 // quotient) and fmsub (to calculate the remainder without loss of 1652 // precision), it should be possible. However, we would need support for 1653 // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't 1654 // support that yet. 1655 DCHECK(left.Is(d0)); 1656 DCHECK(right.Is(d1)); 1657 __ CallCFunction( 1658 ExternalReference::mod_two_doubles_operation(isolate()), 1659 0, 2); 1660 DCHECK(result.Is(d0)); 1661 break; 1662 } 1663 default: 1664 UNREACHABLE(); 1665 break; 1666 } 1667 } 1668 1669 1670 void LCodeGen::DoArithmeticT(LArithmeticT* instr) { 1671 DCHECK(ToRegister(instr->context()).is(cp)); 1672 DCHECK(ToRegister(instr->left()).is(x1)); 1673 DCHECK(ToRegister(instr->right()).is(x0)); 1674 DCHECK(ToRegister(instr->result()).is(x0)); 1675 1676 Handle<Code> code = 1677 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code(); 1678 CallCode(code, RelocInfo::CODE_TARGET, instr); 1679 } 1680 1681 1682 void LCodeGen::DoBitI(LBitI* instr) { 1683 Register result = ToRegister32(instr->result()); 1684 Register left = ToRegister32(instr->left()); 1685 Operand right = ToShiftedRightOperand32(instr->right(), instr); 1686 1687 switch (instr->op()) { 1688 case Token::BIT_AND: __ And(result, left, right); break; 1689 case Token::BIT_OR: __ Orr(result, left, right); break; 1690 case Token::BIT_XOR: __ Eor(result, left, right); break; 1691 default: 1692 UNREACHABLE(); 1693 break; 1694 } 1695 } 1696 1697 1698 void LCodeGen::DoBitS(LBitS* instr) { 1699 Register result = ToRegister(instr->result()); 1700 Register left = ToRegister(instr->left()); 1701 Operand right = ToOperand(instr->right()); 1702 1703 switch (instr->op()) { 1704 case Token::BIT_AND: __ And(result, left, right); break; 1705 case Token::BIT_OR: __ Orr(result, left, right); break; 1706 case Token::BIT_XOR: __ Eor(result, left, right); break; 1707 default: 1708 UNREACHABLE(); 1709 break; 1710 } 1711 } 1712 1713 1714 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) { 1715 Condition cond = instr->hydrogen()->allow_equality() ? hi : hs; 1716 DCHECK(instr->hydrogen()->index()->representation().IsInteger32()); 1717 DCHECK(instr->hydrogen()->length()->representation().IsInteger32()); 1718 if (instr->index()->IsConstantOperand()) { 1719 Operand index = ToOperand32(instr->index()); 1720 Register length = ToRegister32(instr->length()); 1721 __ Cmp(length, index); 1722 cond = CommuteCondition(cond); 1723 } else { 1724 Register index = ToRegister32(instr->index()); 1725 Operand length = ToOperand32(instr->length()); 1726 __ Cmp(index, length); 1727 } 1728 if (FLAG_debug_code && instr->hydrogen()->skip_check()) { 1729 __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed); 1730 } else { 1731 DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds); 1732 } 1733 } 1734 1735 1736 void LCodeGen::DoBranch(LBranch* instr) { 1737 Representation r = instr->hydrogen()->value()->representation(); 1738 Label* true_label = instr->TrueLabel(chunk_); 1739 Label* false_label = instr->FalseLabel(chunk_); 1740 1741 if (r.IsInteger32()) { 1742 DCHECK(!info()->IsStub()); 1743 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0); 1744 } else if (r.IsSmi()) { 1745 DCHECK(!info()->IsStub()); 1746 STATIC_ASSERT(kSmiTag == 0); 1747 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0); 1748 } else if (r.IsDouble()) { 1749 DoubleRegister value = ToDoubleRegister(instr->value()); 1750 // Test the double value. Zero and NaN are false. 1751 EmitBranchIfNonZeroNumber(instr, value, double_scratch()); 1752 } else { 1753 DCHECK(r.IsTagged()); 1754 Register value = ToRegister(instr->value()); 1755 HType type = instr->hydrogen()->value()->type(); 1756 1757 if (type.IsBoolean()) { 1758 DCHECK(!info()->IsStub()); 1759 __ CompareRoot(value, Heap::kTrueValueRootIndex); 1760 EmitBranch(instr, eq); 1761 } else if (type.IsSmi()) { 1762 DCHECK(!info()->IsStub()); 1763 EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0)); 1764 } else if (type.IsJSArray()) { 1765 DCHECK(!info()->IsStub()); 1766 EmitGoto(instr->TrueDestination(chunk())); 1767 } else if (type.IsHeapNumber()) { 1768 DCHECK(!info()->IsStub()); 1769 __ Ldr(double_scratch(), FieldMemOperand(value, 1770 HeapNumber::kValueOffset)); 1771 // Test the double value. Zero and NaN are false. 1772 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch()); 1773 } else if (type.IsString()) { 1774 DCHECK(!info()->IsStub()); 1775 Register temp = ToRegister(instr->temp1()); 1776 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset)); 1777 EmitCompareAndBranch(instr, ne, temp, 0); 1778 } else { 1779 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); 1780 // Avoid deopts in the case where we've never executed this path before. 1781 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); 1782 1783 if (expected.Contains(ToBooleanStub::UNDEFINED)) { 1784 // undefined -> false. 1785 __ JumpIfRoot( 1786 value, Heap::kUndefinedValueRootIndex, false_label); 1787 } 1788 1789 if (expected.Contains(ToBooleanStub::BOOLEAN)) { 1790 // Boolean -> its value. 1791 __ JumpIfRoot( 1792 value, Heap::kTrueValueRootIndex, true_label); 1793 __ JumpIfRoot( 1794 value, Heap::kFalseValueRootIndex, false_label); 1795 } 1796 1797 if (expected.Contains(ToBooleanStub::NULL_TYPE)) { 1798 // 'null' -> false. 1799 __ JumpIfRoot( 1800 value, Heap::kNullValueRootIndex, false_label); 1801 } 1802 1803 if (expected.Contains(ToBooleanStub::SMI)) { 1804 // Smis: 0 -> false, all other -> true. 1805 DCHECK(Smi::FromInt(0) == 0); 1806 __ Cbz(value, false_label); 1807 __ JumpIfSmi(value, true_label); 1808 } else if (expected.NeedsMap()) { 1809 // If we need a map later and have a smi, deopt. 1810 DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi); 1811 } 1812 1813 Register map = NoReg; 1814 Register scratch = NoReg; 1815 1816 if (expected.NeedsMap()) { 1817 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); 1818 map = ToRegister(instr->temp1()); 1819 scratch = ToRegister(instr->temp2()); 1820 1821 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); 1822 1823 if (expected.CanBeUndetectable()) { 1824 // Undetectable -> false. 1825 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); 1826 __ TestAndBranchIfAnySet( 1827 scratch, 1 << Map::kIsUndetectable, false_label); 1828 } 1829 } 1830 1831 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { 1832 // spec object -> true. 1833 __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE); 1834 __ B(ge, true_label); 1835 } 1836 1837 if (expected.Contains(ToBooleanStub::STRING)) { 1838 // String value -> false iff empty. 1839 Label not_string; 1840 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE); 1841 __ B(ge, ¬_string); 1842 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset)); 1843 __ Cbz(scratch, false_label); 1844 __ B(true_label); 1845 __ Bind(¬_string); 1846 } 1847 1848 if (expected.Contains(ToBooleanStub::SYMBOL)) { 1849 // Symbol value -> true. 1850 __ CompareInstanceType(map, scratch, SYMBOL_TYPE); 1851 __ B(eq, true_label); 1852 } 1853 1854 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) { 1855 // SIMD value -> true. 1856 __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE); 1857 __ B(eq, true_label); 1858 } 1859 1860 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { 1861 Label not_heap_number; 1862 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number); 1863 1864 __ Ldr(double_scratch(), 1865 FieldMemOperand(value, HeapNumber::kValueOffset)); 1866 __ Fcmp(double_scratch(), 0.0); 1867 // If we got a NaN (overflow bit is set), jump to the false branch. 1868 __ B(vs, false_label); 1869 __ B(eq, false_label); 1870 __ B(true_label); 1871 __ Bind(¬_heap_number); 1872 } 1873 1874 if (!expected.IsGeneric()) { 1875 // We've seen something for the first time -> deopt. 1876 // This can only happen if we are not generic already. 1877 Deoptimize(instr, Deoptimizer::kUnexpectedObject); 1878 } 1879 } 1880 } 1881 } 1882 1883 1884 void LCodeGen::CallKnownFunction(Handle<JSFunction> function, 1885 int formal_parameter_count, int arity, 1886 LInstruction* instr) { 1887 bool dont_adapt_arguments = 1888 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; 1889 bool can_invoke_directly = 1890 dont_adapt_arguments || formal_parameter_count == arity; 1891 1892 // The function interface relies on the following register assignments. 1893 Register function_reg = x1; 1894 Register arity_reg = x0; 1895 1896 LPointerMap* pointers = instr->pointer_map(); 1897 1898 if (FLAG_debug_code) { 1899 Label is_not_smi; 1900 // Try to confirm that function_reg (x1) is a tagged pointer. 1901 __ JumpIfNotSmi(function_reg, &is_not_smi); 1902 __ Abort(kExpectedFunctionObject); 1903 __ Bind(&is_not_smi); 1904 } 1905 1906 if (can_invoke_directly) { 1907 // Change context. 1908 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); 1909 1910 // Always initialize new target and number of actual arguments. 1911 __ LoadRoot(x3, Heap::kUndefinedValueRootIndex); 1912 __ Mov(arity_reg, arity); 1913 1914 // Invoke function. 1915 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); 1916 __ Call(x10); 1917 1918 // Set up deoptimization. 1919 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 1920 } else { 1921 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 1922 ParameterCount count(arity); 1923 ParameterCount expected(formal_parameter_count); 1924 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator); 1925 } 1926 } 1927 1928 1929 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { 1930 DCHECK(instr->IsMarkedAsCall()); 1931 DCHECK(ToRegister(instr->result()).Is(x0)); 1932 1933 if (instr->hydrogen()->IsTailCall()) { 1934 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); 1935 1936 if (instr->target()->IsConstantOperand()) { 1937 LConstantOperand* target = LConstantOperand::cast(instr->target()); 1938 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); 1939 // TODO(all): on ARM we use a call descriptor to specify a storage mode 1940 // but on ARM64 we only have one storage mode so it isn't necessary. Check 1941 // this understanding is correct. 1942 __ Jump(code, RelocInfo::CODE_TARGET); 1943 } else { 1944 DCHECK(instr->target()->IsRegister()); 1945 Register target = ToRegister(instr->target()); 1946 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); 1947 __ Br(target); 1948 } 1949 } else { 1950 LPointerMap* pointers = instr->pointer_map(); 1951 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 1952 1953 if (instr->target()->IsConstantOperand()) { 1954 LConstantOperand* target = LConstantOperand::cast(instr->target()); 1955 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); 1956 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); 1957 // TODO(all): on ARM we use a call descriptor to specify a storage mode 1958 // but on ARM64 we only have one storage mode so it isn't necessary. Check 1959 // this understanding is correct. 1960 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None()); 1961 } else { 1962 DCHECK(instr->target()->IsRegister()); 1963 Register target = ToRegister(instr->target()); 1964 generator.BeforeCall(__ CallSize(target)); 1965 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); 1966 __ Call(target); 1967 } 1968 generator.AfterCall(); 1969 } 1970 1971 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); 1972 } 1973 1974 1975 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { 1976 DCHECK(instr->IsMarkedAsCall()); 1977 DCHECK(ToRegister(instr->function()).is(x1)); 1978 1979 // Change context. 1980 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); 1981 1982 // Always initialize new target and number of actual arguments. 1983 __ LoadRoot(x3, Heap::kUndefinedValueRootIndex); 1984 __ Mov(x0, instr->arity()); 1985 1986 // Load the code entry address 1987 __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); 1988 __ Call(x10); 1989 1990 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 1991 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); 1992 } 1993 1994 1995 void LCodeGen::DoCallRuntime(LCallRuntime* instr) { 1996 CallRuntime(instr->function(), instr->arity(), instr); 1997 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); 1998 } 1999 2000 2001 void LCodeGen::DoCallStub(LCallStub* instr) { 2002 DCHECK(ToRegister(instr->context()).is(cp)); 2003 DCHECK(ToRegister(instr->result()).is(x0)); 2004 switch (instr->hydrogen()->major_key()) { 2005 case CodeStub::RegExpExec: { 2006 RegExpExecStub stub(isolate()); 2007 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2008 break; 2009 } 2010 case CodeStub::SubString: { 2011 SubStringStub stub(isolate()); 2012 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2013 break; 2014 } 2015 default: 2016 UNREACHABLE(); 2017 } 2018 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); 2019 } 2020 2021 2022 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { 2023 GenerateOsrPrologue(); 2024 } 2025 2026 2027 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { 2028 Register temp = ToRegister(instr->temp()); 2029 { 2030 PushSafepointRegistersScope scope(this); 2031 __ Push(object); 2032 __ Mov(cp, 0); 2033 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); 2034 RecordSafepointWithRegisters( 2035 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); 2036 __ StoreToSafepointRegisterSlot(x0, temp); 2037 } 2038 DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed); 2039 } 2040 2041 2042 void LCodeGen::DoCheckMaps(LCheckMaps* instr) { 2043 class DeferredCheckMaps: public LDeferredCode { 2044 public: 2045 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) 2046 : LDeferredCode(codegen), instr_(instr), object_(object) { 2047 SetExit(check_maps()); 2048 } 2049 virtual void Generate() { 2050 codegen()->DoDeferredInstanceMigration(instr_, object_); 2051 } 2052 Label* check_maps() { return &check_maps_; } 2053 virtual LInstruction* instr() { return instr_; } 2054 private: 2055 LCheckMaps* instr_; 2056 Label check_maps_; 2057 Register object_; 2058 }; 2059 2060 if (instr->hydrogen()->IsStabilityCheck()) { 2061 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); 2062 for (int i = 0; i < maps->size(); ++i) { 2063 AddStabilityDependency(maps->at(i).handle()); 2064 } 2065 return; 2066 } 2067 2068 Register object = ToRegister(instr->value()); 2069 Register map_reg = ToRegister(instr->temp()); 2070 2071 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset)); 2072 2073 DeferredCheckMaps* deferred = NULL; 2074 if (instr->hydrogen()->HasMigrationTarget()) { 2075 deferred = new(zone()) DeferredCheckMaps(this, instr, object); 2076 __ Bind(deferred->check_maps()); 2077 } 2078 2079 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); 2080 Label success; 2081 for (int i = 0; i < maps->size() - 1; i++) { 2082 Handle<Map> map = maps->at(i).handle(); 2083 __ CompareMap(map_reg, map); 2084 __ B(eq, &success); 2085 } 2086 Handle<Map> map = maps->at(maps->size() - 1).handle(); 2087 __ CompareMap(map_reg, map); 2088 2089 // We didn't match a map. 2090 if (instr->hydrogen()->HasMigrationTarget()) { 2091 __ B(ne, deferred->entry()); 2092 } else { 2093 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); 2094 } 2095 2096 __ Bind(&success); 2097 } 2098 2099 2100 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { 2101 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 2102 DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi); 2103 } 2104 } 2105 2106 2107 void LCodeGen::DoCheckSmi(LCheckSmi* instr) { 2108 Register value = ToRegister(instr->value()); 2109 DCHECK(!instr->result() || ToRegister(instr->result()).Is(value)); 2110 DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi); 2111 } 2112 2113 2114 void LCodeGen::DoCheckArrayBufferNotNeutered( 2115 LCheckArrayBufferNotNeutered* instr) { 2116 UseScratchRegisterScope temps(masm()); 2117 Register view = ToRegister(instr->view()); 2118 Register scratch = temps.AcquireX(); 2119 2120 __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); 2121 __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); 2122 __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift)); 2123 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds); 2124 } 2125 2126 2127 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { 2128 Register input = ToRegister(instr->value()); 2129 Register scratch = ToRegister(instr->temp()); 2130 2131 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); 2132 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 2133 2134 if (instr->hydrogen()->is_interval_check()) { 2135 InstanceType first, last; 2136 instr->hydrogen()->GetCheckInterval(&first, &last); 2137 2138 __ Cmp(scratch, first); 2139 if (first == last) { 2140 // If there is only one type in the interval check for equality. 2141 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType); 2142 } else if (last == LAST_TYPE) { 2143 // We don't need to compare with the higher bound of the interval. 2144 DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType); 2145 } else { 2146 // If we are below the lower bound, set the C flag and clear the Z flag 2147 // to force a deopt. 2148 __ Ccmp(scratch, last, CFlag, hs); 2149 DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType); 2150 } 2151 } else { 2152 uint8_t mask; 2153 uint8_t tag; 2154 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); 2155 2156 if (base::bits::IsPowerOfTwo32(mask)) { 2157 DCHECK((tag == 0) || (tag == mask)); 2158 if (tag == 0) { 2159 DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr, 2160 Deoptimizer::kWrongInstanceType); 2161 } else { 2162 DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr, 2163 Deoptimizer::kWrongInstanceType); 2164 } 2165 } else { 2166 if (tag == 0) { 2167 __ Tst(scratch, mask); 2168 } else { 2169 __ And(scratch, scratch, mask); 2170 __ Cmp(scratch, tag); 2171 } 2172 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType); 2173 } 2174 } 2175 } 2176 2177 2178 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { 2179 DoubleRegister input = ToDoubleRegister(instr->unclamped()); 2180 Register result = ToRegister32(instr->result()); 2181 __ ClampDoubleToUint8(result, input, double_scratch()); 2182 } 2183 2184 2185 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { 2186 Register input = ToRegister32(instr->unclamped()); 2187 Register result = ToRegister32(instr->result()); 2188 __ ClampInt32ToUint8(result, input); 2189 } 2190 2191 2192 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { 2193 Register input = ToRegister(instr->unclamped()); 2194 Register result = ToRegister32(instr->result()); 2195 Label done; 2196 2197 // Both smi and heap number cases are handled. 2198 Label is_not_smi; 2199 __ JumpIfNotSmi(input, &is_not_smi); 2200 __ SmiUntag(result.X(), input); 2201 __ ClampInt32ToUint8(result); 2202 __ B(&done); 2203 2204 __ Bind(&is_not_smi); 2205 2206 // Check for heap number. 2207 Label is_heap_number; 2208 __ JumpIfHeapNumber(input, &is_heap_number); 2209 2210 // Check for undefined. Undefined is coverted to zero for clamping conversion. 2211 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, 2212 Deoptimizer::kNotAHeapNumberUndefined); 2213 __ Mov(result, 0); 2214 __ B(&done); 2215 2216 // Heap number case. 2217 __ Bind(&is_heap_number); 2218 DoubleRegister dbl_scratch = double_scratch(); 2219 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1()); 2220 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); 2221 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2); 2222 2223 __ Bind(&done); 2224 } 2225 2226 2227 void LCodeGen::DoDoubleBits(LDoubleBits* instr) { 2228 DoubleRegister value_reg = ToDoubleRegister(instr->value()); 2229 Register result_reg = ToRegister(instr->result()); 2230 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { 2231 __ Fmov(result_reg, value_reg); 2232 __ Lsr(result_reg, result_reg, 32); 2233 } else { 2234 __ Fmov(result_reg.W(), value_reg.S()); 2235 } 2236 } 2237 2238 2239 void LCodeGen::DoConstructDouble(LConstructDouble* instr) { 2240 Register hi_reg = ToRegister(instr->hi()); 2241 Register lo_reg = ToRegister(instr->lo()); 2242 DoubleRegister result_reg = ToDoubleRegister(instr->result()); 2243 2244 // Insert the least significant 32 bits of hi_reg into the most significant 2245 // 32 bits of lo_reg, and move to a floating point register. 2246 __ Bfi(lo_reg, hi_reg, 32, 32); 2247 __ Fmov(result_reg, lo_reg); 2248 } 2249 2250 2251 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { 2252 Handle<String> class_name = instr->hydrogen()->class_name(); 2253 Label* true_label = instr->TrueLabel(chunk_); 2254 Label* false_label = instr->FalseLabel(chunk_); 2255 Register input = ToRegister(instr->value()); 2256 Register scratch1 = ToRegister(instr->temp1()); 2257 Register scratch2 = ToRegister(instr->temp2()); 2258 2259 __ JumpIfSmi(input, false_label); 2260 2261 Register map = scratch2; 2262 __ CompareObjectType(input, map, scratch1, JS_FUNCTION_TYPE); 2263 if (String::Equals(isolate()->factory()->Function_string(), class_name)) { 2264 __ B(eq, true_label); 2265 } else { 2266 __ B(eq, false_label); 2267 } 2268 2269 // Check if the constructor in the map is a function. 2270 { 2271 UseScratchRegisterScope temps(masm()); 2272 Register instance_type = temps.AcquireX(); 2273 __ GetMapConstructor(scratch1, map, scratch2, instance_type); 2274 __ Cmp(instance_type, JS_FUNCTION_TYPE); 2275 } 2276 // Objects with a non-function constructor have class 'Object'. 2277 if (String::Equals(class_name, isolate()->factory()->Object_string())) { 2278 __ B(ne, true_label); 2279 } else { 2280 __ B(ne, false_label); 2281 } 2282 2283 // The constructor function is in scratch1. Get its instance class name. 2284 __ Ldr(scratch1, 2285 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); 2286 __ Ldr(scratch1, 2287 FieldMemOperand(scratch1, 2288 SharedFunctionInfo::kInstanceClassNameOffset)); 2289 2290 // The class name we are testing against is internalized since it's a literal. 2291 // The name in the constructor is internalized because of the way the context 2292 // is booted. This routine isn't expected to work for random API-created 2293 // classes and it doesn't have to because you can't access it with natives 2294 // syntax. Since both sides are internalized it is sufficient to use an 2295 // identity comparison. 2296 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name)); 2297 } 2298 2299 2300 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) { 2301 DCHECK(instr->hydrogen()->representation().IsDouble()); 2302 FPRegister object = ToDoubleRegister(instr->object()); 2303 Register temp = ToRegister(instr->temp()); 2304 2305 // If we don't have a NaN, we don't have the hole, so branch now to avoid the 2306 // (relatively expensive) hole-NaN check. 2307 __ Fcmp(object, object); 2308 __ B(vc, instr->FalseLabel(chunk_)); 2309 2310 // We have a NaN, but is it the hole? 2311 __ Fmov(temp, object); 2312 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64); 2313 } 2314 2315 2316 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) { 2317 DCHECK(instr->hydrogen()->representation().IsTagged()); 2318 Register object = ToRegister(instr->object()); 2319 2320 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex); 2321 } 2322 2323 2324 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { 2325 Register value = ToRegister(instr->value()); 2326 Register map = ToRegister(instr->temp()); 2327 2328 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); 2329 EmitCompareAndBranch(instr, eq, map, Operand(instr->map())); 2330 } 2331 2332 2333 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { 2334 Representation rep = instr->hydrogen()->value()->representation(); 2335 DCHECK(!rep.IsInteger32()); 2336 Register scratch = ToRegister(instr->temp()); 2337 2338 if (rep.IsDouble()) { 2339 __ JumpIfMinusZero(ToDoubleRegister(instr->value()), 2340 instr->TrueLabel(chunk())); 2341 } else { 2342 Register value = ToRegister(instr->value()); 2343 __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK); 2344 __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset)); 2345 __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk())); 2346 } 2347 EmitGoto(instr->FalseDestination(chunk())); 2348 } 2349 2350 2351 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { 2352 LOperand* left = instr->left(); 2353 LOperand* right = instr->right(); 2354 bool is_unsigned = 2355 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || 2356 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); 2357 Condition cond = TokenToCondition(instr->op(), is_unsigned); 2358 2359 if (left->IsConstantOperand() && right->IsConstantOperand()) { 2360 // We can statically evaluate the comparison. 2361 double left_val = ToDouble(LConstantOperand::cast(left)); 2362 double right_val = ToDouble(LConstantOperand::cast(right)); 2363 int next_block = EvalComparison(instr->op(), left_val, right_val) ? 2364 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); 2365 EmitGoto(next_block); 2366 } else { 2367 if (instr->is_double()) { 2368 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right)); 2369 2370 // If a NaN is involved, i.e. the result is unordered (V set), 2371 // jump to false block label. 2372 __ B(vs, instr->FalseLabel(chunk_)); 2373 EmitBranch(instr, cond); 2374 } else { 2375 if (instr->hydrogen_value()->representation().IsInteger32()) { 2376 if (right->IsConstantOperand()) { 2377 EmitCompareAndBranch(instr, cond, ToRegister32(left), 2378 ToOperand32(right)); 2379 } else { 2380 // Commute the operands and the condition. 2381 EmitCompareAndBranch(instr, CommuteCondition(cond), 2382 ToRegister32(right), ToOperand32(left)); 2383 } 2384 } else { 2385 DCHECK(instr->hydrogen_value()->representation().IsSmi()); 2386 if (right->IsConstantOperand()) { 2387 int32_t value = ToInteger32(LConstantOperand::cast(right)); 2388 EmitCompareAndBranch(instr, 2389 cond, 2390 ToRegister(left), 2391 Operand(Smi::FromInt(value))); 2392 } else if (left->IsConstantOperand()) { 2393 // Commute the operands and the condition. 2394 int32_t value = ToInteger32(LConstantOperand::cast(left)); 2395 EmitCompareAndBranch(instr, 2396 CommuteCondition(cond), 2397 ToRegister(right), 2398 Operand(Smi::FromInt(value))); 2399 } else { 2400 EmitCompareAndBranch(instr, 2401 cond, 2402 ToRegister(left), 2403 ToRegister(right)); 2404 } 2405 } 2406 } 2407 } 2408 } 2409 2410 2411 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { 2412 Register left = ToRegister(instr->left()); 2413 Register right = ToRegister(instr->right()); 2414 EmitCompareAndBranch(instr, eq, left, right); 2415 } 2416 2417 2418 void LCodeGen::DoCmpT(LCmpT* instr) { 2419 DCHECK(ToRegister(instr->context()).is(cp)); 2420 Token::Value op = instr->op(); 2421 Condition cond = TokenToCondition(op, false); 2422 2423 DCHECK(ToRegister(instr->left()).Is(x1)); 2424 DCHECK(ToRegister(instr->right()).Is(x0)); 2425 Handle<Code> ic = 2426 CodeFactory::CompareIC(isolate(), op, instr->strength()).code(); 2427 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2428 // Signal that we don't inline smi code before this stub. 2429 InlineSmiCheckInfo::EmitNotInlined(masm()); 2430 2431 // Return true or false depending on CompareIC result. 2432 // This instruction is marked as call. We can clobber any register. 2433 DCHECK(instr->IsMarkedAsCall()); 2434 __ LoadTrueFalseRoots(x1, x2); 2435 __ Cmp(x0, 0); 2436 __ Csel(ToRegister(instr->result()), x1, x2, cond); 2437 } 2438 2439 2440 void LCodeGen::DoConstantD(LConstantD* instr) { 2441 DCHECK(instr->result()->IsDoubleRegister()); 2442 DoubleRegister result = ToDoubleRegister(instr->result()); 2443 if (instr->value() == 0) { 2444 if (copysign(1.0, instr->value()) == 1.0) { 2445 __ Fmov(result, fp_zero); 2446 } else { 2447 __ Fneg(result, fp_zero); 2448 } 2449 } else { 2450 __ Fmov(result, instr->value()); 2451 } 2452 } 2453 2454 2455 void LCodeGen::DoConstantE(LConstantE* instr) { 2456 __ Mov(ToRegister(instr->result()), Operand(instr->value())); 2457 } 2458 2459 2460 void LCodeGen::DoConstantI(LConstantI* instr) { 2461 DCHECK(is_int32(instr->value())); 2462 // Cast the value here to ensure that the value isn't sign extended by the 2463 // implicit Operand constructor. 2464 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value())); 2465 } 2466 2467 2468 void LCodeGen::DoConstantS(LConstantS* instr) { 2469 __ Mov(ToRegister(instr->result()), Operand(instr->value())); 2470 } 2471 2472 2473 void LCodeGen::DoConstantT(LConstantT* instr) { 2474 Handle<Object> object = instr->value(isolate()); 2475 AllowDeferredHandleDereference smi_check; 2476 __ LoadObject(ToRegister(instr->result()), object); 2477 } 2478 2479 2480 void LCodeGen::DoContext(LContext* instr) { 2481 // If there is a non-return use, the context must be moved to a register. 2482 Register result = ToRegister(instr->result()); 2483 if (info()->IsOptimizing()) { 2484 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2485 } else { 2486 // If there is no frame, the context must be in cp. 2487 DCHECK(result.is(cp)); 2488 } 2489 } 2490 2491 2492 void LCodeGen::DoCheckValue(LCheckValue* instr) { 2493 Register reg = ToRegister(instr->value()); 2494 Handle<HeapObject> object = instr->hydrogen()->object().handle(); 2495 AllowDeferredHandleDereference smi_check; 2496 if (isolate()->heap()->InNewSpace(*object)) { 2497 UseScratchRegisterScope temps(masm()); 2498 Register temp = temps.AcquireX(); 2499 Handle<Cell> cell = isolate()->factory()->NewCell(object); 2500 __ Mov(temp, Operand(cell)); 2501 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset)); 2502 __ Cmp(reg, temp); 2503 } else { 2504 __ Cmp(reg, Operand(object)); 2505 } 2506 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch); 2507 } 2508 2509 2510 void LCodeGen::DoLazyBailout(LLazyBailout* instr) { 2511 last_lazy_deopt_pc_ = masm()->pc_offset(); 2512 DCHECK(instr->HasEnvironment()); 2513 LEnvironment* env = instr->environment(); 2514 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); 2515 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 2516 } 2517 2518 2519 void LCodeGen::DoDeoptimize(LDeoptimize* instr) { 2520 Deoptimizer::BailoutType type = instr->hydrogen()->type(); 2521 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the 2522 // needed return address), even though the implementation of LAZY and EAGER is 2523 // now identical. When LAZY is eventually completely folded into EAGER, remove 2524 // the special case below. 2525 if (info()->IsStub() && (type == Deoptimizer::EAGER)) { 2526 type = Deoptimizer::LAZY; 2527 } 2528 2529 Deoptimize(instr, instr->hydrogen()->reason(), &type); 2530 } 2531 2532 2533 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { 2534 Register dividend = ToRegister32(instr->dividend()); 2535 int32_t divisor = instr->divisor(); 2536 Register result = ToRegister32(instr->result()); 2537 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); 2538 DCHECK(!result.is(dividend)); 2539 2540 // Check for (0 / -x) that will produce negative zero. 2541 HDiv* hdiv = instr->hydrogen(); 2542 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 2543 DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero); 2544 } 2545 // Check for (kMinInt / -1). 2546 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { 2547 // Test dividend for kMinInt by subtracting one (cmp) and checking for 2548 // overflow. 2549 __ Cmp(dividend, 1); 2550 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 2551 } 2552 // Deoptimize if remainder will not be 0. 2553 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && 2554 divisor != 1 && divisor != -1) { 2555 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); 2556 __ Tst(dividend, mask); 2557 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision); 2558 } 2559 2560 if (divisor == -1) { // Nice shortcut, not needed for correctness. 2561 __ Neg(result, dividend); 2562 return; 2563 } 2564 int32_t shift = WhichPowerOf2Abs(divisor); 2565 if (shift == 0) { 2566 __ Mov(result, dividend); 2567 } else if (shift == 1) { 2568 __ Add(result, dividend, Operand(dividend, LSR, 31)); 2569 } else { 2570 __ Mov(result, Operand(dividend, ASR, 31)); 2571 __ Add(result, dividend, Operand(result, LSR, 32 - shift)); 2572 } 2573 if (shift > 0) __ Mov(result, Operand(result, ASR, shift)); 2574 if (divisor < 0) __ Neg(result, result); 2575 } 2576 2577 2578 void LCodeGen::DoDivByConstI(LDivByConstI* instr) { 2579 Register dividend = ToRegister32(instr->dividend()); 2580 int32_t divisor = instr->divisor(); 2581 Register result = ToRegister32(instr->result()); 2582 DCHECK(!AreAliased(dividend, result)); 2583 2584 if (divisor == 0) { 2585 Deoptimize(instr, Deoptimizer::kDivisionByZero); 2586 return; 2587 } 2588 2589 // Check for (0 / -x) that will produce negative zero. 2590 HDiv* hdiv = instr->hydrogen(); 2591 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 2592 DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero); 2593 } 2594 2595 __ TruncatingDiv(result, dividend, Abs(divisor)); 2596 if (divisor < 0) __ Neg(result, result); 2597 2598 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { 2599 Register temp = ToRegister32(instr->temp()); 2600 DCHECK(!AreAliased(dividend, result, temp)); 2601 __ Sxtw(dividend.X(), dividend); 2602 __ Mov(temp, divisor); 2603 __ Smsubl(temp.X(), result, temp, dividend.X()); 2604 DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision); 2605 } 2606 } 2607 2608 2609 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. 2610 void LCodeGen::DoDivI(LDivI* instr) { 2611 HBinaryOperation* hdiv = instr->hydrogen(); 2612 Register dividend = ToRegister32(instr->dividend()); 2613 Register divisor = ToRegister32(instr->divisor()); 2614 Register result = ToRegister32(instr->result()); 2615 2616 // Issue the division first, and then check for any deopt cases whilst the 2617 // result is computed. 2618 __ Sdiv(result, dividend, divisor); 2619 2620 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { 2621 DCHECK(!instr->temp()); 2622 return; 2623 } 2624 2625 // Check for x / 0. 2626 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { 2627 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); 2628 } 2629 2630 // Check for (0 / -x) as that will produce negative zero. 2631 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { 2632 __ Cmp(divisor, 0); 2633 2634 // If the divisor < 0 (mi), compare the dividend, and deopt if it is 2635 // zero, ie. zero dividend with negative divisor deopts. 2636 // If the divisor >= 0 (pl, the opposite of mi) set the flags to 2637 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt. 2638 __ Ccmp(dividend, 0, NoFlag, mi); 2639 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); 2640 } 2641 2642 // Check for (kMinInt / -1). 2643 if (hdiv->CheckFlag(HValue::kCanOverflow)) { 2644 // Test dividend for kMinInt by subtracting one (cmp) and checking for 2645 // overflow. 2646 __ Cmp(dividend, 1); 2647 // If overflow is set, ie. dividend = kMinInt, compare the divisor with 2648 // -1. If overflow is clear, set the flags for condition ne, as the 2649 // dividend isn't -1, and thus we shouldn't deopt. 2650 __ Ccmp(divisor, -1, NoFlag, vs); 2651 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); 2652 } 2653 2654 // Compute remainder and deopt if it's not zero. 2655 Register remainder = ToRegister32(instr->temp()); 2656 __ Msub(remainder, result, divisor, dividend); 2657 DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision); 2658 } 2659 2660 2661 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) { 2662 DoubleRegister input = ToDoubleRegister(instr->value()); 2663 Register result = ToRegister32(instr->result()); 2664 2665 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 2666 DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero); 2667 } 2668 2669 __ TryRepresentDoubleAsInt32(result, input, double_scratch()); 2670 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); 2671 2672 if (instr->tag_result()) { 2673 __ SmiTag(result.X()); 2674 } 2675 } 2676 2677 2678 void LCodeGen::DoDrop(LDrop* instr) { 2679 __ Drop(instr->count()); 2680 2681 RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta()); 2682 } 2683 2684 2685 void LCodeGen::DoDummy(LDummy* instr) { 2686 // Nothing to see here, move on! 2687 } 2688 2689 2690 void LCodeGen::DoDummyUse(LDummyUse* instr) { 2691 // Nothing to see here, move on! 2692 } 2693 2694 2695 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { 2696 Register map = ToRegister(instr->map()); 2697 Register result = ToRegister(instr->result()); 2698 Label load_cache, done; 2699 2700 __ EnumLengthUntagged(result, map); 2701 __ Cbnz(result, &load_cache); 2702 2703 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array())); 2704 __ B(&done); 2705 2706 __ Bind(&load_cache); 2707 __ LoadInstanceDescriptors(map, result); 2708 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); 2709 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); 2710 DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache); 2711 2712 __ Bind(&done); 2713 } 2714 2715 2716 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { 2717 Register object = ToRegister(instr->object()); 2718 Register null_value = x5; 2719 2720 DCHECK(instr->IsMarkedAsCall()); 2721 DCHECK(object.Is(x0)); 2722 2723 DeoptimizeIfSmi(object, instr, Deoptimizer::kSmi); 2724 2725 STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE); 2726 __ CompareObjectType(object, x1, x1, JS_PROXY_TYPE); 2727 DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject); 2728 2729 Label use_cache, call_runtime; 2730 __ LoadRoot(null_value, Heap::kNullValueRootIndex); 2731 __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime); 2732 2733 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); 2734 __ B(&use_cache); 2735 2736 // Get the set of properties to enumerate. 2737 __ Bind(&call_runtime); 2738 __ Push(object); 2739 CallRuntime(Runtime::kGetPropertyNamesFast, instr); 2740 2741 __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset)); 2742 DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr, 2743 Deoptimizer::kWrongMap); 2744 2745 __ Bind(&use_cache); 2746 } 2747 2748 2749 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { 2750 Register input = ToRegister(instr->value()); 2751 Register result = ToRegister(instr->result()); 2752 2753 __ AssertString(input); 2754 2755 // Assert that we can use a W register load to get the hash. 2756 DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits); 2757 __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset)); 2758 __ IndexFromHash(result, result); 2759 } 2760 2761 2762 void LCodeGen::EmitGoto(int block) { 2763 // Do not emit jump if we are emitting a goto to the next block. 2764 if (!IsNextEmittedBlock(block)) { 2765 __ B(chunk_->GetAssemblyLabel(LookupDestination(block))); 2766 } 2767 } 2768 2769 2770 void LCodeGen::DoGoto(LGoto* instr) { 2771 EmitGoto(instr->block_id()); 2772 } 2773 2774 2775 void LCodeGen::DoHasCachedArrayIndexAndBranch( 2776 LHasCachedArrayIndexAndBranch* instr) { 2777 Register input = ToRegister(instr->value()); 2778 Register temp = ToRegister32(instr->temp()); 2779 2780 // Assert that the cache status bits fit in a W register. 2781 DCHECK(is_uint32(String::kContainsCachedArrayIndexMask)); 2782 __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset)); 2783 __ Tst(temp, String::kContainsCachedArrayIndexMask); 2784 EmitBranch(instr, eq); 2785 } 2786 2787 2788 // HHasInstanceTypeAndBranch instruction is built with an interval of type 2789 // to test but is only used in very restricted ways. The only possible kinds 2790 // of intervals are: 2791 // - [ FIRST_TYPE, instr->to() ] 2792 // - [ instr->form(), LAST_TYPE ] 2793 // - instr->from() == instr->to() 2794 // 2795 // These kinds of intervals can be check with only one compare instruction 2796 // providing the correct value and test condition are used. 2797 // 2798 // TestType() will return the value to use in the compare instruction and 2799 // BranchCondition() will return the condition to use depending on the kind 2800 // of interval actually specified in the instruction. 2801 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { 2802 InstanceType from = instr->from(); 2803 InstanceType to = instr->to(); 2804 if (from == FIRST_TYPE) return to; 2805 DCHECK((from == to) || (to == LAST_TYPE)); 2806 return from; 2807 } 2808 2809 2810 // See comment above TestType function for what this function does. 2811 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { 2812 InstanceType from = instr->from(); 2813 InstanceType to = instr->to(); 2814 if (from == to) return eq; 2815 if (to == LAST_TYPE) return hs; 2816 if (from == FIRST_TYPE) return ls; 2817 UNREACHABLE(); 2818 return eq; 2819 } 2820 2821 2822 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { 2823 Register input = ToRegister(instr->value()); 2824 Register scratch = ToRegister(instr->temp()); 2825 2826 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 2827 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); 2828 } 2829 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); 2830 EmitBranch(instr, BranchCondition(instr->hydrogen())); 2831 } 2832 2833 2834 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { 2835 Register result = ToRegister(instr->result()); 2836 Register base = ToRegister(instr->base_object()); 2837 if (instr->offset()->IsConstantOperand()) { 2838 __ Add(result, base, ToOperand32(instr->offset())); 2839 } else { 2840 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW)); 2841 } 2842 } 2843 2844 2845 void LCodeGen::DoInstanceOf(LInstanceOf* instr) { 2846 DCHECK(ToRegister(instr->context()).is(cp)); 2847 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister())); 2848 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister())); 2849 DCHECK(ToRegister(instr->result()).is(x0)); 2850 InstanceOfStub stub(isolate()); 2851 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2852 } 2853 2854 2855 void LCodeGen::DoHasInPrototypeChainAndBranch( 2856 LHasInPrototypeChainAndBranch* instr) { 2857 Register const object = ToRegister(instr->object()); 2858 Register const object_map = ToRegister(instr->scratch1()); 2859 Register const object_instance_type = ToRegister(instr->scratch2()); 2860 Register const object_prototype = object_map; 2861 Register const prototype = ToRegister(instr->prototype()); 2862 2863 // The {object} must be a spec object. It's sufficient to know that {object} 2864 // is not a smi, since all other non-spec objects have {null} prototypes and 2865 // will be ruled out below. 2866 if (instr->hydrogen()->ObjectNeedsSmiCheck()) { 2867 __ JumpIfSmi(object, instr->FalseLabel(chunk_)); 2868 } 2869 2870 // Loop through the {object}s prototype chain looking for the {prototype}. 2871 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); 2872 Label loop; 2873 __ Bind(&loop); 2874 2875 // Deoptimize if the object needs to be access checked. 2876 __ Ldrb(object_instance_type, 2877 FieldMemOperand(object_map, Map::kBitFieldOffset)); 2878 __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded)); 2879 DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck); 2880 // Deoptimize for proxies. 2881 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE); 2882 DeoptimizeIf(eq, instr, Deoptimizer::kProxy); 2883 2884 __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset)); 2885 __ Cmp(object_prototype, prototype); 2886 __ B(eq, instr->TrueLabel(chunk_)); 2887 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); 2888 __ B(eq, instr->FalseLabel(chunk_)); 2889 __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset)); 2890 __ B(&loop); 2891 } 2892 2893 2894 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { 2895 DoGap(instr); 2896 } 2897 2898 2899 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { 2900 Register value = ToRegister32(instr->value()); 2901 DoubleRegister result = ToDoubleRegister(instr->result()); 2902 __ Scvtf(result, value); 2903 } 2904 2905 2906 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { 2907 DCHECK(ToRegister(instr->context()).is(cp)); 2908 // The function is required to be in x1. 2909 DCHECK(ToRegister(instr->function()).is(x1)); 2910 DCHECK(instr->HasPointerMap()); 2911 2912 Handle<JSFunction> known_function = instr->hydrogen()->known_function(); 2913 if (known_function.is_null()) { 2914 LPointerMap* pointers = instr->pointer_map(); 2915 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 2916 ParameterCount count(instr->arity()); 2917 __ InvokeFunction(x1, no_reg, count, CALL_FUNCTION, generator); 2918 } else { 2919 CallKnownFunction(known_function, 2920 instr->hydrogen()->formal_parameter_count(), 2921 instr->arity(), instr); 2922 } 2923 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); 2924 } 2925 2926 2927 Condition LCodeGen::EmitIsString(Register input, 2928 Register temp1, 2929 Label* is_not_string, 2930 SmiCheck check_needed = INLINE_SMI_CHECK) { 2931 if (check_needed == INLINE_SMI_CHECK) { 2932 __ JumpIfSmi(input, is_not_string); 2933 } 2934 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); 2935 2936 return lt; 2937 } 2938 2939 2940 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { 2941 Register val = ToRegister(instr->value()); 2942 Register scratch = ToRegister(instr->temp()); 2943 2944 SmiCheck check_needed = 2945 instr->hydrogen()->value()->type().IsHeapObject() 2946 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 2947 Condition true_cond = 2948 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed); 2949 2950 EmitBranch(instr, true_cond); 2951 } 2952 2953 2954 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { 2955 Register value = ToRegister(instr->value()); 2956 STATIC_ASSERT(kSmiTag == 0); 2957 EmitTestAndBranch(instr, eq, value, kSmiTagMask); 2958 } 2959 2960 2961 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { 2962 Register input = ToRegister(instr->value()); 2963 Register temp = ToRegister(instr->temp()); 2964 2965 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 2966 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); 2967 } 2968 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); 2969 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); 2970 2971 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable); 2972 } 2973 2974 2975 static const char* LabelType(LLabel* label) { 2976 if (label->is_loop_header()) return " (loop header)"; 2977 if (label->is_osr_entry()) return " (OSR entry)"; 2978 return ""; 2979 } 2980 2981 2982 void LCodeGen::DoLabel(LLabel* label) { 2983 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", 2984 current_instruction_, 2985 label->hydrogen_value()->id(), 2986 label->block_id(), 2987 LabelType(label)); 2988 2989 // Inherit pushed_arguments_ from the predecessor's argument count. 2990 if (label->block()->HasPredecessor()) { 2991 pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count(); 2992 #ifdef DEBUG 2993 for (auto p : *label->block()->predecessors()) { 2994 DCHECK_EQ(p->argument_count(), pushed_arguments_); 2995 } 2996 #endif 2997 } 2998 2999 __ Bind(label->label()); 3000 current_block_ = label->block_id(); 3001 DoGap(label); 3002 } 3003 3004 3005 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { 3006 Register context = ToRegister(instr->context()); 3007 Register result = ToRegister(instr->result()); 3008 __ Ldr(result, ContextMemOperand(context, instr->slot_index())); 3009 if (instr->hydrogen()->RequiresHoleCheck()) { 3010 if (instr->hydrogen()->DeoptimizesOnHole()) { 3011 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, 3012 Deoptimizer::kHole); 3013 } else { 3014 Label not_the_hole; 3015 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole); 3016 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); 3017 __ Bind(¬_the_hole); 3018 } 3019 } 3020 } 3021 3022 3023 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { 3024 Register function = ToRegister(instr->function()); 3025 Register result = ToRegister(instr->result()); 3026 Register temp = ToRegister(instr->temp()); 3027 3028 // Get the prototype or initial map from the function. 3029 __ Ldr(result, FieldMemOperand(function, 3030 JSFunction::kPrototypeOrInitialMapOffset)); 3031 3032 // Check that the function has a prototype or an initial map. 3033 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, 3034 Deoptimizer::kHole); 3035 3036 // If the function does not have an initial map, we're done. 3037 Label done; 3038 __ CompareObjectType(result, temp, temp, MAP_TYPE); 3039 __ B(ne, &done); 3040 3041 // Get the prototype from the initial map. 3042 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); 3043 3044 // All done. 3045 __ Bind(&done); 3046 } 3047 3048 3049 template <class T> 3050 void LCodeGen::EmitVectorLoadICRegisters(T* instr) { 3051 Register vector_register = ToRegister(instr->temp_vector()); 3052 Register slot_register = LoadWithVectorDescriptor::SlotRegister(); 3053 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister())); 3054 DCHECK(slot_register.is(x0)); 3055 3056 AllowDeferredHandleDereference vector_structure_check; 3057 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); 3058 __ Mov(vector_register, vector); 3059 // No need to allocate this register. 3060 FeedbackVectorSlot slot = instr->hydrogen()->slot(); 3061 int index = vector->GetIndex(slot); 3062 __ Mov(slot_register, Smi::FromInt(index)); 3063 } 3064 3065 3066 template <class T> 3067 void LCodeGen::EmitVectorStoreICRegisters(T* instr) { 3068 Register vector_register = ToRegister(instr->temp_vector()); 3069 Register slot_register = ToRegister(instr->temp_slot()); 3070 3071 AllowDeferredHandleDereference vector_structure_check; 3072 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector(); 3073 __ Mov(vector_register, vector); 3074 FeedbackVectorSlot slot = instr->hydrogen()->slot(); 3075 int index = vector->GetIndex(slot); 3076 __ Mov(slot_register, Smi::FromInt(index)); 3077 } 3078 3079 3080 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { 3081 DCHECK(ToRegister(instr->context()).is(cp)); 3082 DCHECK(ToRegister(instr->global_object()) 3083 .is(LoadDescriptor::ReceiverRegister())); 3084 DCHECK(ToRegister(instr->result()).Is(x0)); 3085 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name())); 3086 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr); 3087 Handle<Code> ic = 3088 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(), 3089 SLOPPY, PREMONOMORPHIC).code(); 3090 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3091 } 3092 3093 3094 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand( 3095 Register key, 3096 Register base, 3097 Register scratch, 3098 bool key_is_smi, 3099 bool key_is_constant, 3100 int constant_key, 3101 ElementsKind elements_kind, 3102 int base_offset) { 3103 int element_size_shift = ElementsKindToShiftSize(elements_kind); 3104 3105 if (key_is_constant) { 3106 int key_offset = constant_key << element_size_shift; 3107 return MemOperand(base, key_offset + base_offset); 3108 } 3109 3110 if (key_is_smi) { 3111 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift)); 3112 return MemOperand(scratch, base_offset); 3113 } 3114 3115 if (base_offset == 0) { 3116 return MemOperand(base, key, SXTW, element_size_shift); 3117 } 3118 3119 DCHECK(!AreAliased(scratch, key)); 3120 __ Add(scratch, base, base_offset); 3121 return MemOperand(scratch, key, SXTW, element_size_shift); 3122 } 3123 3124 3125 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) { 3126 Register ext_ptr = ToRegister(instr->elements()); 3127 Register scratch; 3128 ElementsKind elements_kind = instr->elements_kind(); 3129 3130 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); 3131 bool key_is_constant = instr->key()->IsConstantOperand(); 3132 Register key = no_reg; 3133 int constant_key = 0; 3134 if (key_is_constant) { 3135 DCHECK(instr->temp() == NULL); 3136 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 3137 if (constant_key & 0xf0000000) { 3138 Abort(kArrayIndexConstantValueTooBig); 3139 } 3140 } else { 3141 scratch = ToRegister(instr->temp()); 3142 key = ToRegister(instr->key()); 3143 } 3144 3145 MemOperand mem_op = 3146 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, 3147 key_is_constant, constant_key, 3148 elements_kind, 3149 instr->base_offset()); 3150 3151 if (elements_kind == FLOAT32_ELEMENTS) { 3152 DoubleRegister result = ToDoubleRegister(instr->result()); 3153 __ Ldr(result.S(), mem_op); 3154 __ Fcvt(result, result.S()); 3155 } else if (elements_kind == FLOAT64_ELEMENTS) { 3156 DoubleRegister result = ToDoubleRegister(instr->result()); 3157 __ Ldr(result, mem_op); 3158 } else { 3159 Register result = ToRegister(instr->result()); 3160 3161 switch (elements_kind) { 3162 case INT8_ELEMENTS: 3163 __ Ldrsb(result, mem_op); 3164 break; 3165 case UINT8_ELEMENTS: 3166 case UINT8_CLAMPED_ELEMENTS: 3167 __ Ldrb(result, mem_op); 3168 break; 3169 case INT16_ELEMENTS: 3170 __ Ldrsh(result, mem_op); 3171 break; 3172 case UINT16_ELEMENTS: 3173 __ Ldrh(result, mem_op); 3174 break; 3175 case INT32_ELEMENTS: 3176 __ Ldrsw(result, mem_op); 3177 break; 3178 case UINT32_ELEMENTS: 3179 __ Ldr(result.W(), mem_op); 3180 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { 3181 // Deopt if value > 0x80000000. 3182 __ Tst(result, 0xFFFFFFFF80000000); 3183 DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue); 3184 } 3185 break; 3186 case FLOAT32_ELEMENTS: 3187 case FLOAT64_ELEMENTS: 3188 case FAST_HOLEY_DOUBLE_ELEMENTS: 3189 case FAST_HOLEY_ELEMENTS: 3190 case FAST_HOLEY_SMI_ELEMENTS: 3191 case FAST_DOUBLE_ELEMENTS: 3192 case FAST_ELEMENTS: 3193 case FAST_SMI_ELEMENTS: 3194 case DICTIONARY_ELEMENTS: 3195 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: 3196 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: 3197 UNREACHABLE(); 3198 break; 3199 } 3200 } 3201 } 3202 3203 3204 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base, 3205 Register elements, 3206 Register key, 3207 bool key_is_tagged, 3208 ElementsKind elements_kind, 3209 Representation representation, 3210 int base_offset) { 3211 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 3212 STATIC_ASSERT(kSmiTag == 0); 3213 int element_size_shift = ElementsKindToShiftSize(elements_kind); 3214 3215 // Even though the HLoad/StoreKeyed instructions force the input 3216 // representation for the key to be an integer, the input gets replaced during 3217 // bounds check elimination with the index argument to the bounds check, which 3218 // can be tagged, so that case must be handled here, too. 3219 if (key_is_tagged) { 3220 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift)); 3221 if (representation.IsInteger32()) { 3222 DCHECK(elements_kind == FAST_SMI_ELEMENTS); 3223 // Read or write only the smi payload in the case of fast smi arrays. 3224 return UntagSmiMemOperand(base, base_offset); 3225 } else { 3226 return MemOperand(base, base_offset); 3227 } 3228 } else { 3229 // Sign extend key because it could be a 32-bit negative value or contain 3230 // garbage in the top 32-bits. The address computation happens in 64-bit. 3231 DCHECK((element_size_shift >= 0) && (element_size_shift <= 4)); 3232 if (representation.IsInteger32()) { 3233 DCHECK(elements_kind == FAST_SMI_ELEMENTS); 3234 // Read or write only the smi payload in the case of fast smi arrays. 3235 __ Add(base, elements, Operand(key, SXTW, element_size_shift)); 3236 return UntagSmiMemOperand(base, base_offset); 3237 } else { 3238 __ Add(base, elements, base_offset); 3239 return MemOperand(base, key, SXTW, element_size_shift); 3240 } 3241 } 3242 } 3243 3244 3245 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) { 3246 Register elements = ToRegister(instr->elements()); 3247 DoubleRegister result = ToDoubleRegister(instr->result()); 3248 MemOperand mem_op; 3249 3250 if (instr->key()->IsConstantOperand()) { 3251 DCHECK(instr->hydrogen()->RequiresHoleCheck() || 3252 (instr->temp() == NULL)); 3253 3254 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 3255 if (constant_key & 0xf0000000) { 3256 Abort(kArrayIndexConstantValueTooBig); 3257 } 3258 int offset = instr->base_offset() + constant_key * kDoubleSize; 3259 mem_op = MemOperand(elements, offset); 3260 } else { 3261 Register load_base = ToRegister(instr->temp()); 3262 Register key = ToRegister(instr->key()); 3263 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); 3264 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, 3265 instr->hydrogen()->elements_kind(), 3266 instr->hydrogen()->representation(), 3267 instr->base_offset()); 3268 } 3269 3270 __ Ldr(result, mem_op); 3271 3272 if (instr->hydrogen()->RequiresHoleCheck()) { 3273 Register scratch = ToRegister(instr->temp()); 3274 __ Fmov(scratch, result); 3275 __ Eor(scratch, scratch, kHoleNanInt64); 3276 DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole); 3277 } 3278 } 3279 3280 3281 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) { 3282 Register elements = ToRegister(instr->elements()); 3283 Register result = ToRegister(instr->result()); 3284 MemOperand mem_op; 3285 3286 Representation representation = instr->hydrogen()->representation(); 3287 if (instr->key()->IsConstantOperand()) { 3288 DCHECK(instr->temp() == NULL); 3289 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); 3290 int offset = instr->base_offset() + 3291 ToInteger32(const_operand) * kPointerSize; 3292 if (representation.IsInteger32()) { 3293 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); 3294 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 3295 STATIC_ASSERT(kSmiTag == 0); 3296 mem_op = UntagSmiMemOperand(elements, offset); 3297 } else { 3298 mem_op = MemOperand(elements, offset); 3299 } 3300 } else { 3301 Register load_base = ToRegister(instr->temp()); 3302 Register key = ToRegister(instr->key()); 3303 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); 3304 3305 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, 3306 instr->hydrogen()->elements_kind(), 3307 representation, instr->base_offset()); 3308 } 3309 3310 __ Load(result, mem_op, representation); 3311 3312 if (instr->hydrogen()->RequiresHoleCheck()) { 3313 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { 3314 DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi); 3315 } else { 3316 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, 3317 Deoptimizer::kHole); 3318 } 3319 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { 3320 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); 3321 Label done; 3322 __ CompareRoot(result, Heap::kTheHoleValueRootIndex); 3323 __ B(ne, &done); 3324 if (info()->IsStub()) { 3325 // A stub can safely convert the hole to undefined only if the array 3326 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise 3327 // it needs to bail out. 3328 __ LoadRoot(result, Heap::kArrayProtectorRootIndex); 3329 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset)); 3330 __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid))); 3331 DeoptimizeIf(ne, instr, Deoptimizer::kHole); 3332 } 3333 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); 3334 __ Bind(&done); 3335 } 3336 } 3337 3338 3339 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { 3340 DCHECK(ToRegister(instr->context()).is(cp)); 3341 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); 3342 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister())); 3343 3344 if (instr->hydrogen()->HasVectorAndSlot()) { 3345 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr); 3346 } 3347 3348 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode( 3349 isolate(), instr->hydrogen()->language_mode(), 3350 instr->hydrogen()->initialization_state()).code(); 3351 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3352 3353 DCHECK(ToRegister(instr->result()).Is(x0)); 3354 } 3355 3356 3357 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { 3358 HObjectAccess access = instr->hydrogen()->access(); 3359 int offset = access.offset(); 3360 Register object = ToRegister(instr->object()); 3361 3362 if (access.IsExternalMemory()) { 3363 Register result = ToRegister(instr->result()); 3364 __ Load(result, MemOperand(object, offset), access.representation()); 3365 return; 3366 } 3367 3368 if (instr->hydrogen()->representation().IsDouble()) { 3369 DCHECK(access.IsInobject()); 3370 FPRegister result = ToDoubleRegister(instr->result()); 3371 __ Ldr(result, FieldMemOperand(object, offset)); 3372 return; 3373 } 3374 3375 Register result = ToRegister(instr->result()); 3376 Register source; 3377 if (access.IsInobject()) { 3378 source = object; 3379 } else { 3380 // Load the properties array, using result as a scratch register. 3381 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 3382 source = result; 3383 } 3384 3385 if (access.representation().IsSmi() && 3386 instr->hydrogen()->representation().IsInteger32()) { 3387 // Read int value directly from upper half of the smi. 3388 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 3389 STATIC_ASSERT(kSmiTag == 0); 3390 __ Load(result, UntagSmiFieldMemOperand(source, offset), 3391 Representation::Integer32()); 3392 } else { 3393 __ Load(result, FieldMemOperand(source, offset), access.representation()); 3394 } 3395 } 3396 3397 3398 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { 3399 DCHECK(ToRegister(instr->context()).is(cp)); 3400 // LoadIC expects name and receiver in registers. 3401 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); 3402 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name())); 3403 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr); 3404 Handle<Code> ic = 3405 CodeFactory::LoadICInOptimizedCode( 3406 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(), 3407 instr->hydrogen()->initialization_state()).code(); 3408 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3409 3410 DCHECK(ToRegister(instr->result()).is(x0)); 3411 } 3412 3413 3414 void LCodeGen::DoLoadRoot(LLoadRoot* instr) { 3415 Register result = ToRegister(instr->result()); 3416 __ LoadRoot(result, instr->index()); 3417 } 3418 3419 3420 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { 3421 Register result = ToRegister(instr->result()); 3422 Register map = ToRegister(instr->value()); 3423 __ EnumLengthSmi(result, map); 3424 } 3425 3426 3427 void LCodeGen::DoMathAbs(LMathAbs* instr) { 3428 Representation r = instr->hydrogen()->value()->representation(); 3429 if (r.IsDouble()) { 3430 DoubleRegister input = ToDoubleRegister(instr->value()); 3431 DoubleRegister result = ToDoubleRegister(instr->result()); 3432 __ Fabs(result, input); 3433 } else if (r.IsSmi() || r.IsInteger32()) { 3434 Register input = r.IsSmi() ? ToRegister(instr->value()) 3435 : ToRegister32(instr->value()); 3436 Register result = r.IsSmi() ? ToRegister(instr->result()) 3437 : ToRegister32(instr->result()); 3438 __ Abs(result, input); 3439 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 3440 } 3441 } 3442 3443 3444 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr, 3445 Label* exit, 3446 Label* allocation_entry) { 3447 // Handle the tricky cases of MathAbsTagged: 3448 // - HeapNumber inputs. 3449 // - Negative inputs produce a positive result, so a new HeapNumber is 3450 // allocated to hold it. 3451 // - Positive inputs are returned as-is, since there is no need to allocate 3452 // a new HeapNumber for the result. 3453 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit 3454 // a smi. In this case, the inline code sets the result and jumps directly 3455 // to the allocation_entry label. 3456 DCHECK(instr->context() != NULL); 3457 DCHECK(ToRegister(instr->context()).is(cp)); 3458 Register input = ToRegister(instr->value()); 3459 Register temp1 = ToRegister(instr->temp1()); 3460 Register temp2 = ToRegister(instr->temp2()); 3461 Register result_bits = ToRegister(instr->temp3()); 3462 Register result = ToRegister(instr->result()); 3463 3464 Label runtime_allocation; 3465 3466 // Deoptimize if the input is not a HeapNumber. 3467 DeoptimizeIfNotHeapNumber(input, instr); 3468 3469 // If the argument is positive, we can return it as-is, without any need to 3470 // allocate a new HeapNumber for the result. We have to do this in integer 3471 // registers (rather than with fabs) because we need to be able to distinguish 3472 // the two zeroes. 3473 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset)); 3474 __ Mov(result, input); 3475 __ Tbz(result_bits, kXSignBit, exit); 3476 3477 // Calculate abs(input) by clearing the sign bit. 3478 __ Bic(result_bits, result_bits, kXSignMask); 3479 3480 // Allocate a new HeapNumber to hold the result. 3481 // result_bits The bit representation of the (double) result. 3482 __ Bind(allocation_entry); 3483 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2); 3484 // The inline (non-deferred) code will store result_bits into result. 3485 __ B(exit); 3486 3487 __ Bind(&runtime_allocation); 3488 if (FLAG_debug_code) { 3489 // Because result is in the pointer map, we need to make sure it has a valid 3490 // tagged value before we call the runtime. We speculatively set it to the 3491 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already 3492 // be valid. 3493 Label result_ok; 3494 Register input = ToRegister(instr->value()); 3495 __ JumpIfSmi(result, &result_ok); 3496 __ Cmp(input, result); 3497 __ Assert(eq, kUnexpectedValue); 3498 __ Bind(&result_ok); 3499 } 3500 3501 { PushSafepointRegistersScope scope(this); 3502 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, 3503 instr->context()); 3504 __ StoreToSafepointRegisterSlot(x0, result); 3505 } 3506 // The inline (non-deferred) code will store result_bits into result. 3507 } 3508 3509 3510 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) { 3511 // Class for deferred case. 3512 class DeferredMathAbsTagged: public LDeferredCode { 3513 public: 3514 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr) 3515 : LDeferredCode(codegen), instr_(instr) { } 3516 virtual void Generate() { 3517 codegen()->DoDeferredMathAbsTagged(instr_, exit(), 3518 allocation_entry()); 3519 } 3520 virtual LInstruction* instr() { return instr_; } 3521 Label* allocation_entry() { return &allocation; } 3522 private: 3523 LMathAbsTagged* instr_; 3524 Label allocation; 3525 }; 3526 3527 // TODO(jbramley): The early-exit mechanism would skip the new frame handling 3528 // in GenerateDeferredCode. Tidy this up. 3529 DCHECK(!NeedsDeferredFrame()); 3530 3531 DeferredMathAbsTagged* deferred = 3532 new(zone()) DeferredMathAbsTagged(this, instr); 3533 3534 DCHECK(instr->hydrogen()->value()->representation().IsTagged() || 3535 instr->hydrogen()->value()->representation().IsSmi()); 3536 Register input = ToRegister(instr->value()); 3537 Register result_bits = ToRegister(instr->temp3()); 3538 Register result = ToRegister(instr->result()); 3539 Label done; 3540 3541 // Handle smis inline. 3542 // We can treat smis as 64-bit integers, since the (low-order) tag bits will 3543 // never get set by the negation. This is therefore the same as the Integer32 3544 // case in DoMathAbs, except that it operates on 64-bit values. 3545 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0)); 3546 3547 __ JumpIfNotSmi(input, deferred->entry()); 3548 3549 __ Abs(result, input, NULL, &done); 3550 3551 // The result is the magnitude (abs) of the smallest value a smi can 3552 // represent, encoded as a double. 3553 __ Mov(result_bits, double_to_rawbits(0x80000000)); 3554 __ B(deferred->allocation_entry()); 3555 3556 __ Bind(deferred->exit()); 3557 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset)); 3558 3559 __ Bind(&done); 3560 } 3561 3562 3563 void LCodeGen::DoMathExp(LMathExp* instr) { 3564 DoubleRegister input = ToDoubleRegister(instr->value()); 3565 DoubleRegister result = ToDoubleRegister(instr->result()); 3566 DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1()); 3567 DoubleRegister double_temp2 = double_scratch(); 3568 Register temp1 = ToRegister(instr->temp1()); 3569 Register temp2 = ToRegister(instr->temp2()); 3570 Register temp3 = ToRegister(instr->temp3()); 3571 3572 MathExpGenerator::EmitMathExp(masm(), input, result, 3573 double_temp1, double_temp2, 3574 temp1, temp2, temp3); 3575 } 3576 3577 3578 void LCodeGen::DoMathFloorD(LMathFloorD* instr) { 3579 DoubleRegister input = ToDoubleRegister(instr->value()); 3580 DoubleRegister result = ToDoubleRegister(instr->result()); 3581 3582 __ Frintm(result, input); 3583 } 3584 3585 3586 void LCodeGen::DoMathFloorI(LMathFloorI* instr) { 3587 DoubleRegister input = ToDoubleRegister(instr->value()); 3588 Register result = ToRegister(instr->result()); 3589 3590 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3591 DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero); 3592 } 3593 3594 __ Fcvtms(result, input); 3595 3596 // Check that the result fits into a 32-bit integer. 3597 // - The result did not overflow. 3598 __ Cmp(result, Operand(result, SXTW)); 3599 // - The input was not NaN. 3600 __ Fccmp(input, input, NoFlag, eq); 3601 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); 3602 } 3603 3604 3605 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { 3606 Register dividend = ToRegister32(instr->dividend()); 3607 Register result = ToRegister32(instr->result()); 3608 int32_t divisor = instr->divisor(); 3609 3610 // If the divisor is 1, return the dividend. 3611 if (divisor == 1) { 3612 __ Mov(result, dividend, kDiscardForSameWReg); 3613 return; 3614 } 3615 3616 // If the divisor is positive, things are easy: There can be no deopts and we 3617 // can simply do an arithmetic right shift. 3618 int32_t shift = WhichPowerOf2Abs(divisor); 3619 if (divisor > 1) { 3620 __ Mov(result, Operand(dividend, ASR, shift)); 3621 return; 3622 } 3623 3624 // If the divisor is negative, we have to negate and handle edge cases. 3625 __ Negs(result, dividend); 3626 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3627 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); 3628 } 3629 3630 // Dividing by -1 is basically negation, unless we overflow. 3631 if (divisor == -1) { 3632 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { 3633 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 3634 } 3635 return; 3636 } 3637 3638 // If the negation could not overflow, simply shifting is OK. 3639 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { 3640 __ Mov(result, Operand(dividend, ASR, shift)); 3641 return; 3642 } 3643 3644 __ Asr(result, result, shift); 3645 __ Csel(result, result, kMinInt / divisor, vc); 3646 } 3647 3648 3649 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { 3650 Register dividend = ToRegister32(instr->dividend()); 3651 int32_t divisor = instr->divisor(); 3652 Register result = ToRegister32(instr->result()); 3653 DCHECK(!AreAliased(dividend, result)); 3654 3655 if (divisor == 0) { 3656 Deoptimize(instr, Deoptimizer::kDivisionByZero); 3657 return; 3658 } 3659 3660 // Check for (0 / -x) that will produce negative zero. 3661 HMathFloorOfDiv* hdiv = instr->hydrogen(); 3662 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 3663 DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero); 3664 } 3665 3666 // Easy case: We need no dynamic check for the dividend and the flooring 3667 // division is the same as the truncating division. 3668 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || 3669 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { 3670 __ TruncatingDiv(result, dividend, Abs(divisor)); 3671 if (divisor < 0) __ Neg(result, result); 3672 return; 3673 } 3674 3675 // In the general case we may need to adjust before and after the truncating 3676 // division to get a flooring division. 3677 Register temp = ToRegister32(instr->temp()); 3678 DCHECK(!AreAliased(temp, dividend, result)); 3679 Label needs_adjustment, done; 3680 __ Cmp(dividend, 0); 3681 __ B(divisor > 0 ? lt : gt, &needs_adjustment); 3682 __ TruncatingDiv(result, dividend, Abs(divisor)); 3683 if (divisor < 0) __ Neg(result, result); 3684 __ B(&done); 3685 __ Bind(&needs_adjustment); 3686 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1)); 3687 __ TruncatingDiv(result, temp, Abs(divisor)); 3688 if (divisor < 0) __ Neg(result, result); 3689 __ Sub(result, result, Operand(1)); 3690 __ Bind(&done); 3691 } 3692 3693 3694 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. 3695 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { 3696 Register dividend = ToRegister32(instr->dividend()); 3697 Register divisor = ToRegister32(instr->divisor()); 3698 Register remainder = ToRegister32(instr->temp()); 3699 Register result = ToRegister32(instr->result()); 3700 3701 // This can't cause an exception on ARM, so we can speculatively 3702 // execute it already now. 3703 __ Sdiv(result, dividend, divisor); 3704 3705 // Check for x / 0. 3706 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); 3707 3708 // Check for (kMinInt / -1). 3709 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { 3710 // The V flag will be set iff dividend == kMinInt. 3711 __ Cmp(dividend, 1); 3712 __ Ccmp(divisor, -1, NoFlag, vs); 3713 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow); 3714 } 3715 3716 // Check for (0 / -x) that will produce negative zero. 3717 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3718 __ Cmp(divisor, 0); 3719 __ Ccmp(dividend, 0, ZFlag, mi); 3720 // "divisor" can't be null because the code would have already been 3721 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0). 3722 // In this case we need to deoptimize to produce a -0. 3723 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); 3724 } 3725 3726 Label done; 3727 // If both operands have the same sign then we are done. 3728 __ Eor(remainder, dividend, divisor); 3729 __ Tbz(remainder, kWSignBit, &done); 3730 3731 // Check if the result needs to be corrected. 3732 __ Msub(remainder, result, divisor, dividend); 3733 __ Cbz(remainder, &done); 3734 __ Sub(result, result, 1); 3735 3736 __ Bind(&done); 3737 } 3738 3739 3740 void LCodeGen::DoMathLog(LMathLog* instr) { 3741 DCHECK(instr->IsMarkedAsCall()); 3742 DCHECK(ToDoubleRegister(instr->value()).is(d0)); 3743 __ CallCFunction(ExternalReference::math_log_double_function(isolate()), 3744 0, 1); 3745 DCHECK(ToDoubleRegister(instr->result()).Is(d0)); 3746 } 3747 3748 3749 void LCodeGen::DoMathClz32(LMathClz32* instr) { 3750 Register input = ToRegister32(instr->value()); 3751 Register result = ToRegister32(instr->result()); 3752 __ Clz(result, input); 3753 } 3754 3755 3756 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { 3757 DoubleRegister input = ToDoubleRegister(instr->value()); 3758 DoubleRegister result = ToDoubleRegister(instr->result()); 3759 Label done; 3760 3761 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases: 3762 // Math.pow(-Infinity, 0.5) == +Infinity 3763 // Math.pow(-0.0, 0.5) == +0.0 3764 3765 // Catch -infinity inputs first. 3766 // TODO(jbramley): A constant infinity register would be helpful here. 3767 __ Fmov(double_scratch(), kFP64NegativeInfinity); 3768 __ Fcmp(double_scratch(), input); 3769 __ Fabs(result, input); 3770 __ B(&done, eq); 3771 3772 // Add +0.0 to convert -0.0 to +0.0. 3773 __ Fadd(double_scratch(), input, fp_zero); 3774 __ Fsqrt(result, double_scratch()); 3775 3776 __ Bind(&done); 3777 } 3778 3779 3780 void LCodeGen::DoPower(LPower* instr) { 3781 Representation exponent_type = instr->hydrogen()->right()->representation(); 3782 // Having marked this as a call, we can use any registers. 3783 // Just make sure that the input/output registers are the expected ones. 3784 Register tagged_exponent = MathPowTaggedDescriptor::exponent(); 3785 Register integer_exponent = MathPowIntegerDescriptor::exponent(); 3786 DCHECK(!instr->right()->IsDoubleRegister() || 3787 ToDoubleRegister(instr->right()).is(d1)); 3788 DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() || 3789 ToRegister(instr->right()).is(tagged_exponent)); 3790 DCHECK(!exponent_type.IsInteger32() || 3791 ToRegister(instr->right()).is(integer_exponent)); 3792 DCHECK(ToDoubleRegister(instr->left()).is(d0)); 3793 DCHECK(ToDoubleRegister(instr->result()).is(d0)); 3794 3795 if (exponent_type.IsSmi()) { 3796 MathPowStub stub(isolate(), MathPowStub::TAGGED); 3797 __ CallStub(&stub); 3798 } else if (exponent_type.IsTagged()) { 3799 Label no_deopt; 3800 __ JumpIfSmi(tagged_exponent, &no_deopt); 3801 DeoptimizeIfNotHeapNumber(tagged_exponent, instr); 3802 __ Bind(&no_deopt); 3803 MathPowStub stub(isolate(), MathPowStub::TAGGED); 3804 __ CallStub(&stub); 3805 } else if (exponent_type.IsInteger32()) { 3806 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub 3807 // supports large integer exponents. 3808 __ Sxtw(integer_exponent, integer_exponent); 3809 MathPowStub stub(isolate(), MathPowStub::INTEGER); 3810 __ CallStub(&stub); 3811 } else { 3812 DCHECK(exponent_type.IsDouble()); 3813 MathPowStub stub(isolate(), MathPowStub::DOUBLE); 3814 __ CallStub(&stub); 3815 } 3816 } 3817 3818 3819 void LCodeGen::DoMathRoundD(LMathRoundD* instr) { 3820 DoubleRegister input = ToDoubleRegister(instr->value()); 3821 DoubleRegister result = ToDoubleRegister(instr->result()); 3822 DoubleRegister scratch_d = double_scratch(); 3823 3824 DCHECK(!AreAliased(input, result, scratch_d)); 3825 3826 Label done; 3827 3828 __ Frinta(result, input); 3829 __ Fcmp(input, 0.0); 3830 __ Fccmp(result, input, ZFlag, lt); 3831 // The result is correct if the input was in [-0, +infinity], or was a 3832 // negative integral value. 3833 __ B(eq, &done); 3834 3835 // Here the input is negative, non integral, with an exponent lower than 52. 3836 // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff) 3837 // case. So we can safely add 0.5. 3838 __ Fmov(scratch_d, 0.5); 3839 __ Fadd(result, input, scratch_d); 3840 __ Frintm(result, result); 3841 // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative. 3842 __ Fabs(result, result); 3843 __ Fneg(result, result); 3844 3845 __ Bind(&done); 3846 } 3847 3848 3849 void LCodeGen::DoMathRoundI(LMathRoundI* instr) { 3850 DoubleRegister input = ToDoubleRegister(instr->value()); 3851 DoubleRegister temp = ToDoubleRegister(instr->temp1()); 3852 DoubleRegister dot_five = double_scratch(); 3853 Register result = ToRegister(instr->result()); 3854 Label done; 3855 3856 // Math.round() rounds to the nearest integer, with ties going towards 3857 // +infinity. This does not match any IEEE-754 rounding mode. 3858 // - Infinities and NaNs are propagated unchanged, but cause deopts because 3859 // they can't be represented as integers. 3860 // - The sign of the result is the same as the sign of the input. This means 3861 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a 3862 // result of -0.0. 3863 3864 // Add 0.5 and round towards -infinity. 3865 __ Fmov(dot_five, 0.5); 3866 __ Fadd(temp, input, dot_five); 3867 __ Fcvtms(result, temp); 3868 3869 // The result is correct if: 3870 // result is not 0, as the input could be NaN or [-0.5, -0.0]. 3871 // result is not 1, as 0.499...94 will wrongly map to 1. 3872 // result fits in 32 bits. 3873 __ Cmp(result, Operand(result.W(), SXTW)); 3874 __ Ccmp(result, 1, ZFlag, eq); 3875 __ B(hi, &done); 3876 3877 // At this point, we have to handle possible inputs of NaN or numbers in the 3878 // range [-0.5, 1.5[, or numbers larger than 32 bits. 3879 3880 // Deoptimize if the result > 1, as it must be larger than 32 bits. 3881 __ Cmp(result, 1); 3882 DeoptimizeIf(hi, instr, Deoptimizer::kOverflow); 3883 3884 // Deoptimize for negative inputs, which at this point are only numbers in 3885 // the range [-0.5, -0.0] 3886 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3887 __ Fmov(result, input); 3888 DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero); 3889 } 3890 3891 // Deoptimize if the input was NaN. 3892 __ Fcmp(input, dot_five); 3893 DeoptimizeIf(vs, instr, Deoptimizer::kNaN); 3894 3895 // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[ 3896 // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1, 3897 // else 0; we avoid dealing with 0.499...94 directly. 3898 __ Cset(result, ge); 3899 __ Bind(&done); 3900 } 3901 3902 3903 void LCodeGen::DoMathFround(LMathFround* instr) { 3904 DoubleRegister input = ToDoubleRegister(instr->value()); 3905 DoubleRegister result = ToDoubleRegister(instr->result()); 3906 __ Fcvt(result.S(), input); 3907 __ Fcvt(result, result.S()); 3908 } 3909 3910 3911 void LCodeGen::DoMathSqrt(LMathSqrt* instr) { 3912 DoubleRegister input = ToDoubleRegister(instr->value()); 3913 DoubleRegister result = ToDoubleRegister(instr->result()); 3914 __ Fsqrt(result, input); 3915 } 3916 3917 3918 void LCodeGen::DoMathMinMax(LMathMinMax* instr) { 3919 HMathMinMax::Operation op = instr->hydrogen()->operation(); 3920 if (instr->hydrogen()->representation().IsInteger32()) { 3921 Register result = ToRegister32(instr->result()); 3922 Register left = ToRegister32(instr->left()); 3923 Operand right = ToOperand32(instr->right()); 3924 3925 __ Cmp(left, right); 3926 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); 3927 } else if (instr->hydrogen()->representation().IsSmi()) { 3928 Register result = ToRegister(instr->result()); 3929 Register left = ToRegister(instr->left()); 3930 Operand right = ToOperand(instr->right()); 3931 3932 __ Cmp(left, right); 3933 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); 3934 } else { 3935 DCHECK(instr->hydrogen()->representation().IsDouble()); 3936 DoubleRegister result = ToDoubleRegister(instr->result()); 3937 DoubleRegister left = ToDoubleRegister(instr->left()); 3938 DoubleRegister right = ToDoubleRegister(instr->right()); 3939 3940 if (op == HMathMinMax::kMathMax) { 3941 __ Fmax(result, left, right); 3942 } else { 3943 DCHECK(op == HMathMinMax::kMathMin); 3944 __ Fmin(result, left, right); 3945 } 3946 } 3947 } 3948 3949 3950 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { 3951 Register dividend = ToRegister32(instr->dividend()); 3952 int32_t divisor = instr->divisor(); 3953 DCHECK(dividend.is(ToRegister32(instr->result()))); 3954 3955 // Theoretically, a variation of the branch-free code for integer division by 3956 // a power of 2 (calculating the remainder via an additional multiplication 3957 // (which gets simplified to an 'and') and subtraction) should be faster, and 3958 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to 3959 // indicate that positive dividends are heavily favored, so the branching 3960 // version performs better. 3961 HMod* hmod = instr->hydrogen(); 3962 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); 3963 Label dividend_is_not_negative, done; 3964 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { 3965 __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative); 3966 // Note that this is correct even for kMinInt operands. 3967 __ Neg(dividend, dividend); 3968 __ And(dividend, dividend, mask); 3969 __ Negs(dividend, dividend); 3970 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { 3971 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero); 3972 } 3973 __ B(&done); 3974 } 3975 3976 __ bind(÷nd_is_not_negative); 3977 __ And(dividend, dividend, mask); 3978 __ bind(&done); 3979 } 3980 3981 3982 void LCodeGen::DoModByConstI(LModByConstI* instr) { 3983 Register dividend = ToRegister32(instr->dividend()); 3984 int32_t divisor = instr->divisor(); 3985 Register result = ToRegister32(instr->result()); 3986 Register temp = ToRegister32(instr->temp()); 3987 DCHECK(!AreAliased(dividend, result, temp)); 3988 3989 if (divisor == 0) { 3990 Deoptimize(instr, Deoptimizer::kDivisionByZero); 3991 return; 3992 } 3993 3994 __ TruncatingDiv(result, dividend, Abs(divisor)); 3995 __ Sxtw(dividend.X(), dividend); 3996 __ Mov(temp, Abs(divisor)); 3997 __ Smsubl(result.X(), result, temp, dividend.X()); 3998 3999 // Check for negative zero. 4000 HMod* hmod = instr->hydrogen(); 4001 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { 4002 Label remainder_not_zero; 4003 __ Cbnz(result, &remainder_not_zero); 4004 DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero); 4005 __ bind(&remainder_not_zero); 4006 } 4007 } 4008 4009 4010 void LCodeGen::DoModI(LModI* instr) { 4011 Register dividend = ToRegister32(instr->left()); 4012 Register divisor = ToRegister32(instr->right()); 4013 Register result = ToRegister32(instr->result()); 4014 4015 Label done; 4016 // modulo = dividend - quotient * divisor 4017 __ Sdiv(result, dividend, divisor); 4018 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { 4019 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero); 4020 } 4021 __ Msub(result, result, divisor, dividend); 4022 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 4023 __ Cbnz(result, &done); 4024 DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero); 4025 } 4026 __ Bind(&done); 4027 } 4028 4029 4030 void LCodeGen::DoMulConstIS(LMulConstIS* instr) { 4031 DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32()); 4032 bool is_smi = instr->hydrogen()->representation().IsSmi(); 4033 Register result = 4034 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result()); 4035 Register left = 4036 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()); 4037 int32_t right = ToInteger32(instr->right()); 4038 DCHECK((right > -kMaxInt) && (right < kMaxInt)); 4039 4040 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 4041 bool bailout_on_minus_zero = 4042 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); 4043 4044 if (bailout_on_minus_zero) { 4045 if (right < 0) { 4046 // The result is -0 if right is negative and left is zero. 4047 DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero); 4048 } else if (right == 0) { 4049 // The result is -0 if the right is zero and the left is negative. 4050 DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero); 4051 } 4052 } 4053 4054 switch (right) { 4055 // Cases which can detect overflow. 4056 case -1: 4057 if (can_overflow) { 4058 // Only 0x80000000 can overflow here. 4059 __ Negs(result, left); 4060 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 4061 } else { 4062 __ Neg(result, left); 4063 } 4064 break; 4065 case 0: 4066 // This case can never overflow. 4067 __ Mov(result, 0); 4068 break; 4069 case 1: 4070 // This case can never overflow. 4071 __ Mov(result, left, kDiscardForSameWReg); 4072 break; 4073 case 2: 4074 if (can_overflow) { 4075 __ Adds(result, left, left); 4076 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 4077 } else { 4078 __ Add(result, left, left); 4079 } 4080 break; 4081 4082 default: 4083 // Multiplication by constant powers of two (and some related values) 4084 // can be done efficiently with shifted operands. 4085 int32_t right_abs = Abs(right); 4086 4087 if (base::bits::IsPowerOfTwo32(right_abs)) { 4088 int right_log2 = WhichPowerOf2(right_abs); 4089 4090 if (can_overflow) { 4091 Register scratch = result; 4092 DCHECK(!AreAliased(scratch, left)); 4093 __ Cls(scratch, left); 4094 __ Cmp(scratch, right_log2); 4095 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow); 4096 } 4097 4098 if (right >= 0) { 4099 // result = left << log2(right) 4100 __ Lsl(result, left, right_log2); 4101 } else { 4102 // result = -left << log2(-right) 4103 if (can_overflow) { 4104 __ Negs(result, Operand(left, LSL, right_log2)); 4105 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 4106 } else { 4107 __ Neg(result, Operand(left, LSL, right_log2)); 4108 } 4109 } 4110 return; 4111 } 4112 4113 4114 // For the following cases, we could perform a conservative overflow check 4115 // with CLS as above. However the few cycles saved are likely not worth 4116 // the risk of deoptimizing more often than required. 4117 DCHECK(!can_overflow); 4118 4119 if (right >= 0) { 4120 if (base::bits::IsPowerOfTwo32(right - 1)) { 4121 // result = left + left << log2(right - 1) 4122 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1))); 4123 } else if (base::bits::IsPowerOfTwo32(right + 1)) { 4124 // result = -left + left << log2(right + 1) 4125 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1))); 4126 __ Neg(result, result); 4127 } else { 4128 UNREACHABLE(); 4129 } 4130 } else { 4131 if (base::bits::IsPowerOfTwo32(-right + 1)) { 4132 // result = left - left << log2(-right + 1) 4133 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1))); 4134 } else if (base::bits::IsPowerOfTwo32(-right - 1)) { 4135 // result = -left - left << log2(-right - 1) 4136 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1))); 4137 __ Neg(result, result); 4138 } else { 4139 UNREACHABLE(); 4140 } 4141 } 4142 } 4143 } 4144 4145 4146 void LCodeGen::DoMulI(LMulI* instr) { 4147 Register result = ToRegister32(instr->result()); 4148 Register left = ToRegister32(instr->left()); 4149 Register right = ToRegister32(instr->right()); 4150 4151 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 4152 bool bailout_on_minus_zero = 4153 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); 4154 4155 if (bailout_on_minus_zero && !left.Is(right)) { 4156 // If one operand is zero and the other is negative, the result is -0. 4157 // - Set Z (eq) if either left or right, or both, are 0. 4158 __ Cmp(left, 0); 4159 __ Ccmp(right, 0, ZFlag, ne); 4160 // - If so (eq), set N (mi) if left + right is negative. 4161 // - Otherwise, clear N. 4162 __ Ccmn(left, right, NoFlag, eq); 4163 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); 4164 } 4165 4166 if (can_overflow) { 4167 __ Smull(result.X(), left, right); 4168 __ Cmp(result.X(), Operand(result, SXTW)); 4169 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow); 4170 } else { 4171 __ Mul(result, left, right); 4172 } 4173 } 4174 4175 4176 void LCodeGen::DoMulS(LMulS* instr) { 4177 Register result = ToRegister(instr->result()); 4178 Register left = ToRegister(instr->left()); 4179 Register right = ToRegister(instr->right()); 4180 4181 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 4182 bool bailout_on_minus_zero = 4183 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); 4184 4185 if (bailout_on_minus_zero && !left.Is(right)) { 4186 // If one operand is zero and the other is negative, the result is -0. 4187 // - Set Z (eq) if either left or right, or both, are 0. 4188 __ Cmp(left, 0); 4189 __ Ccmp(right, 0, ZFlag, ne); 4190 // - If so (eq), set N (mi) if left + right is negative. 4191 // - Otherwise, clear N. 4192 __ Ccmn(left, right, NoFlag, eq); 4193 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero); 4194 } 4195 4196 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0)); 4197 if (can_overflow) { 4198 __ Smulh(result, left, right); 4199 __ Cmp(result, Operand(result.W(), SXTW)); 4200 __ SmiTag(result); 4201 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow); 4202 } else { 4203 if (AreAliased(result, left, right)) { 4204 // All three registers are the same: half untag the input and then 4205 // multiply, giving a tagged result. 4206 STATIC_ASSERT((kSmiShift % 2) == 0); 4207 __ Asr(result, left, kSmiShift / 2); 4208 __ Mul(result, result, result); 4209 } else if (result.Is(left) && !left.Is(right)) { 4210 // Registers result and left alias, right is distinct: untag left into 4211 // result, and then multiply by right, giving a tagged result. 4212 __ SmiUntag(result, left); 4213 __ Mul(result, result, right); 4214 } else { 4215 DCHECK(!left.Is(result)); 4216 // Registers result and right alias, left is distinct, or all registers 4217 // are distinct: untag right into result, and then multiply by left, 4218 // giving a tagged result. 4219 __ SmiUntag(result, right); 4220 __ Mul(result, left, result); 4221 } 4222 } 4223 } 4224 4225 4226 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { 4227 // TODO(3095996): Get rid of this. For now, we need to make the 4228 // result register contain a valid pointer because it is already 4229 // contained in the register pointer map. 4230 Register result = ToRegister(instr->result()); 4231 __ Mov(result, 0); 4232 4233 PushSafepointRegistersScope scope(this); 4234 // NumberTagU and NumberTagD use the context from the frame, rather than 4235 // the environment's HContext or HInlinedContext value. 4236 // They only call Runtime::kAllocateHeapNumber. 4237 // The corresponding HChange instructions are added in a phase that does 4238 // not have easy access to the local context. 4239 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4240 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); 4241 RecordSafepointWithRegisters( 4242 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); 4243 __ StoreToSafepointRegisterSlot(x0, result); 4244 } 4245 4246 4247 void LCodeGen::DoNumberTagD(LNumberTagD* instr) { 4248 class DeferredNumberTagD: public LDeferredCode { 4249 public: 4250 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) 4251 : LDeferredCode(codegen), instr_(instr) { } 4252 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } 4253 virtual LInstruction* instr() { return instr_; } 4254 private: 4255 LNumberTagD* instr_; 4256 }; 4257 4258 DoubleRegister input = ToDoubleRegister(instr->value()); 4259 Register result = ToRegister(instr->result()); 4260 Register temp1 = ToRegister(instr->temp1()); 4261 Register temp2 = ToRegister(instr->temp2()); 4262 4263 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); 4264 if (FLAG_inline_new) { 4265 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2); 4266 } else { 4267 __ B(deferred->entry()); 4268 } 4269 4270 __ Bind(deferred->exit()); 4271 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset)); 4272 } 4273 4274 4275 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr, 4276 LOperand* value, 4277 LOperand* temp1, 4278 LOperand* temp2) { 4279 Label slow, convert_and_store; 4280 Register src = ToRegister32(value); 4281 Register dst = ToRegister(instr->result()); 4282 Register scratch1 = ToRegister(temp1); 4283 4284 if (FLAG_inline_new) { 4285 Register scratch2 = ToRegister(temp2); 4286 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2); 4287 __ B(&convert_and_store); 4288 } 4289 4290 // Slow case: call the runtime system to do the number allocation. 4291 __ Bind(&slow); 4292 // TODO(3095996): Put a valid pointer value in the stack slot where the result 4293 // register is stored, as this register is in the pointer map, but contains an 4294 // integer value. 4295 __ Mov(dst, 0); 4296 { 4297 // Preserve the value of all registers. 4298 PushSafepointRegistersScope scope(this); 4299 4300 // NumberTagU and NumberTagD use the context from the frame, rather than 4301 // the environment's HContext or HInlinedContext value. 4302 // They only call Runtime::kAllocateHeapNumber. 4303 // The corresponding HChange instructions are added in a phase that does 4304 // not have easy access to the local context. 4305 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4306 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); 4307 RecordSafepointWithRegisters( 4308 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); 4309 __ StoreToSafepointRegisterSlot(x0, dst); 4310 } 4311 4312 // Convert number to floating point and store in the newly allocated heap 4313 // number. 4314 __ Bind(&convert_and_store); 4315 DoubleRegister dbl_scratch = double_scratch(); 4316 __ Ucvtf(dbl_scratch, src); 4317 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); 4318 } 4319 4320 4321 void LCodeGen::DoNumberTagU(LNumberTagU* instr) { 4322 class DeferredNumberTagU: public LDeferredCode { 4323 public: 4324 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) 4325 : LDeferredCode(codegen), instr_(instr) { } 4326 virtual void Generate() { 4327 codegen()->DoDeferredNumberTagU(instr_, 4328 instr_->value(), 4329 instr_->temp1(), 4330 instr_->temp2()); 4331 } 4332 virtual LInstruction* instr() { return instr_; } 4333 private: 4334 LNumberTagU* instr_; 4335 }; 4336 4337 Register value = ToRegister32(instr->value()); 4338 Register result = ToRegister(instr->result()); 4339 4340 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); 4341 __ Cmp(value, Smi::kMaxValue); 4342 __ B(hi, deferred->entry()); 4343 __ SmiTag(result, value.X()); 4344 __ Bind(deferred->exit()); 4345 } 4346 4347 4348 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { 4349 Register input = ToRegister(instr->value()); 4350 Register scratch = ToRegister(instr->temp()); 4351 DoubleRegister result = ToDoubleRegister(instr->result()); 4352 bool can_convert_undefined_to_nan = 4353 instr->hydrogen()->can_convert_undefined_to_nan(); 4354 4355 Label done, load_smi; 4356 4357 // Work out what untag mode we're working with. 4358 HValue* value = instr->hydrogen()->value(); 4359 NumberUntagDMode mode = value->representation().IsSmi() 4360 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; 4361 4362 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { 4363 __ JumpIfSmi(input, &load_smi); 4364 4365 Label convert_undefined; 4366 4367 // Heap number map check. 4368 if (can_convert_undefined_to_nan) { 4369 __ JumpIfNotHeapNumber(input, &convert_undefined); 4370 } else { 4371 DeoptimizeIfNotHeapNumber(input, instr); 4372 } 4373 4374 // Load heap number. 4375 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset)); 4376 if (instr->hydrogen()->deoptimize_on_minus_zero()) { 4377 DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero); 4378 } 4379 __ B(&done); 4380 4381 if (can_convert_undefined_to_nan) { 4382 __ Bind(&convert_undefined); 4383 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, 4384 Deoptimizer::kNotAHeapNumberUndefined); 4385 4386 __ LoadRoot(scratch, Heap::kNanValueRootIndex); 4387 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset)); 4388 __ B(&done); 4389 } 4390 4391 } else { 4392 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); 4393 // Fall through to load_smi. 4394 } 4395 4396 // Smi to double register conversion. 4397 __ Bind(&load_smi); 4398 __ SmiUntagToDouble(result, input); 4399 4400 __ Bind(&done); 4401 } 4402 4403 4404 void LCodeGen::DoOsrEntry(LOsrEntry* instr) { 4405 // This is a pseudo-instruction that ensures that the environment here is 4406 // properly registered for deoptimization and records the assembler's PC 4407 // offset. 4408 LEnvironment* environment = instr->environment(); 4409 4410 // If the environment were already registered, we would have no way of 4411 // backpatching it with the spill slot operands. 4412 DCHECK(!environment->HasBeenRegistered()); 4413 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 4414 4415 GenerateOsrPrologue(); 4416 } 4417 4418 4419 void LCodeGen::DoParameter(LParameter* instr) { 4420 // Nothing to do. 4421 } 4422 4423 4424 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) { 4425 __ PushPreamble(instr->argc(), kPointerSize); 4426 } 4427 4428 4429 void LCodeGen::DoPushArguments(LPushArguments* instr) { 4430 MacroAssembler::PushPopQueue args(masm()); 4431 4432 for (int i = 0; i < instr->ArgumentCount(); ++i) { 4433 LOperand* arg = instr->argument(i); 4434 if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) { 4435 Abort(kDoPushArgumentNotImplementedForDoubleType); 4436 return; 4437 } 4438 args.Queue(ToRegister(arg)); 4439 } 4440 4441 // The preamble was done by LPreparePushArguments. 4442 args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE); 4443 4444 RecordPushedArgumentsDelta(instr->ArgumentCount()); 4445 } 4446 4447 4448 void LCodeGen::DoReturn(LReturn* instr) { 4449 if (FLAG_trace && info()->IsOptimizing()) { 4450 // Push the return value on the stack as the parameter. 4451 // Runtime::TraceExit returns its parameter in x0. We're leaving the code 4452 // managed by the register allocator and tearing down the frame, it's 4453 // safe to write to the context register. 4454 __ Push(x0); 4455 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4456 __ CallRuntime(Runtime::kTraceExit); 4457 } 4458 4459 if (info()->saves_caller_doubles()) { 4460 RestoreCallerDoubles(); 4461 } 4462 4463 if (NeedsEagerFrame()) { 4464 Register stack_pointer = masm()->StackPointer(); 4465 __ Mov(stack_pointer, fp); 4466 __ Pop(fp, lr); 4467 } 4468 4469 if (instr->has_constant_parameter_count()) { 4470 int parameter_count = ToInteger32(instr->constant_parameter_count()); 4471 __ Drop(parameter_count + 1); 4472 } else { 4473 DCHECK(info()->IsStub()); // Functions would need to drop one more value. 4474 Register parameter_count = ToRegister(instr->parameter_count()); 4475 __ DropBySMI(parameter_count); 4476 } 4477 __ Ret(); 4478 } 4479 4480 4481 MemOperand LCodeGen::BuildSeqStringOperand(Register string, 4482 Register temp, 4483 LOperand* index, 4484 String::Encoding encoding) { 4485 if (index->IsConstantOperand()) { 4486 int offset = ToInteger32(LConstantOperand::cast(index)); 4487 if (encoding == String::TWO_BYTE_ENCODING) { 4488 offset *= kUC16Size; 4489 } 4490 STATIC_ASSERT(kCharSize == 1); 4491 return FieldMemOperand(string, SeqString::kHeaderSize + offset); 4492 } 4493 4494 __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag); 4495 if (encoding == String::ONE_BYTE_ENCODING) { 4496 return MemOperand(temp, ToRegister32(index), SXTW); 4497 } else { 4498 STATIC_ASSERT(kUC16Size == 2); 4499 return MemOperand(temp, ToRegister32(index), SXTW, 1); 4500 } 4501 } 4502 4503 4504 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { 4505 String::Encoding encoding = instr->hydrogen()->encoding(); 4506 Register string = ToRegister(instr->string()); 4507 Register result = ToRegister(instr->result()); 4508 Register temp = ToRegister(instr->temp()); 4509 4510 if (FLAG_debug_code) { 4511 // Even though this lithium instruction comes with a temp register, we 4512 // can't use it here because we want to use "AtStart" constraints on the 4513 // inputs and the debug code here needs a scratch register. 4514 UseScratchRegisterScope temps(masm()); 4515 Register dbg_temp = temps.AcquireX(); 4516 4517 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset)); 4518 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset)); 4519 4520 __ And(dbg_temp, dbg_temp, 4521 Operand(kStringRepresentationMask | kStringEncodingMask)); 4522 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; 4523 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; 4524 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING 4525 ? one_byte_seq_type : two_byte_seq_type)); 4526 __ Check(eq, kUnexpectedStringType); 4527 } 4528 4529 MemOperand operand = 4530 BuildSeqStringOperand(string, temp, instr->index(), encoding); 4531 if (encoding == String::ONE_BYTE_ENCODING) { 4532 __ Ldrb(result, operand); 4533 } else { 4534 __ Ldrh(result, operand); 4535 } 4536 } 4537 4538 4539 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { 4540 String::Encoding encoding = instr->hydrogen()->encoding(); 4541 Register string = ToRegister(instr->string()); 4542 Register value = ToRegister(instr->value()); 4543 Register temp = ToRegister(instr->temp()); 4544 4545 if (FLAG_debug_code) { 4546 DCHECK(ToRegister(instr->context()).is(cp)); 4547 Register index = ToRegister(instr->index()); 4548 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; 4549 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; 4550 int encoding_mask = 4551 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING 4552 ? one_byte_seq_type : two_byte_seq_type; 4553 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp, 4554 encoding_mask); 4555 } 4556 MemOperand operand = 4557 BuildSeqStringOperand(string, temp, instr->index(), encoding); 4558 if (encoding == String::ONE_BYTE_ENCODING) { 4559 __ Strb(value, operand); 4560 } else { 4561 __ Strh(value, operand); 4562 } 4563 } 4564 4565 4566 void LCodeGen::DoSmiTag(LSmiTag* instr) { 4567 HChange* hchange = instr->hydrogen(); 4568 Register input = ToRegister(instr->value()); 4569 Register output = ToRegister(instr->result()); 4570 if (hchange->CheckFlag(HValue::kCanOverflow) && 4571 hchange->value()->CheckFlag(HValue::kUint32)) { 4572 DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow); 4573 } 4574 __ SmiTag(output, input); 4575 } 4576 4577 4578 void LCodeGen::DoSmiUntag(LSmiUntag* instr) { 4579 Register input = ToRegister(instr->value()); 4580 Register result = ToRegister(instr->result()); 4581 Label done, untag; 4582 4583 if (instr->needs_check()) { 4584 DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi); 4585 } 4586 4587 __ Bind(&untag); 4588 __ SmiUntag(result, input); 4589 __ Bind(&done); 4590 } 4591 4592 4593 void LCodeGen::DoShiftI(LShiftI* instr) { 4594 LOperand* right_op = instr->right(); 4595 Register left = ToRegister32(instr->left()); 4596 Register result = ToRegister32(instr->result()); 4597 4598 if (right_op->IsRegister()) { 4599 Register right = ToRegister32(instr->right()); 4600 switch (instr->op()) { 4601 case Token::ROR: __ Ror(result, left, right); break; 4602 case Token::SAR: __ Asr(result, left, right); break; 4603 case Token::SHL: __ Lsl(result, left, right); break; 4604 case Token::SHR: 4605 __ Lsr(result, left, right); 4606 if (instr->can_deopt()) { 4607 // If `left >>> right` >= 0x80000000, the result is not representable 4608 // in a signed 32-bit smi. 4609 DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue); 4610 } 4611 break; 4612 default: UNREACHABLE(); 4613 } 4614 } else { 4615 DCHECK(right_op->IsConstantOperand()); 4616 int shift_count = JSShiftAmountFromLConstant(right_op); 4617 if (shift_count == 0) { 4618 if ((instr->op() == Token::SHR) && instr->can_deopt()) { 4619 DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue); 4620 } 4621 __ Mov(result, left, kDiscardForSameWReg); 4622 } else { 4623 switch (instr->op()) { 4624 case Token::ROR: __ Ror(result, left, shift_count); break; 4625 case Token::SAR: __ Asr(result, left, shift_count); break; 4626 case Token::SHL: __ Lsl(result, left, shift_count); break; 4627 case Token::SHR: __ Lsr(result, left, shift_count); break; 4628 default: UNREACHABLE(); 4629 } 4630 } 4631 } 4632 } 4633 4634 4635 void LCodeGen::DoShiftS(LShiftS* instr) { 4636 LOperand* right_op = instr->right(); 4637 Register left = ToRegister(instr->left()); 4638 Register result = ToRegister(instr->result()); 4639 4640 if (right_op->IsRegister()) { 4641 Register right = ToRegister(instr->right()); 4642 4643 // JavaScript shifts only look at the bottom 5 bits of the 'right' operand. 4644 // Since we're handling smis in X registers, we have to extract these bits 4645 // explicitly. 4646 __ Ubfx(result, right, kSmiShift, 5); 4647 4648 switch (instr->op()) { 4649 case Token::ROR: { 4650 // This is the only case that needs a scratch register. To keep things 4651 // simple for the other cases, borrow a MacroAssembler scratch register. 4652 UseScratchRegisterScope temps(masm()); 4653 Register temp = temps.AcquireW(); 4654 __ SmiUntag(temp, left); 4655 __ Ror(result.W(), temp.W(), result.W()); 4656 __ SmiTag(result); 4657 break; 4658 } 4659 case Token::SAR: 4660 __ Asr(result, left, result); 4661 __ Bic(result, result, kSmiShiftMask); 4662 break; 4663 case Token::SHL: 4664 __ Lsl(result, left, result); 4665 break; 4666 case Token::SHR: 4667 __ Lsr(result, left, result); 4668 __ Bic(result, result, kSmiShiftMask); 4669 if (instr->can_deopt()) { 4670 // If `left >>> right` >= 0x80000000, the result is not representable 4671 // in a signed 32-bit smi. 4672 DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue); 4673 } 4674 break; 4675 default: UNREACHABLE(); 4676 } 4677 } else { 4678 DCHECK(right_op->IsConstantOperand()); 4679 int shift_count = JSShiftAmountFromLConstant(right_op); 4680 if (shift_count == 0) { 4681 if ((instr->op() == Token::SHR) && instr->can_deopt()) { 4682 DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue); 4683 } 4684 __ Mov(result, left); 4685 } else { 4686 switch (instr->op()) { 4687 case Token::ROR: 4688 __ SmiUntag(result, left); 4689 __ Ror(result.W(), result.W(), shift_count); 4690 __ SmiTag(result); 4691 break; 4692 case Token::SAR: 4693 __ Asr(result, left, shift_count); 4694 __ Bic(result, result, kSmiShiftMask); 4695 break; 4696 case Token::SHL: 4697 __ Lsl(result, left, shift_count); 4698 break; 4699 case Token::SHR: 4700 __ Lsr(result, left, shift_count); 4701 __ Bic(result, result, kSmiShiftMask); 4702 break; 4703 default: UNREACHABLE(); 4704 } 4705 } 4706 } 4707 } 4708 4709 4710 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { 4711 __ Debug("LDebugBreak", 0, BREAK); 4712 } 4713 4714 4715 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { 4716 DCHECK(ToRegister(instr->context()).is(cp)); 4717 Register scratch1 = x5; 4718 Register scratch2 = x6; 4719 DCHECK(instr->IsMarkedAsCall()); 4720 4721 // TODO(all): if Mov could handle object in new space then it could be used 4722 // here. 4723 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs()); 4724 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags())); 4725 __ Push(scratch1, scratch2); 4726 CallRuntime(Runtime::kDeclareGlobals, instr); 4727 } 4728 4729 4730 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { 4731 PushSafepointRegistersScope scope(this); 4732 LoadContextFromDeferred(instr->context()); 4733 __ CallRuntimeSaveDoubles(Runtime::kStackGuard); 4734 RecordSafepointWithLazyDeopt( 4735 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 4736 DCHECK(instr->HasEnvironment()); 4737 LEnvironment* env = instr->environment(); 4738 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 4739 } 4740 4741 4742 void LCodeGen::DoStackCheck(LStackCheck* instr) { 4743 class DeferredStackCheck: public LDeferredCode { 4744 public: 4745 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) 4746 : LDeferredCode(codegen), instr_(instr) { } 4747 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } 4748 virtual LInstruction* instr() { return instr_; } 4749 private: 4750 LStackCheck* instr_; 4751 }; 4752 4753 DCHECK(instr->HasEnvironment()); 4754 LEnvironment* env = instr->environment(); 4755 // There is no LLazyBailout instruction for stack-checks. We have to 4756 // prepare for lazy deoptimization explicitly here. 4757 if (instr->hydrogen()->is_function_entry()) { 4758 // Perform stack overflow check. 4759 Label done; 4760 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); 4761 __ B(hs, &done); 4762 4763 PredictableCodeSizeScope predictable(masm_, 4764 Assembler::kCallSizeWithRelocation); 4765 DCHECK(instr->context()->IsRegister()); 4766 DCHECK(ToRegister(instr->context()).is(cp)); 4767 CallCode(isolate()->builtins()->StackCheck(), 4768 RelocInfo::CODE_TARGET, 4769 instr); 4770 __ Bind(&done); 4771 } else { 4772 DCHECK(instr->hydrogen()->is_backwards_branch()); 4773 // Perform stack overflow check if this goto needs it before jumping. 4774 DeferredStackCheck* deferred_stack_check = 4775 new(zone()) DeferredStackCheck(this, instr); 4776 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); 4777 __ B(lo, deferred_stack_check->entry()); 4778 4779 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); 4780 __ Bind(instr->done_label()); 4781 deferred_stack_check->SetExit(instr->done_label()); 4782 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); 4783 // Don't record a deoptimization index for the safepoint here. 4784 // This will be done explicitly when emitting call and the safepoint in 4785 // the deferred code. 4786 } 4787 } 4788 4789 4790 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { 4791 Register function = ToRegister(instr->function()); 4792 Register code_object = ToRegister(instr->code_object()); 4793 Register temp = ToRegister(instr->temp()); 4794 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag); 4795 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); 4796 } 4797 4798 4799 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { 4800 Register context = ToRegister(instr->context()); 4801 Register value = ToRegister(instr->value()); 4802 Register scratch = ToRegister(instr->temp()); 4803 MemOperand target = ContextMemOperand(context, instr->slot_index()); 4804 4805 Label skip_assignment; 4806 4807 if (instr->hydrogen()->RequiresHoleCheck()) { 4808 __ Ldr(scratch, target); 4809 if (instr->hydrogen()->DeoptimizesOnHole()) { 4810 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr, 4811 Deoptimizer::kHole); 4812 } else { 4813 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment); 4814 } 4815 } 4816 4817 __ Str(value, target); 4818 if (instr->hydrogen()->NeedsWriteBarrier()) { 4819 SmiCheck check_needed = 4820 instr->hydrogen()->value()->type().IsHeapObject() 4821 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 4822 __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value, 4823 scratch, GetLinkRegisterState(), kSaveFPRegs, 4824 EMIT_REMEMBERED_SET, check_needed); 4825 } 4826 __ Bind(&skip_assignment); 4827 } 4828 4829 4830 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) { 4831 Register ext_ptr = ToRegister(instr->elements()); 4832 Register key = no_reg; 4833 Register scratch; 4834 ElementsKind elements_kind = instr->elements_kind(); 4835 4836 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); 4837 bool key_is_constant = instr->key()->IsConstantOperand(); 4838 int constant_key = 0; 4839 if (key_is_constant) { 4840 DCHECK(instr->temp() == NULL); 4841 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 4842 if (constant_key & 0xf0000000) { 4843 Abort(kArrayIndexConstantValueTooBig); 4844 } 4845 } else { 4846 key = ToRegister(instr->key()); 4847 scratch = ToRegister(instr->temp()); 4848 } 4849 4850 MemOperand dst = 4851 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, 4852 key_is_constant, constant_key, 4853 elements_kind, 4854 instr->base_offset()); 4855 4856 if (elements_kind == FLOAT32_ELEMENTS) { 4857 DoubleRegister value = ToDoubleRegister(instr->value()); 4858 DoubleRegister dbl_scratch = double_scratch(); 4859 __ Fcvt(dbl_scratch.S(), value); 4860 __ Str(dbl_scratch.S(), dst); 4861 } else if (elements_kind == FLOAT64_ELEMENTS) { 4862 DoubleRegister value = ToDoubleRegister(instr->value()); 4863 __ Str(value, dst); 4864 } else { 4865 Register value = ToRegister(instr->value()); 4866 4867 switch (elements_kind) { 4868 case UINT8_ELEMENTS: 4869 case UINT8_CLAMPED_ELEMENTS: 4870 case INT8_ELEMENTS: 4871 __ Strb(value, dst); 4872 break; 4873 case INT16_ELEMENTS: 4874 case UINT16_ELEMENTS: 4875 __ Strh(value, dst); 4876 break; 4877 case INT32_ELEMENTS: 4878 case UINT32_ELEMENTS: 4879 __ Str(value.W(), dst); 4880 break; 4881 case FLOAT32_ELEMENTS: 4882 case FLOAT64_ELEMENTS: 4883 case FAST_DOUBLE_ELEMENTS: 4884 case FAST_ELEMENTS: 4885 case FAST_SMI_ELEMENTS: 4886 case FAST_HOLEY_DOUBLE_ELEMENTS: 4887 case FAST_HOLEY_ELEMENTS: 4888 case FAST_HOLEY_SMI_ELEMENTS: 4889 case DICTIONARY_ELEMENTS: 4890 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: 4891 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: 4892 UNREACHABLE(); 4893 break; 4894 } 4895 } 4896 } 4897 4898 4899 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) { 4900 Register elements = ToRegister(instr->elements()); 4901 DoubleRegister value = ToDoubleRegister(instr->value()); 4902 MemOperand mem_op; 4903 4904 if (instr->key()->IsConstantOperand()) { 4905 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 4906 if (constant_key & 0xf0000000) { 4907 Abort(kArrayIndexConstantValueTooBig); 4908 } 4909 int offset = instr->base_offset() + constant_key * kDoubleSize; 4910 mem_op = MemOperand(elements, offset); 4911 } else { 4912 Register store_base = ToRegister(instr->temp()); 4913 Register key = ToRegister(instr->key()); 4914 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); 4915 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, 4916 instr->hydrogen()->elements_kind(), 4917 instr->hydrogen()->representation(), 4918 instr->base_offset()); 4919 } 4920 4921 if (instr->NeedsCanonicalization()) { 4922 __ CanonicalizeNaN(double_scratch(), value); 4923 __ Str(double_scratch(), mem_op); 4924 } else { 4925 __ Str(value, mem_op); 4926 } 4927 } 4928 4929 4930 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) { 4931 Register value = ToRegister(instr->value()); 4932 Register elements = ToRegister(instr->elements()); 4933 Register scratch = no_reg; 4934 Register store_base = no_reg; 4935 Register key = no_reg; 4936 MemOperand mem_op; 4937 4938 if (!instr->key()->IsConstantOperand() || 4939 instr->hydrogen()->NeedsWriteBarrier()) { 4940 scratch = ToRegister(instr->temp()); 4941 } 4942 4943 Representation representation = instr->hydrogen()->value()->representation(); 4944 if (instr->key()->IsConstantOperand()) { 4945 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); 4946 int offset = instr->base_offset() + 4947 ToInteger32(const_operand) * kPointerSize; 4948 store_base = elements; 4949 if (representation.IsInteger32()) { 4950 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); 4951 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); 4952 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 4953 STATIC_ASSERT(kSmiTag == 0); 4954 mem_op = UntagSmiMemOperand(store_base, offset); 4955 } else { 4956 mem_op = MemOperand(store_base, offset); 4957 } 4958 } else { 4959 store_base = scratch; 4960 key = ToRegister(instr->key()); 4961 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); 4962 4963 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, 4964 instr->hydrogen()->elements_kind(), 4965 representation, instr->base_offset()); 4966 } 4967 4968 __ Store(value, mem_op, representation); 4969 4970 if (instr->hydrogen()->NeedsWriteBarrier()) { 4971 DCHECK(representation.IsTagged()); 4972 // This assignment may cause element_addr to alias store_base. 4973 Register element_addr = scratch; 4974 SmiCheck check_needed = 4975 instr->hydrogen()->value()->type().IsHeapObject() 4976 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 4977 // Compute address of modified element and store it into key register. 4978 __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand()); 4979 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(), 4980 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, 4981 instr->hydrogen()->PointersToHereCheckForValue()); 4982 } 4983 } 4984 4985 4986 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { 4987 DCHECK(ToRegister(instr->context()).is(cp)); 4988 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); 4989 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister())); 4990 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); 4991 4992 if (instr->hydrogen()->HasVectorAndSlot()) { 4993 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr); 4994 } 4995 4996 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode( 4997 isolate(), instr->language_mode(), 4998 instr->hydrogen()->initialization_state()).code(); 4999 CallCode(ic, RelocInfo::CODE_TARGET, instr); 5000 } 5001 5002 5003 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { 5004 class DeferredMaybeGrowElements final : public LDeferredCode { 5005 public: 5006 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) 5007 : LDeferredCode(codegen), instr_(instr) {} 5008 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } 5009 LInstruction* instr() override { return instr_; } 5010 5011 private: 5012 LMaybeGrowElements* instr_; 5013 }; 5014 5015 Register result = x0; 5016 DeferredMaybeGrowElements* deferred = 5017 new (zone()) DeferredMaybeGrowElements(this, instr); 5018 LOperand* key = instr->key(); 5019 LOperand* current_capacity = instr->current_capacity(); 5020 5021 DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); 5022 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); 5023 DCHECK(key->IsConstantOperand() || key->IsRegister()); 5024 DCHECK(current_capacity->IsConstantOperand() || 5025 current_capacity->IsRegister()); 5026 5027 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { 5028 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); 5029 int32_t constant_capacity = 5030 ToInteger32(LConstantOperand::cast(current_capacity)); 5031 if (constant_key >= constant_capacity) { 5032 // Deferred case. 5033 __ B(deferred->entry()); 5034 } 5035 } else if (key->IsConstantOperand()) { 5036 int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); 5037 __ Cmp(ToRegister(current_capacity), Operand(constant_key)); 5038 __ B(le, deferred->entry()); 5039 } else if (current_capacity->IsConstantOperand()) { 5040 int32_t constant_capacity = 5041 ToInteger32(LConstantOperand::cast(current_capacity)); 5042 __ Cmp(ToRegister(key), Operand(constant_capacity)); 5043 __ B(ge, deferred->entry()); 5044 } else { 5045 __ Cmp(ToRegister(key), ToRegister(current_capacity)); 5046 __ B(ge, deferred->entry()); 5047 } 5048 5049 __ Mov(result, ToRegister(instr->elements())); 5050 5051 __ Bind(deferred->exit()); 5052 } 5053 5054 5055 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { 5056 // TODO(3095996): Get rid of this. For now, we need to make the 5057 // result register contain a valid pointer because it is already 5058 // contained in the register pointer map. 5059 Register result = x0; 5060 __ Mov(result, 0); 5061 5062 // We have to call a stub. 5063 { 5064 PushSafepointRegistersScope scope(this); 5065 __ Move(result, ToRegister(instr->object())); 5066 5067 LOperand* key = instr->key(); 5068 if (key->IsConstantOperand()) { 5069 __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key)))); 5070 } else { 5071 __ Mov(x3, ToRegister(key)); 5072 __ SmiTag(x3); 5073 } 5074 5075 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(), 5076 instr->hydrogen()->kind()); 5077 __ CallStub(&stub); 5078 RecordSafepointWithLazyDeopt( 5079 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 5080 __ StoreToSafepointRegisterSlot(result, result); 5081 } 5082 5083 // Deopt on smi, which means the elements array changed to dictionary mode. 5084 DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi); 5085 } 5086 5087 5088 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { 5089 Representation representation = instr->representation(); 5090 5091 Register object = ToRegister(instr->object()); 5092 HObjectAccess access = instr->hydrogen()->access(); 5093 int offset = access.offset(); 5094 5095 if (access.IsExternalMemory()) { 5096 DCHECK(!instr->hydrogen()->has_transition()); 5097 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); 5098 Register value = ToRegister(instr->value()); 5099 __ Store(value, MemOperand(object, offset), representation); 5100 return; 5101 } 5102 5103 __ AssertNotSmi(object); 5104 5105 if (!FLAG_unbox_double_fields && representation.IsDouble()) { 5106 DCHECK(access.IsInobject()); 5107 DCHECK(!instr->hydrogen()->has_transition()); 5108 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); 5109 FPRegister value = ToDoubleRegister(instr->value()); 5110 __ Str(value, FieldMemOperand(object, offset)); 5111 return; 5112 } 5113 5114 DCHECK(!representation.IsSmi() || 5115 !instr->value()->IsConstantOperand() || 5116 IsInteger32Constant(LConstantOperand::cast(instr->value()))); 5117 5118 if (instr->hydrogen()->has_transition()) { 5119 Handle<Map> transition = instr->hydrogen()->transition_map(); 5120 AddDeprecationDependency(transition); 5121 // Store the new map value. 5122 Register new_map_value = ToRegister(instr->temp0()); 5123 __ Mov(new_map_value, Operand(transition)); 5124 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset)); 5125 if (instr->hydrogen()->NeedsWriteBarrierForMap()) { 5126 // Update the write barrier for the map field. 5127 __ RecordWriteForMap(object, 5128 new_map_value, 5129 ToRegister(instr->temp1()), 5130 GetLinkRegisterState(), 5131 kSaveFPRegs); 5132 } 5133 } 5134 5135 // Do the store. 5136 Register destination; 5137 if (access.IsInobject()) { 5138 destination = object; 5139 } else { 5140 Register temp0 = ToRegister(instr->temp0()); 5141 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset)); 5142 destination = temp0; 5143 } 5144 5145 if (FLAG_unbox_double_fields && representation.IsDouble()) { 5146 DCHECK(access.IsInobject()); 5147 FPRegister value = ToDoubleRegister(instr->value()); 5148 __ Str(value, FieldMemOperand(object, offset)); 5149 } else if (representation.IsSmi() && 5150 instr->hydrogen()->value()->representation().IsInteger32()) { 5151 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); 5152 #ifdef DEBUG 5153 Register temp0 = ToRegister(instr->temp0()); 5154 __ Ldr(temp0, FieldMemOperand(destination, offset)); 5155 __ AssertSmi(temp0); 5156 // If destination aliased temp0, restore it to the address calculated 5157 // earlier. 5158 if (destination.Is(temp0)) { 5159 DCHECK(!access.IsInobject()); 5160 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset)); 5161 } 5162 #endif 5163 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 5164 STATIC_ASSERT(kSmiTag == 0); 5165 Register value = ToRegister(instr->value()); 5166 __ Store(value, UntagSmiFieldMemOperand(destination, offset), 5167 Representation::Integer32()); 5168 } else { 5169 Register value = ToRegister(instr->value()); 5170 __ Store(value, FieldMemOperand(destination, offset), representation); 5171 } 5172 if (instr->hydrogen()->NeedsWriteBarrier()) { 5173 Register value = ToRegister(instr->value()); 5174 __ RecordWriteField(destination, 5175 offset, 5176 value, // Clobbered. 5177 ToRegister(instr->temp1()), // Clobbered. 5178 GetLinkRegisterState(), 5179 kSaveFPRegs, 5180 EMIT_REMEMBERED_SET, 5181 instr->hydrogen()->SmiCheckForWriteBarrier(), 5182 instr->hydrogen()->PointersToHereCheckForValue()); 5183 } 5184 } 5185 5186 5187 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { 5188 DCHECK(ToRegister(instr->context()).is(cp)); 5189 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); 5190 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); 5191 5192 if (instr->hydrogen()->HasVectorAndSlot()) { 5193 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr); 5194 } 5195 5196 __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name())); 5197 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode( 5198 isolate(), instr->language_mode(), 5199 instr->hydrogen()->initialization_state()).code(); 5200 CallCode(ic, RelocInfo::CODE_TARGET, instr); 5201 } 5202 5203 5204 void LCodeGen::DoStringAdd(LStringAdd* instr) { 5205 DCHECK(ToRegister(instr->context()).is(cp)); 5206 DCHECK(ToRegister(instr->left()).Is(x1)); 5207 DCHECK(ToRegister(instr->right()).Is(x0)); 5208 StringAddStub stub(isolate(), 5209 instr->hydrogen()->flags(), 5210 instr->hydrogen()->pretenure_flag()); 5211 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 5212 } 5213 5214 5215 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { 5216 class DeferredStringCharCodeAt: public LDeferredCode { 5217 public: 5218 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) 5219 : LDeferredCode(codegen), instr_(instr) { } 5220 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } 5221 virtual LInstruction* instr() { return instr_; } 5222 private: 5223 LStringCharCodeAt* instr_; 5224 }; 5225 5226 DeferredStringCharCodeAt* deferred = 5227 new(zone()) DeferredStringCharCodeAt(this, instr); 5228 5229 StringCharLoadGenerator::Generate(masm(), 5230 ToRegister(instr->string()), 5231 ToRegister32(instr->index()), 5232 ToRegister(instr->result()), 5233 deferred->entry()); 5234 __ Bind(deferred->exit()); 5235 } 5236 5237 5238 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { 5239 Register string = ToRegister(instr->string()); 5240 Register result = ToRegister(instr->result()); 5241 5242 // TODO(3095996): Get rid of this. For now, we need to make the 5243 // result register contain a valid pointer because it is already 5244 // contained in the register pointer map. 5245 __ Mov(result, 0); 5246 5247 PushSafepointRegistersScope scope(this); 5248 __ Push(string); 5249 // Push the index as a smi. This is safe because of the checks in 5250 // DoStringCharCodeAt above. 5251 Register index = ToRegister(instr->index()); 5252 __ SmiTagAndPush(index); 5253 5254 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, 5255 instr->context()); 5256 __ AssertSmi(x0); 5257 __ SmiUntag(x0); 5258 __ StoreToSafepointRegisterSlot(x0, result); 5259 } 5260 5261 5262 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { 5263 class DeferredStringCharFromCode: public LDeferredCode { 5264 public: 5265 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) 5266 : LDeferredCode(codegen), instr_(instr) { } 5267 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } 5268 virtual LInstruction* instr() { return instr_; } 5269 private: 5270 LStringCharFromCode* instr_; 5271 }; 5272 5273 DeferredStringCharFromCode* deferred = 5274 new(zone()) DeferredStringCharFromCode(this, instr); 5275 5276 DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); 5277 Register char_code = ToRegister32(instr->char_code()); 5278 Register result = ToRegister(instr->result()); 5279 5280 __ Cmp(char_code, String::kMaxOneByteCharCode); 5281 __ B(hi, deferred->entry()); 5282 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); 5283 __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag); 5284 __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2)); 5285 __ CompareRoot(result, Heap::kUndefinedValueRootIndex); 5286 __ B(eq, deferred->entry()); 5287 __ Bind(deferred->exit()); 5288 } 5289 5290 5291 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { 5292 Register char_code = ToRegister(instr->char_code()); 5293 Register result = ToRegister(instr->result()); 5294 5295 // TODO(3095996): Get rid of this. For now, we need to make the 5296 // result register contain a valid pointer because it is already 5297 // contained in the register pointer map. 5298 __ Mov(result, 0); 5299 5300 PushSafepointRegistersScope scope(this); 5301 __ SmiTagAndPush(char_code); 5302 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr, 5303 instr->context()); 5304 __ StoreToSafepointRegisterSlot(x0, result); 5305 } 5306 5307 5308 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { 5309 DCHECK(ToRegister(instr->context()).is(cp)); 5310 DCHECK(ToRegister(instr->left()).is(x1)); 5311 DCHECK(ToRegister(instr->right()).is(x0)); 5312 5313 Handle<Code> code = CodeFactory::StringCompare(isolate()).code(); 5314 CallCode(code, RelocInfo::CODE_TARGET, instr); 5315 5316 EmitCompareAndBranch(instr, TokenToCondition(instr->op(), false), x0, 0); 5317 } 5318 5319 5320 void LCodeGen::DoSubI(LSubI* instr) { 5321 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 5322 Register result = ToRegister32(instr->result()); 5323 Register left = ToRegister32(instr->left()); 5324 Operand right = ToShiftedRightOperand32(instr->right(), instr); 5325 5326 if (can_overflow) { 5327 __ Subs(result, left, right); 5328 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 5329 } else { 5330 __ Sub(result, left, right); 5331 } 5332 } 5333 5334 5335 void LCodeGen::DoSubS(LSubS* instr) { 5336 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 5337 Register result = ToRegister(instr->result()); 5338 Register left = ToRegister(instr->left()); 5339 Operand right = ToOperand(instr->right()); 5340 if (can_overflow) { 5341 __ Subs(result, left, right); 5342 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow); 5343 } else { 5344 __ Sub(result, left, right); 5345 } 5346 } 5347 5348 5349 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, 5350 LOperand* value, 5351 LOperand* temp1, 5352 LOperand* temp2) { 5353 Register input = ToRegister(value); 5354 Register scratch1 = ToRegister(temp1); 5355 DoubleRegister dbl_scratch1 = double_scratch(); 5356 5357 Label done; 5358 5359 if (instr->truncating()) { 5360 Register output = ToRegister(instr->result()); 5361 Label check_bools; 5362 5363 // If it's not a heap number, jump to undefined check. 5364 __ JumpIfNotHeapNumber(input, &check_bools); 5365 5366 // A heap number: load value and convert to int32 using truncating function. 5367 __ TruncateHeapNumberToI(output, input); 5368 __ B(&done); 5369 5370 __ Bind(&check_bools); 5371 5372 Register true_root = output; 5373 Register false_root = scratch1; 5374 __ LoadTrueFalseRoots(true_root, false_root); 5375 __ Cmp(input, true_root); 5376 __ Cset(output, eq); 5377 __ Ccmp(input, false_root, ZFlag, ne); 5378 __ B(eq, &done); 5379 5380 // Output contains zero, undefined is converted to zero for truncating 5381 // conversions. 5382 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, 5383 Deoptimizer::kNotAHeapNumberUndefinedBoolean); 5384 } else { 5385 Register output = ToRegister32(instr->result()); 5386 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2); 5387 5388 DeoptimizeIfNotHeapNumber(input, instr); 5389 5390 // A heap number: load value and convert to int32 using non-truncating 5391 // function. If the result is out of range, branch to deoptimize. 5392 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset)); 5393 __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2); 5394 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN); 5395 5396 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 5397 __ Cmp(output, 0); 5398 __ B(ne, &done); 5399 __ Fmov(scratch1, dbl_scratch1); 5400 DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero); 5401 } 5402 } 5403 __ Bind(&done); 5404 } 5405 5406 5407 void LCodeGen::DoTaggedToI(LTaggedToI* instr) { 5408 class DeferredTaggedToI: public LDeferredCode { 5409 public: 5410 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) 5411 : LDeferredCode(codegen), instr_(instr) { } 5412 virtual void Generate() { 5413 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(), 5414 instr_->temp2()); 5415 } 5416 5417 virtual LInstruction* instr() { return instr_; } 5418 private: 5419 LTaggedToI* instr_; 5420 }; 5421 5422 Register input = ToRegister(instr->value()); 5423 Register output = ToRegister(instr->result()); 5424 5425 if (instr->hydrogen()->value()->representation().IsSmi()) { 5426 __ SmiUntag(output, input); 5427 } else { 5428 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); 5429 5430 __ JumpIfNotSmi(input, deferred->entry()); 5431 __ SmiUntag(output, input); 5432 __ Bind(deferred->exit()); 5433 } 5434 } 5435 5436 5437 void LCodeGen::DoThisFunction(LThisFunction* instr) { 5438 Register result = ToRegister(instr->result()); 5439 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 5440 } 5441 5442 5443 void LCodeGen::DoToFastProperties(LToFastProperties* instr) { 5444 DCHECK(ToRegister(instr->value()).Is(x0)); 5445 DCHECK(ToRegister(instr->result()).Is(x0)); 5446 __ Push(x0); 5447 CallRuntime(Runtime::kToFastProperties, 1, instr); 5448 } 5449 5450 5451 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { 5452 Register object = ToRegister(instr->object()); 5453 5454 Handle<Map> from_map = instr->original_map(); 5455 Handle<Map> to_map = instr->transitioned_map(); 5456 ElementsKind from_kind = instr->from_kind(); 5457 ElementsKind to_kind = instr->to_kind(); 5458 5459 Label not_applicable; 5460 5461 if (IsSimpleMapChangeTransition(from_kind, to_kind)) { 5462 Register temp1 = ToRegister(instr->temp1()); 5463 Register new_map = ToRegister(instr->temp2()); 5464 __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK); 5465 __ Mov(new_map, Operand(to_map)); 5466 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset)); 5467 // Write barrier. 5468 __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(), 5469 kDontSaveFPRegs); 5470 } else { 5471 { 5472 UseScratchRegisterScope temps(masm()); 5473 // Use the temp register only in a restricted scope - the codegen checks 5474 // that we do not use any register across a call. 5475 __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable, 5476 DONT_DO_SMI_CHECK); 5477 } 5478 DCHECK(object.is(x0)); 5479 DCHECK(ToRegister(instr->context()).is(cp)); 5480 PushSafepointRegistersScope scope(this); 5481 __ Mov(x1, Operand(to_map)); 5482 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; 5483 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); 5484 __ CallStub(&stub); 5485 RecordSafepointWithRegisters( 5486 instr->pointer_map(), 0, Safepoint::kLazyDeopt); 5487 } 5488 __ Bind(¬_applicable); 5489 } 5490 5491 5492 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { 5493 Register object = ToRegister(instr->object()); 5494 Register temp1 = ToRegister(instr->temp1()); 5495 Register temp2 = ToRegister(instr->temp2()); 5496 5497 Label no_memento_found; 5498 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found); 5499 DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound); 5500 __ Bind(&no_memento_found); 5501 } 5502 5503 5504 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) { 5505 DoubleRegister input = ToDoubleRegister(instr->value()); 5506 Register result = ToRegister(instr->result()); 5507 __ TruncateDoubleToI(result, input); 5508 if (instr->tag_result()) { 5509 __ SmiTag(result, result); 5510 } 5511 } 5512 5513 5514 void LCodeGen::DoTypeof(LTypeof* instr) { 5515 DCHECK(ToRegister(instr->value()).is(x3)); 5516 DCHECK(ToRegister(instr->result()).is(x0)); 5517 Label end, do_call; 5518 Register value_register = ToRegister(instr->value()); 5519 __ JumpIfNotSmi(value_register, &do_call); 5520 __ Mov(x0, Immediate(isolate()->factory()->number_string())); 5521 __ B(&end); 5522 __ Bind(&do_call); 5523 TypeofStub stub(isolate()); 5524 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 5525 __ Bind(&end); 5526 } 5527 5528 5529 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { 5530 Handle<String> type_name = instr->type_literal(); 5531 Label* true_label = instr->TrueLabel(chunk_); 5532 Label* false_label = instr->FalseLabel(chunk_); 5533 Register value = ToRegister(instr->value()); 5534 5535 Factory* factory = isolate()->factory(); 5536 if (String::Equals(type_name, factory->number_string())) { 5537 __ JumpIfSmi(value, true_label); 5538 5539 int true_block = instr->TrueDestination(chunk_); 5540 int false_block = instr->FalseDestination(chunk_); 5541 int next_block = GetNextEmittedBlock(); 5542 5543 if (true_block == false_block) { 5544 EmitGoto(true_block); 5545 } else if (true_block == next_block) { 5546 __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block)); 5547 } else { 5548 __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block)); 5549 if (false_block != next_block) { 5550 __ B(chunk_->GetAssemblyLabel(false_block)); 5551 } 5552 } 5553 5554 } else if (String::Equals(type_name, factory->string_string())) { 5555 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); 5556 Register map = ToRegister(instr->temp1()); 5557 Register scratch = ToRegister(instr->temp2()); 5558 5559 __ JumpIfSmi(value, false_label); 5560 __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE); 5561 EmitBranch(instr, lt); 5562 5563 } else if (String::Equals(type_name, factory->symbol_string())) { 5564 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); 5565 Register map = ToRegister(instr->temp1()); 5566 Register scratch = ToRegister(instr->temp2()); 5567 5568 __ JumpIfSmi(value, false_label); 5569 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE); 5570 EmitBranch(instr, eq); 5571 5572 } else if (String::Equals(type_name, factory->boolean_string())) { 5573 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label); 5574 __ CompareRoot(value, Heap::kFalseValueRootIndex); 5575 EmitBranch(instr, eq); 5576 5577 } else if (String::Equals(type_name, factory->undefined_string())) { 5578 DCHECK(instr->temp1() != NULL); 5579 Register scratch = ToRegister(instr->temp1()); 5580 5581 __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label); 5582 __ JumpIfSmi(value, false_label); 5583 // Check for undetectable objects and jump to the true branch in this case. 5584 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); 5585 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); 5586 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable); 5587 5588 } else if (String::Equals(type_name, factory->function_string())) { 5589 DCHECK(instr->temp1() != NULL); 5590 Register scratch = ToRegister(instr->temp1()); 5591 5592 __ JumpIfSmi(value, false_label); 5593 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); 5594 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); 5595 __ And(scratch, scratch, 5596 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); 5597 EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable); 5598 5599 } else if (String::Equals(type_name, factory->object_string())) { 5600 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); 5601 Register map = ToRegister(instr->temp1()); 5602 Register scratch = ToRegister(instr->temp2()); 5603 5604 __ JumpIfSmi(value, false_label); 5605 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label); 5606 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); 5607 __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE, 5608 false_label, lt); 5609 // Check for callable or undetectable objects => false. 5610 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); 5611 EmitTestAndBranch(instr, eq, scratch, 5612 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); 5613 5614 // clang-format off 5615 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ 5616 } else if (String::Equals(type_name, factory->type##_string())) { \ 5617 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); \ 5618 Register map = ToRegister(instr->temp1()); \ 5619 \ 5620 __ JumpIfSmi(value, false_label); \ 5621 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); \ 5622 __ CompareRoot(map, Heap::k##Type##MapRootIndex); \ 5623 EmitBranch(instr, eq); 5624 SIMD128_TYPES(SIMD128_TYPE) 5625 #undef SIMD128_TYPE 5626 // clang-format on 5627 5628 } else { 5629 __ B(false_label); 5630 } 5631 } 5632 5633 5634 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { 5635 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value())); 5636 } 5637 5638 5639 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { 5640 Register object = ToRegister(instr->value()); 5641 Register map = ToRegister(instr->map()); 5642 Register temp = ToRegister(instr->temp()); 5643 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); 5644 __ Cmp(map, temp); 5645 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap); 5646 } 5647 5648 5649 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { 5650 Register receiver = ToRegister(instr->receiver()); 5651 Register function = ToRegister(instr->function()); 5652 Register result = ToRegister(instr->result()); 5653 5654 // If the receiver is null or undefined, we have to pass the global object as 5655 // a receiver to normal functions. Values have to be passed unchanged to 5656 // builtins and strict-mode functions. 5657 Label global_object, done, copy_receiver; 5658 5659 if (!instr->hydrogen()->known_function()) { 5660 __ Ldr(result, FieldMemOperand(function, 5661 JSFunction::kSharedFunctionInfoOffset)); 5662 5663 // CompilerHints is an int32 field. See objects.h. 5664 __ Ldr(result.W(), 5665 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset)); 5666 5667 // Do not transform the receiver to object for strict mode functions. 5668 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver); 5669 5670 // Do not transform the receiver to object for builtins. 5671 __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver); 5672 } 5673 5674 // Normal function. Replace undefined or null with global receiver. 5675 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object); 5676 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object); 5677 5678 // Deoptimize if the receiver is not a JS object. 5679 DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi); 5680 __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE); 5681 __ B(ge, ©_receiver); 5682 Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject); 5683 5684 __ Bind(&global_object); 5685 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset)); 5686 __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX)); 5687 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX)); 5688 __ B(&done); 5689 5690 __ Bind(©_receiver); 5691 __ Mov(result, receiver); 5692 __ Bind(&done); 5693 } 5694 5695 5696 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, 5697 Register result, 5698 Register object, 5699 Register index) { 5700 PushSafepointRegistersScope scope(this); 5701 __ Push(object); 5702 __ Push(index); 5703 __ Mov(cp, 0); 5704 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); 5705 RecordSafepointWithRegisters( 5706 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); 5707 __ StoreToSafepointRegisterSlot(x0, result); 5708 } 5709 5710 5711 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { 5712 class DeferredLoadMutableDouble final : public LDeferredCode { 5713 public: 5714 DeferredLoadMutableDouble(LCodeGen* codegen, 5715 LLoadFieldByIndex* instr, 5716 Register result, 5717 Register object, 5718 Register index) 5719 : LDeferredCode(codegen), 5720 instr_(instr), 5721 result_(result), 5722 object_(object), 5723 index_(index) { 5724 } 5725 void Generate() override { 5726 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); 5727 } 5728 LInstruction* instr() override { return instr_; } 5729 5730 private: 5731 LLoadFieldByIndex* instr_; 5732 Register result_; 5733 Register object_; 5734 Register index_; 5735 }; 5736 Register object = ToRegister(instr->object()); 5737 Register index = ToRegister(instr->index()); 5738 Register result = ToRegister(instr->result()); 5739 5740 __ AssertSmi(index); 5741 5742 DeferredLoadMutableDouble* deferred; 5743 deferred = new(zone()) DeferredLoadMutableDouble( 5744 this, instr, result, object, index); 5745 5746 Label out_of_object, done; 5747 5748 __ TestAndBranchIfAnySet( 5749 index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry()); 5750 __ Mov(index, Operand(index, ASR, 1)); 5751 5752 __ Cmp(index, Smi::FromInt(0)); 5753 __ B(lt, &out_of_object); 5754 5755 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); 5756 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); 5757 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize)); 5758 5759 __ B(&done); 5760 5761 __ Bind(&out_of_object); 5762 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 5763 // Index is equal to negated out of object property index plus 1. 5764 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); 5765 __ Ldr(result, FieldMemOperand(result, 5766 FixedArray::kHeaderSize - kPointerSize)); 5767 __ Bind(deferred->exit()); 5768 __ Bind(&done); 5769 } 5770 5771 5772 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { 5773 Register context = ToRegister(instr->context()); 5774 __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset)); 5775 } 5776 5777 5778 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { 5779 Handle<ScopeInfo> scope_info = instr->scope_info(); 5780 __ Push(scope_info); 5781 __ Push(ToRegister(instr->function())); 5782 CallRuntime(Runtime::kPushBlockContext, instr); 5783 RecordSafepoint(Safepoint::kNoLazyDeopt); 5784 } 5785 5786 5787 } // namespace internal 5788 } // namespace v8 5789