1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/gdb-jit.h" 6 7 #include "src/base/bits.h" 8 #include "src/base/platform/platform.h" 9 #include "src/bootstrapper.h" 10 #include "src/compiler.h" 11 #include "src/frames-inl.h" 12 #include "src/frames.h" 13 #include "src/global-handles.h" 14 #include "src/messages.h" 15 #include "src/objects.h" 16 #include "src/ostreams.h" 17 #include "src/snapshot/natives.h" 18 #include "src/splay-tree-inl.h" 19 20 namespace v8 { 21 namespace internal { 22 namespace GDBJITInterface { 23 24 #ifdef ENABLE_GDB_JIT_INTERFACE 25 26 #ifdef __APPLE__ 27 #define __MACH_O 28 class MachO; 29 class MachOSection; 30 typedef MachO DebugObject; 31 typedef MachOSection DebugSection; 32 #else 33 #define __ELF 34 class ELF; 35 class ELFSection; 36 typedef ELF DebugObject; 37 typedef ELFSection DebugSection; 38 #endif 39 40 class Writer BASE_EMBEDDED { 41 public: 42 explicit Writer(DebugObject* debug_object) 43 : debug_object_(debug_object), 44 position_(0), 45 capacity_(1024), 46 buffer_(reinterpret_cast<byte*>(malloc(capacity_))) { 47 } 48 49 ~Writer() { 50 free(buffer_); 51 } 52 53 uintptr_t position() const { 54 return position_; 55 } 56 57 template<typename T> 58 class Slot { 59 public: 60 Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { } 61 62 T* operator-> () { 63 return w_->RawSlotAt<T>(offset_); 64 } 65 66 void set(const T& value) { 67 *w_->RawSlotAt<T>(offset_) = value; 68 } 69 70 Slot<T> at(int i) { 71 return Slot<T>(w_, offset_ + sizeof(T) * i); 72 } 73 74 private: 75 Writer* w_; 76 uintptr_t offset_; 77 }; 78 79 template<typename T> 80 void Write(const T& val) { 81 Ensure(position_ + sizeof(T)); 82 *RawSlotAt<T>(position_) = val; 83 position_ += sizeof(T); 84 } 85 86 template<typename T> 87 Slot<T> SlotAt(uintptr_t offset) { 88 Ensure(offset + sizeof(T)); 89 return Slot<T>(this, offset); 90 } 91 92 template<typename T> 93 Slot<T> CreateSlotHere() { 94 return CreateSlotsHere<T>(1); 95 } 96 97 template<typename T> 98 Slot<T> CreateSlotsHere(uint32_t count) { 99 uintptr_t slot_position = position_; 100 position_ += sizeof(T) * count; 101 Ensure(position_); 102 return SlotAt<T>(slot_position); 103 } 104 105 void Ensure(uintptr_t pos) { 106 if (capacity_ < pos) { 107 while (capacity_ < pos) capacity_ *= 2; 108 buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_)); 109 } 110 } 111 112 DebugObject* debug_object() { return debug_object_; } 113 114 byte* buffer() { return buffer_; } 115 116 void Align(uintptr_t align) { 117 uintptr_t delta = position_ % align; 118 if (delta == 0) return; 119 uintptr_t padding = align - delta; 120 Ensure(position_ += padding); 121 DCHECK((position_ % align) == 0); 122 } 123 124 void WriteULEB128(uintptr_t value) { 125 do { 126 uint8_t byte = value & 0x7F; 127 value >>= 7; 128 if (value != 0) byte |= 0x80; 129 Write<uint8_t>(byte); 130 } while (value != 0); 131 } 132 133 void WriteSLEB128(intptr_t value) { 134 bool more = true; 135 while (more) { 136 int8_t byte = value & 0x7F; 137 bool byte_sign = byte & 0x40; 138 value >>= 7; 139 140 if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) { 141 more = false; 142 } else { 143 byte |= 0x80; 144 } 145 146 Write<int8_t>(byte); 147 } 148 } 149 150 void WriteString(const char* str) { 151 do { 152 Write<char>(*str); 153 } while (*str++); 154 } 155 156 private: 157 template<typename T> friend class Slot; 158 159 template<typename T> 160 T* RawSlotAt(uintptr_t offset) { 161 DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_); 162 return reinterpret_cast<T*>(&buffer_[offset]); 163 } 164 165 DebugObject* debug_object_; 166 uintptr_t position_; 167 uintptr_t capacity_; 168 byte* buffer_; 169 }; 170 171 class ELFStringTable; 172 173 template<typename THeader> 174 class DebugSectionBase : public ZoneObject { 175 public: 176 virtual ~DebugSectionBase() { } 177 178 virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) { 179 uintptr_t start = writer->position(); 180 if (WriteBodyInternal(writer)) { 181 uintptr_t end = writer->position(); 182 header->offset = static_cast<uint32_t>(start); 183 #if defined(__MACH_O) 184 header->addr = 0; 185 #endif 186 header->size = end - start; 187 } 188 } 189 190 virtual bool WriteBodyInternal(Writer* writer) { 191 return false; 192 } 193 194 typedef THeader Header; 195 }; 196 197 198 struct MachOSectionHeader { 199 char sectname[16]; 200 char segname[16]; 201 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 202 uint32_t addr; 203 uint32_t size; 204 #else 205 uint64_t addr; 206 uint64_t size; 207 #endif 208 uint32_t offset; 209 uint32_t align; 210 uint32_t reloff; 211 uint32_t nreloc; 212 uint32_t flags; 213 uint32_t reserved1; 214 uint32_t reserved2; 215 }; 216 217 218 class MachOSection : public DebugSectionBase<MachOSectionHeader> { 219 public: 220 enum Type { 221 S_REGULAR = 0x0u, 222 S_ATTR_COALESCED = 0xbu, 223 S_ATTR_SOME_INSTRUCTIONS = 0x400u, 224 S_ATTR_DEBUG = 0x02000000u, 225 S_ATTR_PURE_INSTRUCTIONS = 0x80000000u 226 }; 227 228 MachOSection(const char* name, const char* segment, uint32_t align, 229 uint32_t flags) 230 : name_(name), segment_(segment), align_(align), flags_(flags) { 231 if (align_ != 0) { 232 DCHECK(base::bits::IsPowerOfTwo32(align)); 233 align_ = WhichPowerOf2(align_); 234 } 235 } 236 237 virtual ~MachOSection() { } 238 239 virtual void PopulateHeader(Writer::Slot<Header> header) { 240 header->addr = 0; 241 header->size = 0; 242 header->offset = 0; 243 header->align = align_; 244 header->reloff = 0; 245 header->nreloc = 0; 246 header->flags = flags_; 247 header->reserved1 = 0; 248 header->reserved2 = 0; 249 memset(header->sectname, 0, sizeof(header->sectname)); 250 memset(header->segname, 0, sizeof(header->segname)); 251 DCHECK(strlen(name_) < sizeof(header->sectname)); 252 DCHECK(strlen(segment_) < sizeof(header->segname)); 253 strncpy(header->sectname, name_, sizeof(header->sectname)); 254 strncpy(header->segname, segment_, sizeof(header->segname)); 255 } 256 257 private: 258 const char* name_; 259 const char* segment_; 260 uint32_t align_; 261 uint32_t flags_; 262 }; 263 264 265 struct ELFSectionHeader { 266 uint32_t name; 267 uint32_t type; 268 uintptr_t flags; 269 uintptr_t address; 270 uintptr_t offset; 271 uintptr_t size; 272 uint32_t link; 273 uint32_t info; 274 uintptr_t alignment; 275 uintptr_t entry_size; 276 }; 277 278 279 #if defined(__ELF) 280 class ELFSection : public DebugSectionBase<ELFSectionHeader> { 281 public: 282 enum Type { 283 TYPE_NULL = 0, 284 TYPE_PROGBITS = 1, 285 TYPE_SYMTAB = 2, 286 TYPE_STRTAB = 3, 287 TYPE_RELA = 4, 288 TYPE_HASH = 5, 289 TYPE_DYNAMIC = 6, 290 TYPE_NOTE = 7, 291 TYPE_NOBITS = 8, 292 TYPE_REL = 9, 293 TYPE_SHLIB = 10, 294 TYPE_DYNSYM = 11, 295 TYPE_LOPROC = 0x70000000, 296 TYPE_X86_64_UNWIND = 0x70000001, 297 TYPE_HIPROC = 0x7fffffff, 298 TYPE_LOUSER = 0x80000000, 299 TYPE_HIUSER = 0xffffffff 300 }; 301 302 enum Flags { 303 FLAG_WRITE = 1, 304 FLAG_ALLOC = 2, 305 FLAG_EXEC = 4 306 }; 307 308 enum SpecialIndexes { 309 INDEX_ABSOLUTE = 0xfff1 310 }; 311 312 ELFSection(const char* name, Type type, uintptr_t align) 313 : name_(name), type_(type), align_(align) { } 314 315 virtual ~ELFSection() { } 316 317 void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab); 318 319 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 320 uintptr_t start = w->position(); 321 if (WriteBodyInternal(w)) { 322 uintptr_t end = w->position(); 323 header->offset = start; 324 header->size = end - start; 325 } 326 } 327 328 virtual bool WriteBodyInternal(Writer* w) { 329 return false; 330 } 331 332 uint16_t index() const { return index_; } 333 void set_index(uint16_t index) { index_ = index; } 334 335 protected: 336 virtual void PopulateHeader(Writer::Slot<Header> header) { 337 header->flags = 0; 338 header->address = 0; 339 header->offset = 0; 340 header->size = 0; 341 header->link = 0; 342 header->info = 0; 343 header->entry_size = 0; 344 } 345 346 private: 347 const char* name_; 348 Type type_; 349 uintptr_t align_; 350 uint16_t index_; 351 }; 352 #endif // defined(__ELF) 353 354 355 #if defined(__MACH_O) 356 class MachOTextSection : public MachOSection { 357 public: 358 MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size) 359 : MachOSection("__text", "__TEXT", align, 360 MachOSection::S_REGULAR | 361 MachOSection::S_ATTR_SOME_INSTRUCTIONS | 362 MachOSection::S_ATTR_PURE_INSTRUCTIONS), 363 addr_(addr), 364 size_(size) {} 365 366 protected: 367 virtual void PopulateHeader(Writer::Slot<Header> header) { 368 MachOSection::PopulateHeader(header); 369 header->addr = addr_; 370 header->size = size_; 371 } 372 373 private: 374 uintptr_t addr_; 375 uintptr_t size_; 376 }; 377 #endif // defined(__MACH_O) 378 379 380 #if defined(__ELF) 381 class FullHeaderELFSection : public ELFSection { 382 public: 383 FullHeaderELFSection(const char* name, 384 Type type, 385 uintptr_t align, 386 uintptr_t addr, 387 uintptr_t offset, 388 uintptr_t size, 389 uintptr_t flags) 390 : ELFSection(name, type, align), 391 addr_(addr), 392 offset_(offset), 393 size_(size), 394 flags_(flags) { } 395 396 protected: 397 virtual void PopulateHeader(Writer::Slot<Header> header) { 398 ELFSection::PopulateHeader(header); 399 header->address = addr_; 400 header->offset = offset_; 401 header->size = size_; 402 header->flags = flags_; 403 } 404 405 private: 406 uintptr_t addr_; 407 uintptr_t offset_; 408 uintptr_t size_; 409 uintptr_t flags_; 410 }; 411 412 413 class ELFStringTable : public ELFSection { 414 public: 415 explicit ELFStringTable(const char* name) 416 : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) { 417 } 418 419 uintptr_t Add(const char* str) { 420 if (*str == '\0') return 0; 421 422 uintptr_t offset = size_; 423 WriteString(str); 424 return offset; 425 } 426 427 void AttachWriter(Writer* w) { 428 writer_ = w; 429 offset_ = writer_->position(); 430 431 // First entry in the string table should be an empty string. 432 WriteString(""); 433 } 434 435 void DetachWriter() { 436 writer_ = NULL; 437 } 438 439 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 440 DCHECK(writer_ == NULL); 441 header->offset = offset_; 442 header->size = size_; 443 } 444 445 private: 446 void WriteString(const char* str) { 447 uintptr_t written = 0; 448 do { 449 writer_->Write(*str); 450 written++; 451 } while (*str++); 452 size_ += written; 453 } 454 455 Writer* writer_; 456 457 uintptr_t offset_; 458 uintptr_t size_; 459 }; 460 461 462 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header, 463 ELFStringTable* strtab) { 464 header->name = static_cast<uint32_t>(strtab->Add(name_)); 465 header->type = type_; 466 header->alignment = align_; 467 PopulateHeader(header); 468 } 469 #endif // defined(__ELF) 470 471 472 #if defined(__MACH_O) 473 class MachO BASE_EMBEDDED { 474 public: 475 explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { } 476 477 uint32_t AddSection(MachOSection* section) { 478 sections_.Add(section, zone_); 479 return sections_.length() - 1; 480 } 481 482 void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) { 483 Writer::Slot<MachOHeader> header = WriteHeader(w); 484 uintptr_t load_command_start = w->position(); 485 Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w, 486 code_start, 487 code_size); 488 WriteSections(w, cmd, header, load_command_start); 489 } 490 491 private: 492 struct MachOHeader { 493 uint32_t magic; 494 uint32_t cputype; 495 uint32_t cpusubtype; 496 uint32_t filetype; 497 uint32_t ncmds; 498 uint32_t sizeofcmds; 499 uint32_t flags; 500 #if V8_TARGET_ARCH_X64 501 uint32_t reserved; 502 #endif 503 }; 504 505 struct MachOSegmentCommand { 506 uint32_t cmd; 507 uint32_t cmdsize; 508 char segname[16]; 509 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 510 uint32_t vmaddr; 511 uint32_t vmsize; 512 uint32_t fileoff; 513 uint32_t filesize; 514 #else 515 uint64_t vmaddr; 516 uint64_t vmsize; 517 uint64_t fileoff; 518 uint64_t filesize; 519 #endif 520 uint32_t maxprot; 521 uint32_t initprot; 522 uint32_t nsects; 523 uint32_t flags; 524 }; 525 526 enum MachOLoadCommandCmd { 527 LC_SEGMENT_32 = 0x00000001u, 528 LC_SEGMENT_64 = 0x00000019u 529 }; 530 531 532 Writer::Slot<MachOHeader> WriteHeader(Writer* w) { 533 DCHECK(w->position() == 0); 534 Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>(); 535 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 536 header->magic = 0xFEEDFACEu; 537 header->cputype = 7; // i386 538 header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 539 #elif V8_TARGET_ARCH_X64 540 header->magic = 0xFEEDFACFu; 541 header->cputype = 7 | 0x01000000; // i386 | 64-bit ABI 542 header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 543 header->reserved = 0; 544 #else 545 #error Unsupported target architecture. 546 #endif 547 header->filetype = 0x1; // MH_OBJECT 548 header->ncmds = 1; 549 header->sizeofcmds = 0; 550 header->flags = 0; 551 return header; 552 } 553 554 555 Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w, 556 uintptr_t code_start, 557 uintptr_t code_size) { 558 Writer::Slot<MachOSegmentCommand> cmd = 559 w->CreateSlotHere<MachOSegmentCommand>(); 560 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 561 cmd->cmd = LC_SEGMENT_32; 562 #else 563 cmd->cmd = LC_SEGMENT_64; 564 #endif 565 cmd->vmaddr = code_start; 566 cmd->vmsize = code_size; 567 cmd->fileoff = 0; 568 cmd->filesize = 0; 569 cmd->maxprot = 7; 570 cmd->initprot = 7; 571 cmd->flags = 0; 572 cmd->nsects = sections_.length(); 573 memset(cmd->segname, 0, 16); 574 cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) * 575 cmd->nsects; 576 return cmd; 577 } 578 579 580 void WriteSections(Writer* w, 581 Writer::Slot<MachOSegmentCommand> cmd, 582 Writer::Slot<MachOHeader> header, 583 uintptr_t load_command_start) { 584 Writer::Slot<MachOSection::Header> headers = 585 w->CreateSlotsHere<MachOSection::Header>(sections_.length()); 586 cmd->fileoff = w->position(); 587 header->sizeofcmds = 588 static_cast<uint32_t>(w->position() - load_command_start); 589 for (int section = 0; section < sections_.length(); ++section) { 590 sections_[section]->PopulateHeader(headers.at(section)); 591 sections_[section]->WriteBody(headers.at(section), w); 592 } 593 cmd->filesize = w->position() - (uintptr_t)cmd->fileoff; 594 } 595 596 Zone* zone_; 597 ZoneList<MachOSection*> sections_; 598 }; 599 #endif // defined(__MACH_O) 600 601 602 #if defined(__ELF) 603 class ELF BASE_EMBEDDED { 604 public: 605 explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) { 606 sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone); 607 sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone); 608 } 609 610 void Write(Writer* w) { 611 WriteHeader(w); 612 WriteSectionTable(w); 613 WriteSections(w); 614 } 615 616 ELFSection* SectionAt(uint32_t index) { 617 return sections_[index]; 618 } 619 620 uint32_t AddSection(ELFSection* section) { 621 sections_.Add(section, zone_); 622 section->set_index(sections_.length() - 1); 623 return sections_.length() - 1; 624 } 625 626 private: 627 struct ELFHeader { 628 uint8_t ident[16]; 629 uint16_t type; 630 uint16_t machine; 631 uint32_t version; 632 uintptr_t entry; 633 uintptr_t pht_offset; 634 uintptr_t sht_offset; 635 uint32_t flags; 636 uint16_t header_size; 637 uint16_t pht_entry_size; 638 uint16_t pht_entry_num; 639 uint16_t sht_entry_size; 640 uint16_t sht_entry_num; 641 uint16_t sht_strtab_index; 642 }; 643 644 645 void WriteHeader(Writer* w) { 646 DCHECK(w->position() == 0); 647 Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>(); 648 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \ 649 (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT)) 650 const uint8_t ident[16] = 651 { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 652 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \ 653 (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN) 654 const uint8_t ident[16] = 655 { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 656 #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX 657 const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 0, 658 0, 0, 0, 0, 0, 0, 0, 0}; 659 #else 660 #error Unsupported target architecture. 661 #endif 662 memcpy(header->ident, ident, 16); 663 header->type = 1; 664 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 665 header->machine = 3; 666 #elif V8_TARGET_ARCH_X64 667 // Processor identification value for x64 is 62 as defined in 668 // System V ABI, AMD64 Supplement 669 // http://www.x86-64.org/documentation/abi.pdf 670 header->machine = 62; 671 #elif V8_TARGET_ARCH_ARM 672 // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at 673 // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf 674 header->machine = 40; 675 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX 676 // Set to EM_PPC64, defined as 21, in Power ABI, 677 // Join the next 4 lines, omitting the spaces and double-slashes. 678 // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/ 679 // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf? 680 // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t= 681 // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr 682 header->machine = 21; 683 #else 684 #error Unsupported target architecture. 685 #endif 686 header->version = 1; 687 header->entry = 0; 688 header->pht_offset = 0; 689 header->sht_offset = sizeof(ELFHeader); // Section table follows header. 690 header->flags = 0; 691 header->header_size = sizeof(ELFHeader); 692 header->pht_entry_size = 0; 693 header->pht_entry_num = 0; 694 header->sht_entry_size = sizeof(ELFSection::Header); 695 header->sht_entry_num = sections_.length(); 696 header->sht_strtab_index = 1; 697 } 698 699 void WriteSectionTable(Writer* w) { 700 // Section headers table immediately follows file header. 701 DCHECK(w->position() == sizeof(ELFHeader)); 702 703 Writer::Slot<ELFSection::Header> headers = 704 w->CreateSlotsHere<ELFSection::Header>(sections_.length()); 705 706 // String table for section table is the first section. 707 ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1)); 708 strtab->AttachWriter(w); 709 for (int i = 0, length = sections_.length(); 710 i < length; 711 i++) { 712 sections_[i]->PopulateHeader(headers.at(i), strtab); 713 } 714 strtab->DetachWriter(); 715 } 716 717 int SectionHeaderPosition(uint32_t section_index) { 718 return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index; 719 } 720 721 void WriteSections(Writer* w) { 722 Writer::Slot<ELFSection::Header> headers = 723 w->SlotAt<ELFSection::Header>(sizeof(ELFHeader)); 724 725 for (int i = 0, length = sections_.length(); 726 i < length; 727 i++) { 728 sections_[i]->WriteBody(headers.at(i), w); 729 } 730 } 731 732 Zone* zone_; 733 ZoneList<ELFSection*> sections_; 734 }; 735 736 737 class ELFSymbol BASE_EMBEDDED { 738 public: 739 enum Type { 740 TYPE_NOTYPE = 0, 741 TYPE_OBJECT = 1, 742 TYPE_FUNC = 2, 743 TYPE_SECTION = 3, 744 TYPE_FILE = 4, 745 TYPE_LOPROC = 13, 746 TYPE_HIPROC = 15 747 }; 748 749 enum Binding { 750 BIND_LOCAL = 0, 751 BIND_GLOBAL = 1, 752 BIND_WEAK = 2, 753 BIND_LOPROC = 13, 754 BIND_HIPROC = 15 755 }; 756 757 ELFSymbol(const char* name, 758 uintptr_t value, 759 uintptr_t size, 760 Binding binding, 761 Type type, 762 uint16_t section) 763 : name(name), 764 value(value), 765 size(size), 766 info((binding << 4) | type), 767 other(0), 768 section(section) { 769 } 770 771 Binding binding() const { 772 return static_cast<Binding>(info >> 4); 773 } 774 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \ 775 (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT)) 776 struct SerializedLayout { 777 SerializedLayout(uint32_t name, 778 uintptr_t value, 779 uintptr_t size, 780 Binding binding, 781 Type type, 782 uint16_t section) 783 : name(name), 784 value(value), 785 size(size), 786 info((binding << 4) | type), 787 other(0), 788 section(section) { 789 } 790 791 uint32_t name; 792 uintptr_t value; 793 uintptr_t size; 794 uint8_t info; 795 uint8_t other; 796 uint16_t section; 797 }; 798 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \ 799 (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) 800 struct SerializedLayout { 801 SerializedLayout(uint32_t name, 802 uintptr_t value, 803 uintptr_t size, 804 Binding binding, 805 Type type, 806 uint16_t section) 807 : name(name), 808 info((binding << 4) | type), 809 other(0), 810 section(section), 811 value(value), 812 size(size) { 813 } 814 815 uint32_t name; 816 uint8_t info; 817 uint8_t other; 818 uint16_t section; 819 uintptr_t value; 820 uintptr_t size; 821 }; 822 #endif 823 824 void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) { 825 // Convert symbol names from strings to indexes in the string table. 826 s->name = static_cast<uint32_t>(t->Add(name)); 827 s->value = value; 828 s->size = size; 829 s->info = info; 830 s->other = other; 831 s->section = section; 832 } 833 834 private: 835 const char* name; 836 uintptr_t value; 837 uintptr_t size; 838 uint8_t info; 839 uint8_t other; 840 uint16_t section; 841 }; 842 843 844 class ELFSymbolTable : public ELFSection { 845 public: 846 ELFSymbolTable(const char* name, Zone* zone) 847 : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)), 848 locals_(1, zone), 849 globals_(1, zone) { 850 } 851 852 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 853 w->Align(header->alignment); 854 int total_symbols = locals_.length() + globals_.length() + 1; 855 header->offset = w->position(); 856 857 Writer::Slot<ELFSymbol::SerializedLayout> symbols = 858 w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols); 859 860 header->size = w->position() - header->offset; 861 862 // String table for this symbol table should follow it in the section table. 863 ELFStringTable* strtab = 864 static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1)); 865 strtab->AttachWriter(w); 866 symbols.at(0).set(ELFSymbol::SerializedLayout(0, 867 0, 868 0, 869 ELFSymbol::BIND_LOCAL, 870 ELFSymbol::TYPE_NOTYPE, 871 0)); 872 WriteSymbolsList(&locals_, symbols.at(1), strtab); 873 WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab); 874 strtab->DetachWriter(); 875 } 876 877 void Add(const ELFSymbol& symbol, Zone* zone) { 878 if (symbol.binding() == ELFSymbol::BIND_LOCAL) { 879 locals_.Add(symbol, zone); 880 } else { 881 globals_.Add(symbol, zone); 882 } 883 } 884 885 protected: 886 virtual void PopulateHeader(Writer::Slot<Header> header) { 887 ELFSection::PopulateHeader(header); 888 // We are assuming that string table will follow symbol table. 889 header->link = index() + 1; 890 header->info = locals_.length() + 1; 891 header->entry_size = sizeof(ELFSymbol::SerializedLayout); 892 } 893 894 private: 895 void WriteSymbolsList(const ZoneList<ELFSymbol>* src, 896 Writer::Slot<ELFSymbol::SerializedLayout> dst, 897 ELFStringTable* strtab) { 898 for (int i = 0, len = src->length(); 899 i < len; 900 i++) { 901 src->at(i).Write(dst.at(i), strtab); 902 } 903 } 904 905 ZoneList<ELFSymbol> locals_; 906 ZoneList<ELFSymbol> globals_; 907 }; 908 #endif // defined(__ELF) 909 910 911 class LineInfo : public Malloced { 912 public: 913 LineInfo() : pc_info_(10) {} 914 915 void SetPosition(intptr_t pc, int pos, bool is_statement) { 916 AddPCInfo(PCInfo(pc, pos, is_statement)); 917 } 918 919 struct PCInfo { 920 PCInfo(intptr_t pc, int pos, bool is_statement) 921 : pc_(pc), pos_(pos), is_statement_(is_statement) {} 922 923 intptr_t pc_; 924 int pos_; 925 bool is_statement_; 926 }; 927 928 List<PCInfo>* pc_info() { return &pc_info_; } 929 930 private: 931 void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); } 932 933 List<PCInfo> pc_info_; 934 }; 935 936 937 class CodeDescription BASE_EMBEDDED { 938 public: 939 #if V8_TARGET_ARCH_X64 940 enum StackState { 941 POST_RBP_PUSH, 942 POST_RBP_SET, 943 POST_RBP_POP, 944 STACK_STATE_MAX 945 }; 946 #endif 947 948 CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared, 949 LineInfo* lineinfo) 950 : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {} 951 952 const char* name() const { 953 return name_; 954 } 955 956 LineInfo* lineinfo() const { return lineinfo_; } 957 958 bool is_function() const { 959 Code::Kind kind = code_->kind(); 960 return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION; 961 } 962 963 bool has_scope_info() const { return shared_info_ != NULL; } 964 965 ScopeInfo* scope_info() const { 966 DCHECK(has_scope_info()); 967 return shared_info_->scope_info(); 968 } 969 970 uintptr_t CodeStart() const { 971 return reinterpret_cast<uintptr_t>(code_->instruction_start()); 972 } 973 974 uintptr_t CodeEnd() const { 975 return reinterpret_cast<uintptr_t>(code_->instruction_end()); 976 } 977 978 uintptr_t CodeSize() const { 979 return CodeEnd() - CodeStart(); 980 } 981 982 bool has_script() { 983 return shared_info_ != NULL && shared_info_->script()->IsScript(); 984 } 985 986 Script* script() { return Script::cast(shared_info_->script()); } 987 988 bool IsLineInfoAvailable() { 989 return has_script() && script()->source()->IsString() && 990 script()->HasValidSource() && script()->name()->IsString() && 991 lineinfo_ != NULL; 992 } 993 994 #if V8_TARGET_ARCH_X64 995 uintptr_t GetStackStateStartAddress(StackState state) const { 996 DCHECK(state < STACK_STATE_MAX); 997 return stack_state_start_addresses_[state]; 998 } 999 1000 void SetStackStateStartAddress(StackState state, uintptr_t addr) { 1001 DCHECK(state < STACK_STATE_MAX); 1002 stack_state_start_addresses_[state] = addr; 1003 } 1004 #endif 1005 1006 base::SmartArrayPointer<char> GetFilename() { 1007 return String::cast(script()->name())->ToCString(); 1008 } 1009 1010 int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; } 1011 1012 1013 private: 1014 const char* name_; 1015 Code* code_; 1016 SharedFunctionInfo* shared_info_; 1017 LineInfo* lineinfo_; 1018 #if V8_TARGET_ARCH_X64 1019 uintptr_t stack_state_start_addresses_[STACK_STATE_MAX]; 1020 #endif 1021 }; 1022 1023 #if defined(__ELF) 1024 static void CreateSymbolsTable(CodeDescription* desc, 1025 Zone* zone, 1026 ELF* elf, 1027 int text_section_index) { 1028 ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone); 1029 ELFStringTable* strtab = new(zone) ELFStringTable(".strtab"); 1030 1031 // Symbol table should be followed by the linked string table. 1032 elf->AddSection(symtab); 1033 elf->AddSection(strtab); 1034 1035 symtab->Add(ELFSymbol("V8 Code", 1036 0, 1037 0, 1038 ELFSymbol::BIND_LOCAL, 1039 ELFSymbol::TYPE_FILE, 1040 ELFSection::INDEX_ABSOLUTE), 1041 zone); 1042 1043 symtab->Add(ELFSymbol(desc->name(), 1044 0, 1045 desc->CodeSize(), 1046 ELFSymbol::BIND_GLOBAL, 1047 ELFSymbol::TYPE_FUNC, 1048 text_section_index), 1049 zone); 1050 } 1051 #endif // defined(__ELF) 1052 1053 1054 class DebugInfoSection : public DebugSection { 1055 public: 1056 explicit DebugInfoSection(CodeDescription* desc) 1057 #if defined(__ELF) 1058 : ELFSection(".debug_info", TYPE_PROGBITS, 1), 1059 #else 1060 : MachOSection("__debug_info", 1061 "__DWARF", 1062 1, 1063 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1064 #endif 1065 desc_(desc) { } 1066 1067 // DWARF2 standard 1068 enum DWARF2LocationOp { 1069 DW_OP_reg0 = 0x50, 1070 DW_OP_reg1 = 0x51, 1071 DW_OP_reg2 = 0x52, 1072 DW_OP_reg3 = 0x53, 1073 DW_OP_reg4 = 0x54, 1074 DW_OP_reg5 = 0x55, 1075 DW_OP_reg6 = 0x56, 1076 DW_OP_reg7 = 0x57, 1077 DW_OP_reg8 = 0x58, 1078 DW_OP_reg9 = 0x59, 1079 DW_OP_reg10 = 0x5a, 1080 DW_OP_reg11 = 0x5b, 1081 DW_OP_reg12 = 0x5c, 1082 DW_OP_reg13 = 0x5d, 1083 DW_OP_reg14 = 0x5e, 1084 DW_OP_reg15 = 0x5f, 1085 DW_OP_reg16 = 0x60, 1086 DW_OP_reg17 = 0x61, 1087 DW_OP_reg18 = 0x62, 1088 DW_OP_reg19 = 0x63, 1089 DW_OP_reg20 = 0x64, 1090 DW_OP_reg21 = 0x65, 1091 DW_OP_reg22 = 0x66, 1092 DW_OP_reg23 = 0x67, 1093 DW_OP_reg24 = 0x68, 1094 DW_OP_reg25 = 0x69, 1095 DW_OP_reg26 = 0x6a, 1096 DW_OP_reg27 = 0x6b, 1097 DW_OP_reg28 = 0x6c, 1098 DW_OP_reg29 = 0x6d, 1099 DW_OP_reg30 = 0x6e, 1100 DW_OP_reg31 = 0x6f, 1101 DW_OP_fbreg = 0x91 // 1 param: SLEB128 offset 1102 }; 1103 1104 enum DWARF2Encoding { 1105 DW_ATE_ADDRESS = 0x1, 1106 DW_ATE_SIGNED = 0x5 1107 }; 1108 1109 bool WriteBodyInternal(Writer* w) { 1110 uintptr_t cu_start = w->position(); 1111 Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>(); 1112 uintptr_t start = w->position(); 1113 w->Write<uint16_t>(2); // DWARF version. 1114 w->Write<uint32_t>(0); // Abbreviation table offset. 1115 w->Write<uint8_t>(sizeof(intptr_t)); 1116 1117 w->WriteULEB128(1); // Abbreviation code. 1118 w->WriteString(desc_->GetFilename().get()); 1119 w->Write<intptr_t>(desc_->CodeStart()); 1120 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); 1121 w->Write<uint32_t>(0); 1122 1123 uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start); 1124 w->WriteULEB128(3); 1125 w->Write<uint8_t>(kPointerSize); 1126 w->WriteString("v8value"); 1127 1128 if (desc_->has_scope_info()) { 1129 ScopeInfo* scope = desc_->scope_info(); 1130 w->WriteULEB128(2); 1131 w->WriteString(desc_->name()); 1132 w->Write<intptr_t>(desc_->CodeStart()); 1133 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); 1134 Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>(); 1135 uintptr_t fb_block_start = w->position(); 1136 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 1137 w->Write<uint8_t>(DW_OP_reg5); // The frame pointer's here on ia32 1138 #elif V8_TARGET_ARCH_X64 1139 w->Write<uint8_t>(DW_OP_reg6); // and here on x64. 1140 #elif V8_TARGET_ARCH_ARM 1141 UNIMPLEMENTED(); 1142 #elif V8_TARGET_ARCH_MIPS 1143 UNIMPLEMENTED(); 1144 #elif V8_TARGET_ARCH_MIPS64 1145 UNIMPLEMENTED(); 1146 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX 1147 w->Write<uint8_t>(DW_OP_reg31); // The frame pointer is here on PPC64. 1148 #else 1149 #error Unsupported target architecture. 1150 #endif 1151 fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start)); 1152 1153 int params = scope->ParameterCount(); 1154 int slots = scope->StackLocalCount(); 1155 int context_slots = scope->ContextLocalCount(); 1156 // The real slot ID is internal_slots + context_slot_id. 1157 int internal_slots = Context::MIN_CONTEXT_SLOTS; 1158 int locals = scope->StackLocalCount(); 1159 int current_abbreviation = 4; 1160 1161 for (int param = 0; param < params; ++param) { 1162 w->WriteULEB128(current_abbreviation++); 1163 w->WriteString( 1164 scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get()); 1165 w->Write<uint32_t>(ty_offset); 1166 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1167 uintptr_t block_start = w->position(); 1168 w->Write<uint8_t>(DW_OP_fbreg); 1169 w->WriteSLEB128( 1170 JavaScriptFrameConstants::kLastParameterOffset + 1171 kPointerSize * (params - param - 1)); 1172 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1173 } 1174 1175 EmbeddedVector<char, 256> buffer; 1176 StringBuilder builder(buffer.start(), buffer.length()); 1177 1178 for (int slot = 0; slot < slots; ++slot) { 1179 w->WriteULEB128(current_abbreviation++); 1180 builder.Reset(); 1181 builder.AddFormatted("slot%d", slot); 1182 w->WriteString(builder.Finalize()); 1183 } 1184 1185 // See contexts.h for more information. 1186 DCHECK(Context::MIN_CONTEXT_SLOTS == 4); 1187 DCHECK(Context::CLOSURE_INDEX == 0); 1188 DCHECK(Context::PREVIOUS_INDEX == 1); 1189 DCHECK(Context::EXTENSION_INDEX == 2); 1190 DCHECK(Context::NATIVE_CONTEXT_INDEX == 3); 1191 w->WriteULEB128(current_abbreviation++); 1192 w->WriteString(".closure"); 1193 w->WriteULEB128(current_abbreviation++); 1194 w->WriteString(".previous"); 1195 w->WriteULEB128(current_abbreviation++); 1196 w->WriteString(".extension"); 1197 w->WriteULEB128(current_abbreviation++); 1198 w->WriteString(".native_context"); 1199 1200 for (int context_slot = 0; 1201 context_slot < context_slots; 1202 ++context_slot) { 1203 w->WriteULEB128(current_abbreviation++); 1204 builder.Reset(); 1205 builder.AddFormatted("context_slot%d", context_slot + internal_slots); 1206 w->WriteString(builder.Finalize()); 1207 } 1208 1209 for (int local = 0; local < locals; ++local) { 1210 w->WriteULEB128(current_abbreviation++); 1211 w->WriteString( 1212 scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get()); 1213 w->Write<uint32_t>(ty_offset); 1214 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1215 uintptr_t block_start = w->position(); 1216 w->Write<uint8_t>(DW_OP_fbreg); 1217 w->WriteSLEB128( 1218 JavaScriptFrameConstants::kLocal0Offset - 1219 kPointerSize * local); 1220 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1221 } 1222 1223 { 1224 w->WriteULEB128(current_abbreviation++); 1225 w->WriteString("__function"); 1226 w->Write<uint32_t>(ty_offset); 1227 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1228 uintptr_t block_start = w->position(); 1229 w->Write<uint8_t>(DW_OP_fbreg); 1230 w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset); 1231 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1232 } 1233 1234 { 1235 w->WriteULEB128(current_abbreviation++); 1236 w->WriteString("__context"); 1237 w->Write<uint32_t>(ty_offset); 1238 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1239 uintptr_t block_start = w->position(); 1240 w->Write<uint8_t>(DW_OP_fbreg); 1241 w->WriteSLEB128(StandardFrameConstants::kContextOffset); 1242 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1243 } 1244 1245 w->WriteULEB128(0); // Terminate the sub program. 1246 } 1247 1248 w->WriteULEB128(0); // Terminate the compile unit. 1249 size.set(static_cast<uint32_t>(w->position() - start)); 1250 return true; 1251 } 1252 1253 private: 1254 CodeDescription* desc_; 1255 }; 1256 1257 1258 class DebugAbbrevSection : public DebugSection { 1259 public: 1260 explicit DebugAbbrevSection(CodeDescription* desc) 1261 #ifdef __ELF 1262 : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1), 1263 #else 1264 : MachOSection("__debug_abbrev", 1265 "__DWARF", 1266 1, 1267 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1268 #endif 1269 desc_(desc) { } 1270 1271 // DWARF2 standard, figure 14. 1272 enum DWARF2Tags { 1273 DW_TAG_FORMAL_PARAMETER = 0x05, 1274 DW_TAG_POINTER_TYPE = 0xf, 1275 DW_TAG_COMPILE_UNIT = 0x11, 1276 DW_TAG_STRUCTURE_TYPE = 0x13, 1277 DW_TAG_BASE_TYPE = 0x24, 1278 DW_TAG_SUBPROGRAM = 0x2e, 1279 DW_TAG_VARIABLE = 0x34 1280 }; 1281 1282 // DWARF2 standard, figure 16. 1283 enum DWARF2ChildrenDetermination { 1284 DW_CHILDREN_NO = 0, 1285 DW_CHILDREN_YES = 1 1286 }; 1287 1288 // DWARF standard, figure 17. 1289 enum DWARF2Attribute { 1290 DW_AT_LOCATION = 0x2, 1291 DW_AT_NAME = 0x3, 1292 DW_AT_BYTE_SIZE = 0xb, 1293 DW_AT_STMT_LIST = 0x10, 1294 DW_AT_LOW_PC = 0x11, 1295 DW_AT_HIGH_PC = 0x12, 1296 DW_AT_ENCODING = 0x3e, 1297 DW_AT_FRAME_BASE = 0x40, 1298 DW_AT_TYPE = 0x49 1299 }; 1300 1301 // DWARF2 standard, figure 19. 1302 enum DWARF2AttributeForm { 1303 DW_FORM_ADDR = 0x1, 1304 DW_FORM_BLOCK4 = 0x4, 1305 DW_FORM_STRING = 0x8, 1306 DW_FORM_DATA4 = 0x6, 1307 DW_FORM_BLOCK = 0x9, 1308 DW_FORM_DATA1 = 0xb, 1309 DW_FORM_FLAG = 0xc, 1310 DW_FORM_REF4 = 0x13 1311 }; 1312 1313 void WriteVariableAbbreviation(Writer* w, 1314 int abbreviation_code, 1315 bool has_value, 1316 bool is_parameter) { 1317 w->WriteULEB128(abbreviation_code); 1318 w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE); 1319 w->Write<uint8_t>(DW_CHILDREN_NO); 1320 w->WriteULEB128(DW_AT_NAME); 1321 w->WriteULEB128(DW_FORM_STRING); 1322 if (has_value) { 1323 w->WriteULEB128(DW_AT_TYPE); 1324 w->WriteULEB128(DW_FORM_REF4); 1325 w->WriteULEB128(DW_AT_LOCATION); 1326 w->WriteULEB128(DW_FORM_BLOCK4); 1327 } 1328 w->WriteULEB128(0); 1329 w->WriteULEB128(0); 1330 } 1331 1332 bool WriteBodyInternal(Writer* w) { 1333 int current_abbreviation = 1; 1334 bool extra_info = desc_->has_scope_info(); 1335 DCHECK(desc_->IsLineInfoAvailable()); 1336 w->WriteULEB128(current_abbreviation++); 1337 w->WriteULEB128(DW_TAG_COMPILE_UNIT); 1338 w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO); 1339 w->WriteULEB128(DW_AT_NAME); 1340 w->WriteULEB128(DW_FORM_STRING); 1341 w->WriteULEB128(DW_AT_LOW_PC); 1342 w->WriteULEB128(DW_FORM_ADDR); 1343 w->WriteULEB128(DW_AT_HIGH_PC); 1344 w->WriteULEB128(DW_FORM_ADDR); 1345 w->WriteULEB128(DW_AT_STMT_LIST); 1346 w->WriteULEB128(DW_FORM_DATA4); 1347 w->WriteULEB128(0); 1348 w->WriteULEB128(0); 1349 1350 if (extra_info) { 1351 ScopeInfo* scope = desc_->scope_info(); 1352 int params = scope->ParameterCount(); 1353 int slots = scope->StackLocalCount(); 1354 int context_slots = scope->ContextLocalCount(); 1355 // The real slot ID is internal_slots + context_slot_id. 1356 int internal_slots = Context::MIN_CONTEXT_SLOTS; 1357 int locals = scope->StackLocalCount(); 1358 // Total children is params + slots + context_slots + internal_slots + 1359 // locals + 2 (__function and __context). 1360 1361 // The extra duplication below seems to be necessary to keep 1362 // gdb from getting upset on OSX. 1363 w->WriteULEB128(current_abbreviation++); // Abbreviation code. 1364 w->WriteULEB128(DW_TAG_SUBPROGRAM); 1365 w->Write<uint8_t>(DW_CHILDREN_YES); 1366 w->WriteULEB128(DW_AT_NAME); 1367 w->WriteULEB128(DW_FORM_STRING); 1368 w->WriteULEB128(DW_AT_LOW_PC); 1369 w->WriteULEB128(DW_FORM_ADDR); 1370 w->WriteULEB128(DW_AT_HIGH_PC); 1371 w->WriteULEB128(DW_FORM_ADDR); 1372 w->WriteULEB128(DW_AT_FRAME_BASE); 1373 w->WriteULEB128(DW_FORM_BLOCK4); 1374 w->WriteULEB128(0); 1375 w->WriteULEB128(0); 1376 1377 w->WriteULEB128(current_abbreviation++); 1378 w->WriteULEB128(DW_TAG_STRUCTURE_TYPE); 1379 w->Write<uint8_t>(DW_CHILDREN_NO); 1380 w->WriteULEB128(DW_AT_BYTE_SIZE); 1381 w->WriteULEB128(DW_FORM_DATA1); 1382 w->WriteULEB128(DW_AT_NAME); 1383 w->WriteULEB128(DW_FORM_STRING); 1384 w->WriteULEB128(0); 1385 w->WriteULEB128(0); 1386 1387 for (int param = 0; param < params; ++param) { 1388 WriteVariableAbbreviation(w, current_abbreviation++, true, true); 1389 } 1390 1391 for (int slot = 0; slot < slots; ++slot) { 1392 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1393 } 1394 1395 for (int internal_slot = 0; 1396 internal_slot < internal_slots; 1397 ++internal_slot) { 1398 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1399 } 1400 1401 for (int context_slot = 0; 1402 context_slot < context_slots; 1403 ++context_slot) { 1404 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1405 } 1406 1407 for (int local = 0; local < locals; ++local) { 1408 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1409 } 1410 1411 // The function. 1412 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1413 1414 // The context. 1415 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1416 1417 w->WriteULEB128(0); // Terminate the sibling list. 1418 } 1419 1420 w->WriteULEB128(0); // Terminate the table. 1421 return true; 1422 } 1423 1424 private: 1425 CodeDescription* desc_; 1426 }; 1427 1428 1429 class DebugLineSection : public DebugSection { 1430 public: 1431 explicit DebugLineSection(CodeDescription* desc) 1432 #ifdef __ELF 1433 : ELFSection(".debug_line", TYPE_PROGBITS, 1), 1434 #else 1435 : MachOSection("__debug_line", 1436 "__DWARF", 1437 1, 1438 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1439 #endif 1440 desc_(desc) { } 1441 1442 // DWARF2 standard, figure 34. 1443 enum DWARF2Opcodes { 1444 DW_LNS_COPY = 1, 1445 DW_LNS_ADVANCE_PC = 2, 1446 DW_LNS_ADVANCE_LINE = 3, 1447 DW_LNS_SET_FILE = 4, 1448 DW_LNS_SET_COLUMN = 5, 1449 DW_LNS_NEGATE_STMT = 6 1450 }; 1451 1452 // DWARF2 standard, figure 35. 1453 enum DWARF2ExtendedOpcode { 1454 DW_LNE_END_SEQUENCE = 1, 1455 DW_LNE_SET_ADDRESS = 2, 1456 DW_LNE_DEFINE_FILE = 3 1457 }; 1458 1459 bool WriteBodyInternal(Writer* w) { 1460 // Write prologue. 1461 Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>(); 1462 uintptr_t start = w->position(); 1463 1464 // Used for special opcodes 1465 const int8_t line_base = 1; 1466 const uint8_t line_range = 7; 1467 const int8_t max_line_incr = (line_base + line_range - 1); 1468 const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1; 1469 1470 w->Write<uint16_t>(2); // Field version. 1471 Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>(); 1472 uintptr_t prologue_start = w->position(); 1473 w->Write<uint8_t>(1); // Field minimum_instruction_length. 1474 w->Write<uint8_t>(1); // Field default_is_stmt. 1475 w->Write<int8_t>(line_base); // Field line_base. 1476 w->Write<uint8_t>(line_range); // Field line_range. 1477 w->Write<uint8_t>(opcode_base); // Field opcode_base. 1478 w->Write<uint8_t>(0); // DW_LNS_COPY operands count. 1479 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count. 1480 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count. 1481 w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count. 1482 w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count. 1483 w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count. 1484 w->Write<uint8_t>(0); // Empty include_directories sequence. 1485 w->WriteString(desc_->GetFilename().get()); // File name. 1486 w->WriteULEB128(0); // Current directory. 1487 w->WriteULEB128(0); // Unknown modification time. 1488 w->WriteULEB128(0); // Unknown file size. 1489 w->Write<uint8_t>(0); 1490 prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start)); 1491 1492 WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t)); 1493 w->Write<intptr_t>(desc_->CodeStart()); 1494 w->Write<uint8_t>(DW_LNS_COPY); 1495 1496 intptr_t pc = 0; 1497 intptr_t line = 1; 1498 bool is_statement = true; 1499 1500 List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info(); 1501 pc_info->Sort(&ComparePCInfo); 1502 1503 int pc_info_length = pc_info->length(); 1504 for (int i = 0; i < pc_info_length; i++) { 1505 LineInfo::PCInfo* info = &pc_info->at(i); 1506 DCHECK(info->pc_ >= pc); 1507 1508 // Reduce bloating in the debug line table by removing duplicate line 1509 // entries (per DWARF2 standard). 1510 intptr_t new_line = desc_->GetScriptLineNumber(info->pos_); 1511 if (new_line == line) { 1512 continue; 1513 } 1514 1515 // Mark statement boundaries. For a better debugging experience, mark 1516 // the last pc address in the function as a statement (e.g. "}"), so that 1517 // a user can see the result of the last line executed in the function, 1518 // should control reach the end. 1519 if ((i+1) == pc_info_length) { 1520 if (!is_statement) { 1521 w->Write<uint8_t>(DW_LNS_NEGATE_STMT); 1522 } 1523 } else if (is_statement != info->is_statement_) { 1524 w->Write<uint8_t>(DW_LNS_NEGATE_STMT); 1525 is_statement = !is_statement; 1526 } 1527 1528 // Generate special opcodes, if possible. This results in more compact 1529 // debug line tables. See the DWARF 2.0 standard to learn more about 1530 // special opcodes. 1531 uintptr_t pc_diff = info->pc_ - pc; 1532 intptr_t line_diff = new_line - line; 1533 1534 // Compute special opcode (see DWARF 2.0 standard) 1535 intptr_t special_opcode = (line_diff - line_base) + 1536 (line_range * pc_diff) + opcode_base; 1537 1538 // If special_opcode is less than or equal to 255, it can be used as a 1539 // special opcode. If line_diff is larger than the max line increment 1540 // allowed for a special opcode, or if line_diff is less than the minimum 1541 // line that can be added to the line register (i.e. line_base), then 1542 // special_opcode can't be used. 1543 if ((special_opcode >= opcode_base) && (special_opcode <= 255) && 1544 (line_diff <= max_line_incr) && (line_diff >= line_base)) { 1545 w->Write<uint8_t>(special_opcode); 1546 } else { 1547 w->Write<uint8_t>(DW_LNS_ADVANCE_PC); 1548 w->WriteSLEB128(pc_diff); 1549 w->Write<uint8_t>(DW_LNS_ADVANCE_LINE); 1550 w->WriteSLEB128(line_diff); 1551 w->Write<uint8_t>(DW_LNS_COPY); 1552 } 1553 1554 // Increment the pc and line operands. 1555 pc += pc_diff; 1556 line += line_diff; 1557 } 1558 // Advance the pc to the end of the routine, since the end sequence opcode 1559 // requires this. 1560 w->Write<uint8_t>(DW_LNS_ADVANCE_PC); 1561 w->WriteSLEB128(desc_->CodeSize() - pc); 1562 WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0); 1563 total_length.set(static_cast<uint32_t>(w->position() - start)); 1564 return true; 1565 } 1566 1567 private: 1568 void WriteExtendedOpcode(Writer* w, 1569 DWARF2ExtendedOpcode op, 1570 size_t operands_size) { 1571 w->Write<uint8_t>(0); 1572 w->WriteULEB128(operands_size + 1); 1573 w->Write<uint8_t>(op); 1574 } 1575 1576 static int ComparePCInfo(const LineInfo::PCInfo* a, 1577 const LineInfo::PCInfo* b) { 1578 if (a->pc_ == b->pc_) { 1579 if (a->is_statement_ != b->is_statement_) { 1580 return b->is_statement_ ? +1 : -1; 1581 } 1582 return 0; 1583 } else if (a->pc_ > b->pc_) { 1584 return +1; 1585 } else { 1586 return -1; 1587 } 1588 } 1589 1590 CodeDescription* desc_; 1591 }; 1592 1593 1594 #if V8_TARGET_ARCH_X64 1595 1596 class UnwindInfoSection : public DebugSection { 1597 public: 1598 explicit UnwindInfoSection(CodeDescription* desc); 1599 virtual bool WriteBodyInternal(Writer* w); 1600 1601 int WriteCIE(Writer* w); 1602 void WriteFDE(Writer* w, int); 1603 1604 void WriteFDEStateOnEntry(Writer* w); 1605 void WriteFDEStateAfterRBPPush(Writer* w); 1606 void WriteFDEStateAfterRBPSet(Writer* w); 1607 void WriteFDEStateAfterRBPPop(Writer* w); 1608 1609 void WriteLength(Writer* w, 1610 Writer::Slot<uint32_t>* length_slot, 1611 int initial_position); 1612 1613 private: 1614 CodeDescription* desc_; 1615 1616 // DWARF3 Specification, Table 7.23 1617 enum CFIInstructions { 1618 DW_CFA_ADVANCE_LOC = 0x40, 1619 DW_CFA_OFFSET = 0x80, 1620 DW_CFA_RESTORE = 0xC0, 1621 DW_CFA_NOP = 0x00, 1622 DW_CFA_SET_LOC = 0x01, 1623 DW_CFA_ADVANCE_LOC1 = 0x02, 1624 DW_CFA_ADVANCE_LOC2 = 0x03, 1625 DW_CFA_ADVANCE_LOC4 = 0x04, 1626 DW_CFA_OFFSET_EXTENDED = 0x05, 1627 DW_CFA_RESTORE_EXTENDED = 0x06, 1628 DW_CFA_UNDEFINED = 0x07, 1629 DW_CFA_SAME_VALUE = 0x08, 1630 DW_CFA_REGISTER = 0x09, 1631 DW_CFA_REMEMBER_STATE = 0x0A, 1632 DW_CFA_RESTORE_STATE = 0x0B, 1633 DW_CFA_DEF_CFA = 0x0C, 1634 DW_CFA_DEF_CFA_REGISTER = 0x0D, 1635 DW_CFA_DEF_CFA_OFFSET = 0x0E, 1636 1637 DW_CFA_DEF_CFA_EXPRESSION = 0x0F, 1638 DW_CFA_EXPRESSION = 0x10, 1639 DW_CFA_OFFSET_EXTENDED_SF = 0x11, 1640 DW_CFA_DEF_CFA_SF = 0x12, 1641 DW_CFA_DEF_CFA_OFFSET_SF = 0x13, 1642 DW_CFA_VAL_OFFSET = 0x14, 1643 DW_CFA_VAL_OFFSET_SF = 0x15, 1644 DW_CFA_VAL_EXPRESSION = 0x16 1645 }; 1646 1647 // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36 1648 enum RegisterMapping { 1649 // Only the relevant ones have been added to reduce clutter. 1650 AMD64_RBP = 6, 1651 AMD64_RSP = 7, 1652 AMD64_RA = 16 1653 }; 1654 1655 enum CFIConstants { 1656 CIE_ID = 0, 1657 CIE_VERSION = 1, 1658 CODE_ALIGN_FACTOR = 1, 1659 DATA_ALIGN_FACTOR = 1, 1660 RETURN_ADDRESS_REGISTER = AMD64_RA 1661 }; 1662 }; 1663 1664 1665 void UnwindInfoSection::WriteLength(Writer* w, 1666 Writer::Slot<uint32_t>* length_slot, 1667 int initial_position) { 1668 uint32_t align = (w->position() - initial_position) % kPointerSize; 1669 1670 if (align != 0) { 1671 for (uint32_t i = 0; i < (kPointerSize - align); i++) { 1672 w->Write<uint8_t>(DW_CFA_NOP); 1673 } 1674 } 1675 1676 DCHECK((w->position() - initial_position) % kPointerSize == 0); 1677 length_slot->set(static_cast<uint32_t>(w->position() - initial_position)); 1678 } 1679 1680 1681 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc) 1682 #ifdef __ELF 1683 : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1), 1684 #else 1685 : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t), 1686 MachOSection::S_REGULAR), 1687 #endif 1688 desc_(desc) { } 1689 1690 int UnwindInfoSection::WriteCIE(Writer* w) { 1691 Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>(); 1692 uint32_t cie_position = static_cast<uint32_t>(w->position()); 1693 1694 // Write out the CIE header. Currently no 'common instructions' are 1695 // emitted onto the CIE; every FDE has its own set of instructions. 1696 1697 w->Write<uint32_t>(CIE_ID); 1698 w->Write<uint8_t>(CIE_VERSION); 1699 w->Write<uint8_t>(0); // Null augmentation string. 1700 w->WriteSLEB128(CODE_ALIGN_FACTOR); 1701 w->WriteSLEB128(DATA_ALIGN_FACTOR); 1702 w->Write<uint8_t>(RETURN_ADDRESS_REGISTER); 1703 1704 WriteLength(w, &cie_length_slot, cie_position); 1705 1706 return cie_position; 1707 } 1708 1709 1710 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) { 1711 // The only FDE for this function. The CFA is the current RBP. 1712 Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>(); 1713 int fde_position = static_cast<uint32_t>(w->position()); 1714 w->Write<int32_t>(fde_position - cie_position + 4); 1715 1716 w->Write<uintptr_t>(desc_->CodeStart()); 1717 w->Write<uintptr_t>(desc_->CodeSize()); 1718 1719 WriteFDEStateOnEntry(w); 1720 WriteFDEStateAfterRBPPush(w); 1721 WriteFDEStateAfterRBPSet(w); 1722 WriteFDEStateAfterRBPPop(w); 1723 1724 WriteLength(w, &fde_length_slot, fde_position); 1725 } 1726 1727 1728 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) { 1729 // The first state, just after the control has been transferred to the the 1730 // function. 1731 1732 // RBP for this function will be the value of RSP after pushing the RBP 1733 // for the previous function. The previous RBP has not been pushed yet. 1734 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); 1735 w->WriteULEB128(AMD64_RSP); 1736 w->WriteSLEB128(-kPointerSize); 1737 1738 // The RA is stored at location CFA + kCallerPCOffset. This is an invariant, 1739 // and hence omitted from the next states. 1740 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1741 w->WriteULEB128(AMD64_RA); 1742 w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset); 1743 1744 // The RBP of the previous function is still in RBP. 1745 w->Write<uint8_t>(DW_CFA_SAME_VALUE); 1746 w->WriteULEB128(AMD64_RBP); 1747 1748 // Last location described by this entry. 1749 w->Write<uint8_t>(DW_CFA_SET_LOC); 1750 w->Write<uint64_t>( 1751 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH)); 1752 } 1753 1754 1755 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) { 1756 // The second state, just after RBP has been pushed. 1757 1758 // RBP / CFA for this function is now the current RSP, so just set the 1759 // offset from the previous rule (from -8) to 0. 1760 w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET); 1761 w->WriteULEB128(0); 1762 1763 // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant 1764 // in this and the next state, and hence omitted in the next state. 1765 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1766 w->WriteULEB128(AMD64_RBP); 1767 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); 1768 1769 // Last location described by this entry. 1770 w->Write<uint8_t>(DW_CFA_SET_LOC); 1771 w->Write<uint64_t>( 1772 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET)); 1773 } 1774 1775 1776 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) { 1777 // The third state, after the RBP has been set. 1778 1779 // The CFA can now directly be set to RBP. 1780 w->Write<uint8_t>(DW_CFA_DEF_CFA); 1781 w->WriteULEB128(AMD64_RBP); 1782 w->WriteULEB128(0); 1783 1784 // Last location described by this entry. 1785 w->Write<uint8_t>(DW_CFA_SET_LOC); 1786 w->Write<uint64_t>( 1787 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP)); 1788 } 1789 1790 1791 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) { 1792 // The fourth (final) state. The RBP has been popped (just before issuing a 1793 // return). 1794 1795 // The CFA can is now calculated in the same way as in the first state. 1796 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); 1797 w->WriteULEB128(AMD64_RSP); 1798 w->WriteSLEB128(-kPointerSize); 1799 1800 // The RBP 1801 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1802 w->WriteULEB128(AMD64_RBP); 1803 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); 1804 1805 // Last location described by this entry. 1806 w->Write<uint8_t>(DW_CFA_SET_LOC); 1807 w->Write<uint64_t>(desc_->CodeEnd()); 1808 } 1809 1810 1811 bool UnwindInfoSection::WriteBodyInternal(Writer* w) { 1812 uint32_t cie_position = WriteCIE(w); 1813 WriteFDE(w, cie_position); 1814 return true; 1815 } 1816 1817 1818 #endif // V8_TARGET_ARCH_X64 1819 1820 static void CreateDWARFSections(CodeDescription* desc, 1821 Zone* zone, 1822 DebugObject* obj) { 1823 if (desc->IsLineInfoAvailable()) { 1824 obj->AddSection(new(zone) DebugInfoSection(desc)); 1825 obj->AddSection(new(zone) DebugAbbrevSection(desc)); 1826 obj->AddSection(new(zone) DebugLineSection(desc)); 1827 } 1828 #if V8_TARGET_ARCH_X64 1829 obj->AddSection(new(zone) UnwindInfoSection(desc)); 1830 #endif 1831 } 1832 1833 1834 // ------------------------------------------------------------------- 1835 // Binary GDB JIT Interface as described in 1836 // http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html 1837 extern "C" { 1838 typedef enum { 1839 JIT_NOACTION = 0, 1840 JIT_REGISTER_FN, 1841 JIT_UNREGISTER_FN 1842 } JITAction; 1843 1844 struct JITCodeEntry { 1845 JITCodeEntry* next_; 1846 JITCodeEntry* prev_; 1847 Address symfile_addr_; 1848 uint64_t symfile_size_; 1849 }; 1850 1851 struct JITDescriptor { 1852 uint32_t version_; 1853 uint32_t action_flag_; 1854 JITCodeEntry* relevant_entry_; 1855 JITCodeEntry* first_entry_; 1856 }; 1857 1858 // GDB will place breakpoint into this function. 1859 // To prevent GCC from inlining or removing it we place noinline attribute 1860 // and inline assembler statement inside. 1861 void __attribute__((noinline)) __jit_debug_register_code() { 1862 __asm__(""); 1863 } 1864 1865 // GDB will inspect contents of this descriptor. 1866 // Static initialization is necessary to prevent GDB from seeing 1867 // uninitialized descriptor. 1868 JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 1869 1870 #ifdef OBJECT_PRINT 1871 void __gdb_print_v8_object(Object* object) { 1872 OFStream os(stdout); 1873 object->Print(os); 1874 os << std::flush; 1875 } 1876 #endif 1877 } 1878 1879 1880 static JITCodeEntry* CreateCodeEntry(Address symfile_addr, 1881 uintptr_t symfile_size) { 1882 JITCodeEntry* entry = static_cast<JITCodeEntry*>( 1883 malloc(sizeof(JITCodeEntry) + symfile_size)); 1884 1885 entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1); 1886 entry->symfile_size_ = symfile_size; 1887 MemCopy(entry->symfile_addr_, symfile_addr, symfile_size); 1888 1889 entry->prev_ = entry->next_ = NULL; 1890 1891 return entry; 1892 } 1893 1894 1895 static void DestroyCodeEntry(JITCodeEntry* entry) { 1896 free(entry); 1897 } 1898 1899 1900 static void RegisterCodeEntry(JITCodeEntry* entry) { 1901 entry->next_ = __jit_debug_descriptor.first_entry_; 1902 if (entry->next_ != NULL) entry->next_->prev_ = entry; 1903 __jit_debug_descriptor.first_entry_ = 1904 __jit_debug_descriptor.relevant_entry_ = entry; 1905 1906 __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN; 1907 __jit_debug_register_code(); 1908 } 1909 1910 1911 static void UnregisterCodeEntry(JITCodeEntry* entry) { 1912 if (entry->prev_ != NULL) { 1913 entry->prev_->next_ = entry->next_; 1914 } else { 1915 __jit_debug_descriptor.first_entry_ = entry->next_; 1916 } 1917 1918 if (entry->next_ != NULL) { 1919 entry->next_->prev_ = entry->prev_; 1920 } 1921 1922 __jit_debug_descriptor.relevant_entry_ = entry; 1923 __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN; 1924 __jit_debug_register_code(); 1925 } 1926 1927 1928 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) { 1929 #ifdef __MACH_O 1930 Zone zone; 1931 MachO mach_o(&zone); 1932 Writer w(&mach_o); 1933 1934 mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment, 1935 desc->CodeStart(), 1936 desc->CodeSize())); 1937 1938 CreateDWARFSections(desc, &zone, &mach_o); 1939 1940 mach_o.Write(&w, desc->CodeStart(), desc->CodeSize()); 1941 #else 1942 Zone zone; 1943 ELF elf(&zone); 1944 Writer w(&elf); 1945 1946 int text_section_index = elf.AddSection( 1947 new(&zone) FullHeaderELFSection( 1948 ".text", 1949 ELFSection::TYPE_NOBITS, 1950 kCodeAlignment, 1951 desc->CodeStart(), 1952 0, 1953 desc->CodeSize(), 1954 ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC)); 1955 1956 CreateSymbolsTable(desc, &zone, &elf, text_section_index); 1957 1958 CreateDWARFSections(desc, &zone, &elf); 1959 1960 elf.Write(&w); 1961 #endif 1962 1963 return CreateCodeEntry(w.buffer(), w.position()); 1964 } 1965 1966 1967 struct AddressRange { 1968 Address start; 1969 Address end; 1970 }; 1971 1972 struct SplayTreeConfig { 1973 typedef AddressRange Key; 1974 typedef JITCodeEntry* Value; 1975 static const AddressRange kNoKey; 1976 static Value NoValue() { return NULL; } 1977 static int Compare(const AddressRange& a, const AddressRange& b) { 1978 // ptrdiff_t probably doesn't fit in an int. 1979 if (a.start < b.start) return -1; 1980 if (a.start == b.start) return 0; 1981 return 1; 1982 } 1983 }; 1984 1985 const AddressRange SplayTreeConfig::kNoKey = {0, 0}; 1986 typedef SplayTree<SplayTreeConfig> CodeMap; 1987 1988 static CodeMap* GetCodeMap() { 1989 static CodeMap* code_map = NULL; 1990 if (code_map == NULL) code_map = new CodeMap(); 1991 return code_map; 1992 } 1993 1994 1995 static uint32_t HashCodeAddress(Address addr) { 1996 static const uintptr_t kGoldenRatio = 2654435761u; 1997 uintptr_t offset = OffsetFrom(addr); 1998 return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio); 1999 } 2000 2001 2002 static HashMap* GetLineMap() { 2003 static HashMap* line_map = NULL; 2004 if (line_map == NULL) line_map = new HashMap(&HashMap::PointersMatch); 2005 return line_map; 2006 } 2007 2008 2009 static void PutLineInfo(Address addr, LineInfo* info) { 2010 HashMap* line_map = GetLineMap(); 2011 HashMap::Entry* e = line_map->LookupOrInsert(addr, HashCodeAddress(addr)); 2012 if (e->value != NULL) delete static_cast<LineInfo*>(e->value); 2013 e->value = info; 2014 } 2015 2016 2017 static LineInfo* GetLineInfo(Address addr) { 2018 void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr)); 2019 return static_cast<LineInfo*>(value); 2020 } 2021 2022 2023 static void AddUnwindInfo(CodeDescription* desc) { 2024 #if V8_TARGET_ARCH_X64 2025 if (desc->is_function()) { 2026 // To avoid propagating unwinding information through 2027 // compilation pipeline we use an approximation. 2028 // For most use cases this should not affect usability. 2029 static const int kFramePointerPushOffset = 1; 2030 static const int kFramePointerSetOffset = 4; 2031 static const int kFramePointerPopOffset = -3; 2032 2033 uintptr_t frame_pointer_push_address = 2034 desc->CodeStart() + kFramePointerPushOffset; 2035 2036 uintptr_t frame_pointer_set_address = 2037 desc->CodeStart() + kFramePointerSetOffset; 2038 2039 uintptr_t frame_pointer_pop_address = 2040 desc->CodeEnd() + kFramePointerPopOffset; 2041 2042 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, 2043 frame_pointer_push_address); 2044 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, 2045 frame_pointer_set_address); 2046 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, 2047 frame_pointer_pop_address); 2048 } else { 2049 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, 2050 desc->CodeStart()); 2051 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, 2052 desc->CodeStart()); 2053 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, 2054 desc->CodeEnd()); 2055 } 2056 #endif // V8_TARGET_ARCH_X64 2057 } 2058 2059 2060 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER; 2061 2062 2063 // Remove entries from the splay tree that intersect the given address range, 2064 // and deregister them from GDB. 2065 static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) { 2066 DCHECK(range.start < range.end); 2067 CodeMap::Locator cur; 2068 if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) { 2069 // Skip entries that are entirely less than the range of interest. 2070 while (cur.key().end <= range.start) { 2071 // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater 2072 // than _or equal to_ the given key, so we have to advance our key to get 2073 // the next one. 2074 AddressRange new_key; 2075 new_key.start = cur.key().end; 2076 new_key.end = 0; 2077 if (!map->FindLeastGreaterThan(new_key, &cur)) return; 2078 } 2079 // Evict intersecting ranges. 2080 while (cur.key().start < range.end) { 2081 AddressRange old_range = cur.key(); 2082 JITCodeEntry* old_entry = cur.value(); 2083 2084 UnregisterCodeEntry(old_entry); 2085 DestroyCodeEntry(old_entry); 2086 2087 CHECK(map->Remove(old_range)); 2088 if (!map->FindLeastGreaterThan(old_range, &cur)) return; 2089 } 2090 } 2091 } 2092 2093 2094 // Insert the entry into the splay tree and register it with GDB. 2095 static void AddJITCodeEntry(CodeMap* map, const AddressRange& range, 2096 JITCodeEntry* entry, bool dump_if_enabled, 2097 const char* name_hint) { 2098 #if defined(DEBUG) && !V8_OS_WIN 2099 static int file_num = 0; 2100 if (FLAG_gdbjit_dump && dump_if_enabled) { 2101 static const int kMaxFileNameSize = 64; 2102 char file_name[64]; 2103 2104 SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o", 2105 (name_hint != NULL) ? name_hint : "", file_num++); 2106 WriteBytes(file_name, entry->symfile_addr_, 2107 static_cast<int>(entry->symfile_size_)); 2108 } 2109 #endif 2110 2111 CodeMap::Locator cur; 2112 CHECK(map->Insert(range, &cur)); 2113 cur.set_value(entry); 2114 2115 RegisterCodeEntry(entry); 2116 } 2117 2118 2119 static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared, 2120 LineInfo* lineinfo) { 2121 DisallowHeapAllocation no_gc; 2122 2123 CodeMap* code_map = GetCodeMap(); 2124 AddressRange range; 2125 range.start = code->address(); 2126 range.end = code->address() + code->CodeSize(); 2127 RemoveJITCodeEntries(code_map, range); 2128 2129 CodeDescription code_desc(name, code, shared, lineinfo); 2130 2131 if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) { 2132 delete lineinfo; 2133 return; 2134 } 2135 2136 AddUnwindInfo(&code_desc); 2137 Isolate* isolate = code->GetIsolate(); 2138 JITCodeEntry* entry = CreateELFObject(&code_desc, isolate); 2139 2140 delete lineinfo; 2141 2142 const char* name_hint = NULL; 2143 bool should_dump = false; 2144 if (FLAG_gdbjit_dump) { 2145 if (strlen(FLAG_gdbjit_dump_filter) == 0) { 2146 name_hint = name; 2147 should_dump = true; 2148 } else if (name != NULL) { 2149 name_hint = strstr(name, FLAG_gdbjit_dump_filter); 2150 should_dump = (name_hint != NULL); 2151 } 2152 } 2153 AddJITCodeEntry(code_map, range, entry, should_dump, name_hint); 2154 } 2155 2156 2157 void EventHandler(const v8::JitCodeEvent* event) { 2158 if (!FLAG_gdbjit) return; 2159 base::LockGuard<base::Mutex> lock_guard(mutex.Pointer()); 2160 switch (event->type) { 2161 case v8::JitCodeEvent::CODE_ADDED: { 2162 Address addr = reinterpret_cast<Address>(event->code_start); 2163 Code* code = Code::GetCodeFromTargetAddress(addr); 2164 LineInfo* lineinfo = GetLineInfo(addr); 2165 EmbeddedVector<char, 256> buffer; 2166 StringBuilder builder(buffer.start(), buffer.length()); 2167 builder.AddSubstring(event->name.str, static_cast<int>(event->name.len)); 2168 // It's called UnboundScript in the API but it's a SharedFunctionInfo. 2169 SharedFunctionInfo* shared = 2170 event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script); 2171 AddCode(builder.Finalize(), code, shared, lineinfo); 2172 break; 2173 } 2174 case v8::JitCodeEvent::CODE_MOVED: 2175 // Enabling the GDB JIT interface should disable code compaction. 2176 UNREACHABLE(); 2177 break; 2178 case v8::JitCodeEvent::CODE_REMOVED: 2179 // Do nothing. Instead, adding code causes eviction of any entry whose 2180 // address range intersects the address range of the added code. 2181 break; 2182 case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: { 2183 LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); 2184 line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset), 2185 static_cast<int>(event->line_info.pos), 2186 event->line_info.position_type == 2187 v8::JitCodeEvent::STATEMENT_POSITION); 2188 break; 2189 } 2190 case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: { 2191 v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event); 2192 mutable_event->user_data = new LineInfo(); 2193 break; 2194 } 2195 case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: { 2196 LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); 2197 PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info); 2198 break; 2199 } 2200 } 2201 } 2202 #endif 2203 } // namespace GDBJITInterface 2204 } // namespace internal 2205 } // namespace v8 2206