1 // Copyright 2009 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/global-handles.h" 6 7 #include "src/api.h" 8 #include "src/v8.h" 9 #include "src/vm-state-inl.h" 10 11 namespace v8 { 12 namespace internal { 13 14 15 ObjectGroup::~ObjectGroup() { 16 if (info != NULL) info->Dispose(); 17 delete[] objects; 18 } 19 20 21 ImplicitRefGroup::~ImplicitRefGroup() { 22 delete[] children; 23 } 24 25 26 class GlobalHandles::Node { 27 public: 28 // State transition diagram: 29 // FREE -> NORMAL <-> WEAK -> PENDING -> NEAR_DEATH -> { NORMAL, WEAK, FREE } 30 enum State { 31 FREE = 0, 32 NORMAL, // Normal global handle. 33 WEAK, // Flagged as weak but not yet finalized. 34 PENDING, // Has been recognized as only reachable by weak handles. 35 NEAR_DEATH, // Callback has informed the handle is near death. 36 NUMBER_OF_NODE_STATES 37 }; 38 39 // Maps handle location (slot) to the containing node. 40 static Node* FromLocation(Object** location) { 41 DCHECK(offsetof(Node, object_) == 0); 42 return reinterpret_cast<Node*>(location); 43 } 44 45 Node() { 46 DCHECK(offsetof(Node, class_id_) == Internals::kNodeClassIdOffset); 47 DCHECK(offsetof(Node, flags_) == Internals::kNodeFlagsOffset); 48 STATIC_ASSERT(static_cast<int>(NodeState::kMask) == 49 Internals::kNodeStateMask); 50 STATIC_ASSERT(WEAK == Internals::kNodeStateIsWeakValue); 51 STATIC_ASSERT(PENDING == Internals::kNodeStateIsPendingValue); 52 STATIC_ASSERT(NEAR_DEATH == Internals::kNodeStateIsNearDeathValue); 53 STATIC_ASSERT(static_cast<int>(IsIndependent::kShift) == 54 Internals::kNodeIsIndependentShift); 55 STATIC_ASSERT(static_cast<int>(IsPartiallyDependent::kShift) == 56 Internals::kNodeIsPartiallyDependentShift); 57 STATIC_ASSERT(static_cast<int>(IsActive::kShift) == 58 Internals::kNodeIsActiveShift); 59 } 60 61 #ifdef ENABLE_HANDLE_ZAPPING 62 ~Node() { 63 // TODO(1428): if it's a weak handle we should have invoked its callback. 64 // Zap the values for eager trapping. 65 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue); 66 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId; 67 index_ = 0; 68 set_independent(false); 69 if (FLAG_scavenge_reclaim_unmodified_objects) { 70 set_active(false); 71 } else { 72 set_partially_dependent(false); 73 } 74 set_in_new_space_list(false); 75 parameter_or_next_free_.next_free = NULL; 76 weak_callback_ = NULL; 77 } 78 #endif 79 80 void Initialize(int index, Node** first_free) { 81 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue); 82 index_ = static_cast<uint8_t>(index); 83 DCHECK(static_cast<int>(index_) == index); 84 set_state(FREE); 85 set_weakness_type(NORMAL_WEAK); 86 set_in_new_space_list(false); 87 parameter_or_next_free_.next_free = *first_free; 88 *first_free = this; 89 } 90 91 void Acquire(Object* object) { 92 DCHECK(state() == FREE); 93 object_ = object; 94 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId; 95 set_independent(false); 96 if (FLAG_scavenge_reclaim_unmodified_objects) { 97 set_active(false); 98 } else { 99 set_partially_dependent(false); 100 } 101 set_state(NORMAL); 102 parameter_or_next_free_.parameter = NULL; 103 weak_callback_ = NULL; 104 IncreaseBlockUses(); 105 } 106 107 void Zap() { 108 DCHECK(IsInUse()); 109 // Zap the values for eager trapping. 110 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue); 111 } 112 113 void Release() { 114 DCHECK(IsInUse()); 115 set_state(FREE); 116 // Zap the values for eager trapping. 117 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue); 118 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId; 119 set_independent(false); 120 if (FLAG_scavenge_reclaim_unmodified_objects) { 121 set_active(false); 122 } else { 123 set_partially_dependent(false); 124 } 125 weak_callback_ = NULL; 126 DecreaseBlockUses(); 127 } 128 129 // Object slot accessors. 130 Object* object() const { return object_; } 131 Object** location() { return &object_; } 132 Handle<Object> handle() { return Handle<Object>(location()); } 133 134 // Wrapper class ID accessors. 135 bool has_wrapper_class_id() const { 136 return class_id_ != v8::HeapProfiler::kPersistentHandleNoClassId; 137 } 138 139 uint16_t wrapper_class_id() const { return class_id_; } 140 141 // State and flag accessors. 142 143 State state() const { 144 return NodeState::decode(flags_); 145 } 146 void set_state(State state) { 147 flags_ = NodeState::update(flags_, state); 148 } 149 150 bool is_independent() { 151 return IsIndependent::decode(flags_); 152 } 153 void set_independent(bool v) { 154 flags_ = IsIndependent::update(flags_, v); 155 } 156 157 bool is_partially_dependent() { 158 CHECK(!FLAG_scavenge_reclaim_unmodified_objects); 159 return IsPartiallyDependent::decode(flags_); 160 } 161 void set_partially_dependent(bool v) { 162 CHECK(!FLAG_scavenge_reclaim_unmodified_objects); 163 flags_ = IsPartiallyDependent::update(flags_, v); 164 } 165 166 bool is_active() { 167 CHECK(FLAG_scavenge_reclaim_unmodified_objects); 168 return IsActive::decode(flags_); 169 } 170 void set_active(bool v) { 171 CHECK(FLAG_scavenge_reclaim_unmodified_objects); 172 flags_ = IsActive::update(flags_, v); 173 } 174 175 bool is_in_new_space_list() { 176 return IsInNewSpaceList::decode(flags_); 177 } 178 void set_in_new_space_list(bool v) { 179 flags_ = IsInNewSpaceList::update(flags_, v); 180 } 181 182 WeaknessType weakness_type() const { 183 return NodeWeaknessType::decode(flags_); 184 } 185 void set_weakness_type(WeaknessType weakness_type) { 186 flags_ = NodeWeaknessType::update(flags_, weakness_type); 187 } 188 189 bool IsNearDeath() const { 190 // Check for PENDING to ensure correct answer when processing callbacks. 191 return state() == PENDING || state() == NEAR_DEATH; 192 } 193 194 bool IsWeak() const { return state() == WEAK; } 195 196 bool IsInUse() const { return state() != FREE; } 197 198 bool IsRetainer() const { 199 return state() != FREE && 200 !(state() == NEAR_DEATH && weakness_type() != NORMAL_WEAK); 201 } 202 203 bool IsStrongRetainer() const { return state() == NORMAL; } 204 205 bool IsWeakRetainer() const { 206 return state() == WEAK || state() == PENDING || 207 (state() == NEAR_DEATH && weakness_type() == NORMAL_WEAK); 208 } 209 210 void MarkPending() { 211 DCHECK(state() == WEAK); 212 set_state(PENDING); 213 } 214 215 // Independent flag accessors. 216 void MarkIndependent() { 217 DCHECK(IsInUse()); 218 set_independent(true); 219 } 220 221 void MarkPartiallyDependent() { 222 DCHECK(IsInUse()); 223 if (GetGlobalHandles()->isolate()->heap()->InNewSpace(object_)) { 224 set_partially_dependent(true); 225 } 226 } 227 void clear_partially_dependent() { set_partially_dependent(false); } 228 229 // Callback accessor. 230 // TODO(svenpanne) Re-enable or nuke later. 231 // WeakReferenceCallback callback() { return callback_; } 232 233 // Callback parameter accessors. 234 void set_parameter(void* parameter) { 235 DCHECK(IsInUse()); 236 parameter_or_next_free_.parameter = parameter; 237 } 238 void* parameter() const { 239 DCHECK(IsInUse()); 240 return parameter_or_next_free_.parameter; 241 } 242 243 // Accessors for next free node in the free list. 244 Node* next_free() { 245 DCHECK(state() == FREE); 246 return parameter_or_next_free_.next_free; 247 } 248 void set_next_free(Node* value) { 249 DCHECK(state() == FREE); 250 parameter_or_next_free_.next_free = value; 251 } 252 253 void MakeWeak(void* parameter, WeakCallback weak_callback) { 254 DCHECK(weak_callback != nullptr); 255 DCHECK(IsInUse()); 256 CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue)); 257 set_state(WEAK); 258 set_weakness_type(NORMAL_WEAK); 259 set_parameter(parameter); 260 weak_callback_ = weak_callback; 261 } 262 263 void MakeWeak(void* parameter, 264 WeakCallbackInfo<void>::Callback phantom_callback, 265 v8::WeakCallbackType type) { 266 DCHECK(phantom_callback != nullptr); 267 DCHECK(IsInUse()); 268 CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue)); 269 set_state(WEAK); 270 switch (type) { 271 case v8::WeakCallbackType::kParameter: 272 set_weakness_type(PHANTOM_WEAK); 273 break; 274 case v8::WeakCallbackType::kInternalFields: 275 set_weakness_type(PHANTOM_WEAK_2_INTERNAL_FIELDS); 276 break; 277 } 278 set_parameter(parameter); 279 weak_callback_ = reinterpret_cast<WeakCallback>(phantom_callback); 280 } 281 282 void* ClearWeakness() { 283 DCHECK(IsInUse()); 284 void* p = parameter(); 285 set_state(NORMAL); 286 set_parameter(NULL); 287 return p; 288 } 289 290 void CollectPhantomCallbackData( 291 Isolate* isolate, 292 List<PendingPhantomCallback>* pending_phantom_callbacks) { 293 DCHECK(weakness_type() == PHANTOM_WEAK || 294 weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS); 295 DCHECK(state() == PENDING); 296 297 void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr, 298 nullptr}; 299 if (weakness_type() != PHANTOM_WEAK && object()->IsJSObject()) { 300 auto jsobject = JSObject::cast(object()); 301 int field_count = jsobject->GetInternalFieldCount(); 302 for (int i = 0; i < v8::kInternalFieldsInWeakCallback; ++i) { 303 if (field_count == i) break; 304 auto field = jsobject->GetInternalField(i); 305 if (field->IsSmi()) internal_fields[i] = field; 306 } 307 } 308 309 // Zap with something dangerous. 310 *location() = reinterpret_cast<Object*>(0x6057ca11); 311 312 typedef v8::WeakCallbackInfo<void> Data; 313 auto callback = reinterpret_cast<Data::Callback>(weak_callback_); 314 pending_phantom_callbacks->Add( 315 PendingPhantomCallback(this, callback, parameter(), internal_fields)); 316 DCHECK(IsInUse()); 317 set_state(NEAR_DEATH); 318 } 319 320 bool PostGarbageCollectionProcessing(Isolate* isolate) { 321 // Handles only weak handles (not phantom) that are dying. 322 if (state() != Node::PENDING) return false; 323 if (weak_callback_ == NULL) { 324 Release(); 325 return false; 326 } 327 set_state(NEAR_DEATH); 328 329 // Check that we are not passing a finalized external string to 330 // the callback. 331 DCHECK(!object_->IsExternalOneByteString() || 332 ExternalOneByteString::cast(object_)->resource() != NULL); 333 DCHECK(!object_->IsExternalTwoByteString() || 334 ExternalTwoByteString::cast(object_)->resource() != NULL); 335 if (weakness_type() != NORMAL_WEAK) return false; 336 337 // Leaving V8. 338 VMState<EXTERNAL> vmstate(isolate); 339 HandleScope handle_scope(isolate); 340 Object** object = location(); 341 Handle<Object> handle(*object, isolate); 342 v8::WeakCallbackData<v8::Value, void> data( 343 reinterpret_cast<v8::Isolate*>(isolate), parameter(), 344 v8::Utils::ToLocal(handle)); 345 set_parameter(NULL); 346 weak_callback_(data); 347 348 // Absence of explicit cleanup or revival of weak handle 349 // in most of the cases would lead to memory leak. 350 CHECK(state() != NEAR_DEATH); 351 return true; 352 } 353 354 inline GlobalHandles* GetGlobalHandles(); 355 356 private: 357 inline NodeBlock* FindBlock(); 358 inline void IncreaseBlockUses(); 359 inline void DecreaseBlockUses(); 360 361 // Storage for object pointer. 362 // Placed first to avoid offset computation. 363 Object* object_; 364 365 // Next word stores class_id, index, state, and independent. 366 // Note: the most aligned fields should go first. 367 368 // Wrapper class ID. 369 uint16_t class_id_; 370 371 // Index in the containing handle block. 372 uint8_t index_; 373 374 // This stores three flags (independent, partially_dependent and 375 // in_new_space_list) and a State. 376 class NodeState : public BitField<State, 0, 3> {}; 377 class IsIndependent : public BitField<bool, 3, 1> {}; 378 // The following two fields are mutually exclusive 379 class IsActive : public BitField<bool, 4, 1> {}; 380 class IsPartiallyDependent : public BitField<bool, 4, 1> {}; 381 class IsInNewSpaceList : public BitField<bool, 5, 1> {}; 382 class NodeWeaknessType : public BitField<WeaknessType, 6, 2> {}; 383 384 uint8_t flags_; 385 386 // Handle specific callback - might be a weak reference in disguise. 387 WeakCallback weak_callback_; 388 389 // Provided data for callback. In FREE state, this is used for 390 // the free list link. 391 union { 392 void* parameter; 393 Node* next_free; 394 } parameter_or_next_free_; 395 396 DISALLOW_COPY_AND_ASSIGN(Node); 397 }; 398 399 400 class GlobalHandles::NodeBlock { 401 public: 402 static const int kSize = 256; 403 404 explicit NodeBlock(GlobalHandles* global_handles, NodeBlock* next) 405 : next_(next), 406 used_nodes_(0), 407 next_used_(NULL), 408 prev_used_(NULL), 409 global_handles_(global_handles) {} 410 411 void PutNodesOnFreeList(Node** first_free) { 412 for (int i = kSize - 1; i >= 0; --i) { 413 nodes_[i].Initialize(i, first_free); 414 } 415 } 416 417 Node* node_at(int index) { 418 DCHECK(0 <= index && index < kSize); 419 return &nodes_[index]; 420 } 421 422 void IncreaseUses() { 423 DCHECK(used_nodes_ < kSize); 424 if (used_nodes_++ == 0) { 425 NodeBlock* old_first = global_handles_->first_used_block_; 426 global_handles_->first_used_block_ = this; 427 next_used_ = old_first; 428 prev_used_ = NULL; 429 if (old_first == NULL) return; 430 old_first->prev_used_ = this; 431 } 432 } 433 434 void DecreaseUses() { 435 DCHECK(used_nodes_ > 0); 436 if (--used_nodes_ == 0) { 437 if (next_used_ != NULL) next_used_->prev_used_ = prev_used_; 438 if (prev_used_ != NULL) prev_used_->next_used_ = next_used_; 439 if (this == global_handles_->first_used_block_) { 440 global_handles_->first_used_block_ = next_used_; 441 } 442 } 443 } 444 445 GlobalHandles* global_handles() { return global_handles_; } 446 447 // Next block in the list of all blocks. 448 NodeBlock* next() const { return next_; } 449 450 // Next/previous block in the list of blocks with used nodes. 451 NodeBlock* next_used() const { return next_used_; } 452 NodeBlock* prev_used() const { return prev_used_; } 453 454 private: 455 Node nodes_[kSize]; 456 NodeBlock* const next_; 457 int used_nodes_; 458 NodeBlock* next_used_; 459 NodeBlock* prev_used_; 460 GlobalHandles* global_handles_; 461 }; 462 463 464 GlobalHandles* GlobalHandles::Node::GetGlobalHandles() { 465 return FindBlock()->global_handles(); 466 } 467 468 469 GlobalHandles::NodeBlock* GlobalHandles::Node::FindBlock() { 470 intptr_t ptr = reinterpret_cast<intptr_t>(this); 471 ptr = ptr - index_ * sizeof(Node); 472 NodeBlock* block = reinterpret_cast<NodeBlock*>(ptr); 473 DCHECK(block->node_at(index_) == this); 474 return block; 475 } 476 477 478 void GlobalHandles::Node::IncreaseBlockUses() { 479 NodeBlock* node_block = FindBlock(); 480 node_block->IncreaseUses(); 481 GlobalHandles* global_handles = node_block->global_handles(); 482 global_handles->isolate()->counters()->global_handles()->Increment(); 483 global_handles->number_of_global_handles_++; 484 } 485 486 487 void GlobalHandles::Node::DecreaseBlockUses() { 488 NodeBlock* node_block = FindBlock(); 489 GlobalHandles* global_handles = node_block->global_handles(); 490 parameter_or_next_free_.next_free = global_handles->first_free_; 491 global_handles->first_free_ = this; 492 node_block->DecreaseUses(); 493 global_handles->isolate()->counters()->global_handles()->Decrement(); 494 global_handles->number_of_global_handles_--; 495 } 496 497 498 class GlobalHandles::NodeIterator { 499 public: 500 explicit NodeIterator(GlobalHandles* global_handles) 501 : block_(global_handles->first_used_block_), 502 index_(0) {} 503 504 bool done() const { return block_ == NULL; } 505 506 Node* node() const { 507 DCHECK(!done()); 508 return block_->node_at(index_); 509 } 510 511 void Advance() { 512 DCHECK(!done()); 513 if (++index_ < NodeBlock::kSize) return; 514 index_ = 0; 515 block_ = block_->next_used(); 516 } 517 518 private: 519 NodeBlock* block_; 520 int index_; 521 522 DISALLOW_COPY_AND_ASSIGN(NodeIterator); 523 }; 524 525 class GlobalHandles::PendingPhantomCallbacksSecondPassTask 526 : public v8::internal::CancelableTask { 527 public: 528 // Takes ownership of the contents of pending_phantom_callbacks, leaving it in 529 // the same state it would be after a call to Clear(). 530 PendingPhantomCallbacksSecondPassTask( 531 List<PendingPhantomCallback>* pending_phantom_callbacks, Isolate* isolate) 532 : CancelableTask(isolate) { 533 pending_phantom_callbacks_.Swap(pending_phantom_callbacks); 534 } 535 536 void RunInternal() override { 537 isolate()->heap()->CallGCPrologueCallbacks( 538 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags); 539 InvokeSecondPassPhantomCallbacks(&pending_phantom_callbacks_, isolate()); 540 isolate()->heap()->CallGCEpilogueCallbacks( 541 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags); 542 } 543 544 private: 545 List<PendingPhantomCallback> pending_phantom_callbacks_; 546 547 DISALLOW_COPY_AND_ASSIGN(PendingPhantomCallbacksSecondPassTask); 548 }; 549 550 551 GlobalHandles::GlobalHandles(Isolate* isolate) 552 : isolate_(isolate), 553 number_of_global_handles_(0), 554 first_block_(NULL), 555 first_used_block_(NULL), 556 first_free_(NULL), 557 post_gc_processing_count_(0), 558 object_group_connections_(kObjectGroupConnectionsCapacity) {} 559 560 561 GlobalHandles::~GlobalHandles() { 562 NodeBlock* block = first_block_; 563 while (block != NULL) { 564 NodeBlock* tmp = block->next(); 565 delete block; 566 block = tmp; 567 } 568 first_block_ = NULL; 569 } 570 571 572 Handle<Object> GlobalHandles::Create(Object* value) { 573 if (first_free_ == NULL) { 574 first_block_ = new NodeBlock(this, first_block_); 575 first_block_->PutNodesOnFreeList(&first_free_); 576 } 577 DCHECK(first_free_ != NULL); 578 // Take the first node in the free list. 579 Node* result = first_free_; 580 first_free_ = result->next_free(); 581 result->Acquire(value); 582 if (isolate_->heap()->InNewSpace(value) && 583 !result->is_in_new_space_list()) { 584 new_space_nodes_.Add(result); 585 result->set_in_new_space_list(true); 586 } 587 return result->handle(); 588 } 589 590 591 Handle<Object> GlobalHandles::CopyGlobal(Object** location) { 592 DCHECK(location != NULL); 593 return Node::FromLocation(location)->GetGlobalHandles()->Create(*location); 594 } 595 596 597 void GlobalHandles::Destroy(Object** location) { 598 if (location != NULL) Node::FromLocation(location)->Release(); 599 } 600 601 602 void GlobalHandles::MakeWeak(Object** location, void* parameter, 603 WeakCallback weak_callback) { 604 Node::FromLocation(location)->MakeWeak(parameter, weak_callback); 605 } 606 607 608 typedef v8::WeakCallbackInfo<void>::Callback GenericCallback; 609 610 611 void GlobalHandles::MakeWeak(Object** location, void* parameter, 612 GenericCallback phantom_callback, 613 v8::WeakCallbackType type) { 614 Node::FromLocation(location)->MakeWeak(parameter, phantom_callback, type); 615 } 616 617 618 void* GlobalHandles::ClearWeakness(Object** location) { 619 return Node::FromLocation(location)->ClearWeakness(); 620 } 621 622 623 void GlobalHandles::MarkIndependent(Object** location) { 624 Node::FromLocation(location)->MarkIndependent(); 625 } 626 627 628 void GlobalHandles::MarkPartiallyDependent(Object** location) { 629 Node::FromLocation(location)->MarkPartiallyDependent(); 630 } 631 632 633 bool GlobalHandles::IsIndependent(Object** location) { 634 return Node::FromLocation(location)->is_independent(); 635 } 636 637 638 bool GlobalHandles::IsNearDeath(Object** location) { 639 return Node::FromLocation(location)->IsNearDeath(); 640 } 641 642 643 bool GlobalHandles::IsWeak(Object** location) { 644 return Node::FromLocation(location)->IsWeak(); 645 } 646 647 648 void GlobalHandles::IterateWeakRoots(ObjectVisitor* v) { 649 for (NodeIterator it(this); !it.done(); it.Advance()) { 650 Node* node = it.node(); 651 if (node->IsWeakRetainer()) { 652 // Pending weak phantom handles die immediately. Everything else survives. 653 if (node->state() == Node::PENDING && 654 node->weakness_type() != NORMAL_WEAK) { 655 node->CollectPhantomCallbackData(isolate(), 656 &pending_phantom_callbacks_); 657 } else { 658 v->VisitPointer(node->location()); 659 } 660 } 661 } 662 } 663 664 665 void GlobalHandles::IdentifyWeakHandles(WeakSlotCallback f) { 666 for (NodeIterator it(this); !it.done(); it.Advance()) { 667 if (it.node()->IsWeak() && f(it.node()->location())) { 668 it.node()->MarkPending(); 669 } 670 } 671 } 672 673 674 void GlobalHandles::IterateNewSpaceStrongAndDependentRoots(ObjectVisitor* v) { 675 for (int i = 0; i < new_space_nodes_.length(); ++i) { 676 Node* node = new_space_nodes_[i]; 677 if (FLAG_scavenge_reclaim_unmodified_objects) { 678 if (node->IsStrongRetainer() || 679 (node->IsWeakRetainer() && !node->is_independent() && 680 node->is_active())) { 681 v->VisitPointer(node->location()); 682 } 683 } else { 684 if (node->IsStrongRetainer() || 685 (node->IsWeakRetainer() && !node->is_independent() && 686 !node->is_partially_dependent())) { 687 v->VisitPointer(node->location()); 688 } 689 } 690 } 691 } 692 693 694 void GlobalHandles::IdentifyNewSpaceWeakIndependentHandles( 695 WeakSlotCallbackWithHeap f) { 696 for (int i = 0; i < new_space_nodes_.length(); ++i) { 697 Node* node = new_space_nodes_[i]; 698 DCHECK(node->is_in_new_space_list()); 699 if ((node->is_independent() || node->is_partially_dependent()) && 700 node->IsWeak() && f(isolate_->heap(), node->location())) { 701 node->MarkPending(); 702 } 703 } 704 } 705 706 707 void GlobalHandles::IterateNewSpaceWeakIndependentRoots(ObjectVisitor* v) { 708 for (int i = 0; i < new_space_nodes_.length(); ++i) { 709 Node* node = new_space_nodes_[i]; 710 DCHECK(node->is_in_new_space_list()); 711 if ((node->is_independent() || node->is_partially_dependent()) && 712 node->IsWeakRetainer()) { 713 // Pending weak phantom handles die immediately. Everything else survives. 714 if (node->state() == Node::PENDING && 715 node->weakness_type() != NORMAL_WEAK) { 716 node->CollectPhantomCallbackData(isolate(), 717 &pending_phantom_callbacks_); 718 } else { 719 v->VisitPointer(node->location()); 720 } 721 } 722 } 723 } 724 725 726 void GlobalHandles::IdentifyWeakUnmodifiedObjects( 727 WeakSlotCallback is_unmodified) { 728 for (int i = 0; i < new_space_nodes_.length(); ++i) { 729 Node* node = new_space_nodes_[i]; 730 if (node->IsWeak() && !is_unmodified(node->location())) { 731 node->set_active(true); 732 } 733 } 734 } 735 736 737 void GlobalHandles::MarkNewSpaceWeakUnmodifiedObjectsPending( 738 WeakSlotCallbackWithHeap is_unscavenged) { 739 for (int i = 0; i < new_space_nodes_.length(); ++i) { 740 Node* node = new_space_nodes_[i]; 741 DCHECK(node->is_in_new_space_list()); 742 if ((node->is_independent() || !node->is_active()) && node->IsWeak() && 743 is_unscavenged(isolate_->heap(), node->location())) { 744 node->MarkPending(); 745 } 746 } 747 } 748 749 750 void GlobalHandles::IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor* v) { 751 for (int i = 0; i < new_space_nodes_.length(); ++i) { 752 Node* node = new_space_nodes_[i]; 753 DCHECK(node->is_in_new_space_list()); 754 if ((node->is_independent() || !node->is_active()) && 755 node->IsWeakRetainer()) { 756 // Pending weak phantom handles die immediately. Everything else survives. 757 if (node->state() == Node::PENDING && 758 node->weakness_type() != NORMAL_WEAK) { 759 node->CollectPhantomCallbackData(isolate(), 760 &pending_phantom_callbacks_); 761 } else { 762 v->VisitPointer(node->location()); 763 } 764 } 765 } 766 } 767 768 769 bool GlobalHandles::IterateObjectGroups(ObjectVisitor* v, 770 WeakSlotCallbackWithHeap can_skip) { 771 ComputeObjectGroupsAndImplicitReferences(); 772 int last = 0; 773 bool any_group_was_visited = false; 774 for (int i = 0; i < object_groups_.length(); i++) { 775 ObjectGroup* entry = object_groups_.at(i); 776 DCHECK(entry != NULL); 777 778 Object*** objects = entry->objects; 779 bool group_should_be_visited = false; 780 for (size_t j = 0; j < entry->length; j++) { 781 Object* object = *objects[j]; 782 if (object->IsHeapObject()) { 783 if (!can_skip(isolate_->heap(), &object)) { 784 group_should_be_visited = true; 785 break; 786 } 787 } 788 } 789 790 if (!group_should_be_visited) { 791 object_groups_[last++] = entry; 792 continue; 793 } 794 795 // An object in the group requires visiting, so iterate over all 796 // objects in the group. 797 for (size_t j = 0; j < entry->length; ++j) { 798 Object* object = *objects[j]; 799 if (object->IsHeapObject()) { 800 v->VisitPointer(&object); 801 any_group_was_visited = true; 802 } 803 } 804 805 // Once the entire group has been iterated over, set the object 806 // group to NULL so it won't be processed again. 807 delete entry; 808 object_groups_.at(i) = NULL; 809 } 810 object_groups_.Rewind(last); 811 return any_group_was_visited; 812 } 813 814 815 void GlobalHandles::InvokeSecondPassPhantomCallbacks( 816 List<PendingPhantomCallback>* callbacks, Isolate* isolate) { 817 while (callbacks->length() != 0) { 818 auto callback = callbacks->RemoveLast(); 819 DCHECK(callback.node() == nullptr); 820 // No second pass callback required. 821 if (callback.callback() == nullptr) continue; 822 // Fire second pass callback 823 callback.Invoke(isolate); 824 } 825 } 826 827 828 int GlobalHandles::PostScavengeProcessing( 829 const int initial_post_gc_processing_count) { 830 int freed_nodes = 0; 831 for (int i = 0; i < new_space_nodes_.length(); ++i) { 832 Node* node = new_space_nodes_[i]; 833 DCHECK(node->is_in_new_space_list()); 834 if (!node->IsRetainer()) { 835 // Free nodes do not have weak callbacks. Do not use them to compute 836 // the freed_nodes. 837 continue; 838 } 839 // Skip dependent or unmodified handles. Their weak callbacks might expect 840 // to be 841 // called between two global garbage collection callbacks which 842 // are not called for minor collections. 843 if (FLAG_scavenge_reclaim_unmodified_objects) { 844 if (!node->is_independent() && (node->is_active())) { 845 node->set_active(false); 846 continue; 847 } 848 node->set_active(false); 849 } else { 850 if (!node->is_independent() && !node->is_partially_dependent()) { 851 continue; 852 } 853 node->clear_partially_dependent(); 854 } 855 856 if (node->PostGarbageCollectionProcessing(isolate_)) { 857 if (initial_post_gc_processing_count != post_gc_processing_count_) { 858 // Weak callback triggered another GC and another round of 859 // PostGarbageCollection processing. The current node might 860 // have been deleted in that round, so we need to bail out (or 861 // restart the processing). 862 return freed_nodes; 863 } 864 } 865 if (!node->IsRetainer()) { 866 freed_nodes++; 867 } 868 } 869 return freed_nodes; 870 } 871 872 873 int GlobalHandles::PostMarkSweepProcessing( 874 const int initial_post_gc_processing_count) { 875 int freed_nodes = 0; 876 for (NodeIterator it(this); !it.done(); it.Advance()) { 877 if (!it.node()->IsRetainer()) { 878 // Free nodes do not have weak callbacks. Do not use them to compute 879 // the freed_nodes. 880 continue; 881 } 882 if (FLAG_scavenge_reclaim_unmodified_objects) { 883 it.node()->set_active(false); 884 } else { 885 it.node()->clear_partially_dependent(); 886 } 887 if (it.node()->PostGarbageCollectionProcessing(isolate_)) { 888 if (initial_post_gc_processing_count != post_gc_processing_count_) { 889 // See the comment above. 890 return freed_nodes; 891 } 892 } 893 if (!it.node()->IsRetainer()) { 894 freed_nodes++; 895 } 896 } 897 return freed_nodes; 898 } 899 900 901 void GlobalHandles::UpdateListOfNewSpaceNodes() { 902 int last = 0; 903 for (int i = 0; i < new_space_nodes_.length(); ++i) { 904 Node* node = new_space_nodes_[i]; 905 DCHECK(node->is_in_new_space_list()); 906 if (node->IsRetainer()) { 907 if (isolate_->heap()->InNewSpace(node->object())) { 908 new_space_nodes_[last++] = node; 909 isolate_->heap()->IncrementNodesCopiedInNewSpace(); 910 } else { 911 node->set_in_new_space_list(false); 912 isolate_->heap()->IncrementNodesPromoted(); 913 } 914 } else { 915 node->set_in_new_space_list(false); 916 isolate_->heap()->IncrementNodesDiedInNewSpace(); 917 } 918 } 919 new_space_nodes_.Rewind(last); 920 new_space_nodes_.Trim(); 921 } 922 923 924 int GlobalHandles::DispatchPendingPhantomCallbacks( 925 bool synchronous_second_pass) { 926 int freed_nodes = 0; 927 { 928 // The initial pass callbacks must simply clear the nodes. 929 for (auto i = pending_phantom_callbacks_.begin(); 930 i != pending_phantom_callbacks_.end(); ++i) { 931 auto callback = i; 932 // Skip callbacks that have already been processed once. 933 if (callback->node() == nullptr) continue; 934 callback->Invoke(isolate()); 935 freed_nodes++; 936 } 937 } 938 if (pending_phantom_callbacks_.length() > 0) { 939 if (FLAG_optimize_for_size || FLAG_predictable || synchronous_second_pass) { 940 isolate()->heap()->CallGCPrologueCallbacks( 941 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags); 942 InvokeSecondPassPhantomCallbacks(&pending_phantom_callbacks_, isolate()); 943 isolate()->heap()->CallGCEpilogueCallbacks( 944 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags); 945 } else { 946 auto task = new PendingPhantomCallbacksSecondPassTask( 947 &pending_phantom_callbacks_, isolate()); 948 V8::GetCurrentPlatform()->CallOnForegroundThread( 949 reinterpret_cast<v8::Isolate*>(isolate()), task); 950 } 951 } 952 pending_phantom_callbacks_.Clear(); 953 return freed_nodes; 954 } 955 956 957 void GlobalHandles::PendingPhantomCallback::Invoke(Isolate* isolate) { 958 Data::Callback* callback_addr = nullptr; 959 if (node_ != nullptr) { 960 // Initialize for first pass callback. 961 DCHECK(node_->state() == Node::NEAR_DEATH); 962 callback_addr = &callback_; 963 } 964 Data data(reinterpret_cast<v8::Isolate*>(isolate), parameter_, 965 internal_fields_, callback_addr); 966 Data::Callback callback = callback_; 967 callback_ = nullptr; 968 callback(data); 969 if (node_ != nullptr) { 970 // Transition to second pass state. 971 DCHECK(node_->state() == Node::FREE); 972 node_ = nullptr; 973 } 974 } 975 976 977 int GlobalHandles::PostGarbageCollectionProcessing( 978 GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) { 979 // Process weak global handle callbacks. This must be done after the 980 // GC is completely done, because the callbacks may invoke arbitrary 981 // API functions. 982 DCHECK(isolate_->heap()->gc_state() == Heap::NOT_IN_GC); 983 const int initial_post_gc_processing_count = ++post_gc_processing_count_; 984 int freed_nodes = 0; 985 bool synchronous_second_pass = 986 (gc_callback_flags & 987 (kGCCallbackFlagForced | 988 kGCCallbackFlagSynchronousPhantomCallbackProcessing)) != 0; 989 freed_nodes += DispatchPendingPhantomCallbacks(synchronous_second_pass); 990 if (initial_post_gc_processing_count != post_gc_processing_count_) { 991 // If the callbacks caused a nested GC, then return. See comment in 992 // PostScavengeProcessing. 993 return freed_nodes; 994 } 995 if (collector == SCAVENGER) { 996 freed_nodes += PostScavengeProcessing(initial_post_gc_processing_count); 997 } else { 998 freed_nodes += PostMarkSweepProcessing(initial_post_gc_processing_count); 999 } 1000 if (initial_post_gc_processing_count != post_gc_processing_count_) { 1001 // If the callbacks caused a nested GC, then return. See comment in 1002 // PostScavengeProcessing. 1003 return freed_nodes; 1004 } 1005 if (initial_post_gc_processing_count == post_gc_processing_count_) { 1006 UpdateListOfNewSpaceNodes(); 1007 } 1008 return freed_nodes; 1009 } 1010 1011 1012 void GlobalHandles::IterateStrongRoots(ObjectVisitor* v) { 1013 for (NodeIterator it(this); !it.done(); it.Advance()) { 1014 if (it.node()->IsStrongRetainer()) { 1015 v->VisitPointer(it.node()->location()); 1016 } 1017 } 1018 } 1019 1020 1021 void GlobalHandles::IterateAllRoots(ObjectVisitor* v) { 1022 for (NodeIterator it(this); !it.done(); it.Advance()) { 1023 if (it.node()->IsRetainer()) { 1024 v->VisitPointer(it.node()->location()); 1025 } 1026 } 1027 } 1028 1029 1030 void GlobalHandles::IterateAllRootsWithClassIds(ObjectVisitor* v) { 1031 for (NodeIterator it(this); !it.done(); it.Advance()) { 1032 if (it.node()->IsRetainer() && it.node()->has_wrapper_class_id()) { 1033 v->VisitEmbedderReference(it.node()->location(), 1034 it.node()->wrapper_class_id()); 1035 } 1036 } 1037 } 1038 1039 1040 void GlobalHandles::IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor* v) { 1041 for (int i = 0; i < new_space_nodes_.length(); ++i) { 1042 Node* node = new_space_nodes_[i]; 1043 if (node->IsRetainer() && node->has_wrapper_class_id()) { 1044 v->VisitEmbedderReference(node->location(), 1045 node->wrapper_class_id()); 1046 } 1047 } 1048 } 1049 1050 1051 void GlobalHandles::IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor* v) { 1052 for (int i = 0; i < new_space_nodes_.length(); ++i) { 1053 Node* node = new_space_nodes_[i]; 1054 if (node->has_wrapper_class_id() && node->IsWeak()) { 1055 v->VisitEmbedderReference(node->location(), node->wrapper_class_id()); 1056 } 1057 } 1058 } 1059 1060 1061 int GlobalHandles::NumberOfWeakHandles() { 1062 int count = 0; 1063 for (NodeIterator it(this); !it.done(); it.Advance()) { 1064 if (it.node()->IsWeakRetainer()) { 1065 count++; 1066 } 1067 } 1068 return count; 1069 } 1070 1071 1072 int GlobalHandles::NumberOfGlobalObjectWeakHandles() { 1073 int count = 0; 1074 for (NodeIterator it(this); !it.done(); it.Advance()) { 1075 if (it.node()->IsWeakRetainer() && 1076 it.node()->object()->IsJSGlobalObject()) { 1077 count++; 1078 } 1079 } 1080 return count; 1081 } 1082 1083 1084 void GlobalHandles::RecordStats(HeapStats* stats) { 1085 *stats->global_handle_count = 0; 1086 *stats->weak_global_handle_count = 0; 1087 *stats->pending_global_handle_count = 0; 1088 *stats->near_death_global_handle_count = 0; 1089 *stats->free_global_handle_count = 0; 1090 for (NodeIterator it(this); !it.done(); it.Advance()) { 1091 *stats->global_handle_count += 1; 1092 if (it.node()->state() == Node::WEAK) { 1093 *stats->weak_global_handle_count += 1; 1094 } else if (it.node()->state() == Node::PENDING) { 1095 *stats->pending_global_handle_count += 1; 1096 } else if (it.node()->state() == Node::NEAR_DEATH) { 1097 *stats->near_death_global_handle_count += 1; 1098 } else if (it.node()->state() == Node::FREE) { 1099 *stats->free_global_handle_count += 1; 1100 } 1101 } 1102 } 1103 1104 #ifdef DEBUG 1105 1106 void GlobalHandles::PrintStats() { 1107 int total = 0; 1108 int weak = 0; 1109 int pending = 0; 1110 int near_death = 0; 1111 int destroyed = 0; 1112 1113 for (NodeIterator it(this); !it.done(); it.Advance()) { 1114 total++; 1115 if (it.node()->state() == Node::WEAK) weak++; 1116 if (it.node()->state() == Node::PENDING) pending++; 1117 if (it.node()->state() == Node::NEAR_DEATH) near_death++; 1118 if (it.node()->state() == Node::FREE) destroyed++; 1119 } 1120 1121 PrintF("Global Handle Statistics:\n"); 1122 PrintF(" allocated memory = %" V8_PTR_PREFIX "dB\n", sizeof(Node) * total); 1123 PrintF(" # weak = %d\n", weak); 1124 PrintF(" # pending = %d\n", pending); 1125 PrintF(" # near_death = %d\n", near_death); 1126 PrintF(" # free = %d\n", destroyed); 1127 PrintF(" # total = %d\n", total); 1128 } 1129 1130 1131 void GlobalHandles::Print() { 1132 PrintF("Global handles:\n"); 1133 for (NodeIterator it(this); !it.done(); it.Advance()) { 1134 PrintF(" handle %p to %p%s\n", 1135 reinterpret_cast<void*>(it.node()->location()), 1136 reinterpret_cast<void*>(it.node()->object()), 1137 it.node()->IsWeak() ? " (weak)" : ""); 1138 } 1139 } 1140 1141 #endif 1142 1143 1144 1145 void GlobalHandles::AddObjectGroup(Object*** handles, 1146 size_t length, 1147 v8::RetainedObjectInfo* info) { 1148 #ifdef DEBUG 1149 for (size_t i = 0; i < length; ++i) { 1150 DCHECK(!Node::FromLocation(handles[i])->is_independent()); 1151 } 1152 #endif 1153 if (length == 0) { 1154 if (info != NULL) info->Dispose(); 1155 return; 1156 } 1157 ObjectGroup* group = new ObjectGroup(length); 1158 for (size_t i = 0; i < length; ++i) 1159 group->objects[i] = handles[i]; 1160 group->info = info; 1161 object_groups_.Add(group); 1162 } 1163 1164 1165 void GlobalHandles::SetObjectGroupId(Object** handle, 1166 UniqueId id) { 1167 object_group_connections_.Add(ObjectGroupConnection(id, handle)); 1168 } 1169 1170 1171 void GlobalHandles::SetRetainedObjectInfo(UniqueId id, 1172 RetainedObjectInfo* info) { 1173 retainer_infos_.Add(ObjectGroupRetainerInfo(id, info)); 1174 } 1175 1176 1177 void GlobalHandles::SetReferenceFromGroup(UniqueId id, Object** child) { 1178 DCHECK(!Node::FromLocation(child)->is_independent()); 1179 implicit_ref_connections_.Add(ObjectGroupConnection(id, child)); 1180 } 1181 1182 1183 void GlobalHandles::SetReference(HeapObject** parent, Object** child) { 1184 DCHECK(!Node::FromLocation(child)->is_independent()); 1185 ImplicitRefGroup* group = new ImplicitRefGroup(parent, 1); 1186 group->children[0] = child; 1187 implicit_ref_groups_.Add(group); 1188 } 1189 1190 1191 void GlobalHandles::RemoveObjectGroups() { 1192 for (int i = 0; i < object_groups_.length(); i++) 1193 delete object_groups_.at(i); 1194 object_groups_.Clear(); 1195 for (int i = 0; i < retainer_infos_.length(); ++i) 1196 retainer_infos_[i].info->Dispose(); 1197 retainer_infos_.Clear(); 1198 object_group_connections_.Clear(); 1199 object_group_connections_.Initialize(kObjectGroupConnectionsCapacity); 1200 } 1201 1202 1203 void GlobalHandles::RemoveImplicitRefGroups() { 1204 for (int i = 0; i < implicit_ref_groups_.length(); i++) { 1205 delete implicit_ref_groups_.at(i); 1206 } 1207 implicit_ref_groups_.Clear(); 1208 implicit_ref_connections_.Clear(); 1209 } 1210 1211 1212 void GlobalHandles::TearDown() { 1213 // TODO(1428): invoke weak callbacks. 1214 } 1215 1216 1217 void GlobalHandles::ComputeObjectGroupsAndImplicitReferences() { 1218 if (object_group_connections_.length() == 0) { 1219 for (int i = 0; i < retainer_infos_.length(); ++i) 1220 retainer_infos_[i].info->Dispose(); 1221 retainer_infos_.Clear(); 1222 implicit_ref_connections_.Clear(); 1223 return; 1224 } 1225 1226 object_group_connections_.Sort(); 1227 retainer_infos_.Sort(); 1228 implicit_ref_connections_.Sort(); 1229 1230 int info_index = 0; // For iterating retainer_infos_. 1231 UniqueId current_group_id(0); 1232 int current_group_start = 0; 1233 1234 int current_implicit_refs_start = 0; 1235 int current_implicit_refs_end = 0; 1236 for (int i = 0; i <= object_group_connections_.length(); ++i) { 1237 if (i == 0) 1238 current_group_id = object_group_connections_[i].id; 1239 if (i == object_group_connections_.length() || 1240 current_group_id != object_group_connections_[i].id) { 1241 // Group detected: objects in indices [current_group_start, i[. 1242 1243 // Find out which implicit references are related to this group. (We want 1244 // to ignore object groups which only have 1 object, but that object is 1245 // needed as a representative object for the implicit refrerence group.) 1246 while (current_implicit_refs_start < implicit_ref_connections_.length() && 1247 implicit_ref_connections_[current_implicit_refs_start].id < 1248 current_group_id) 1249 ++current_implicit_refs_start; 1250 current_implicit_refs_end = current_implicit_refs_start; 1251 while (current_implicit_refs_end < implicit_ref_connections_.length() && 1252 implicit_ref_connections_[current_implicit_refs_end].id == 1253 current_group_id) 1254 ++current_implicit_refs_end; 1255 1256 if (current_implicit_refs_end > current_implicit_refs_start) { 1257 // Find a representative object for the implicit references. 1258 HeapObject** representative = NULL; 1259 for (int j = current_group_start; j < i; ++j) { 1260 Object** object = object_group_connections_[j].object; 1261 if ((*object)->IsHeapObject()) { 1262 representative = reinterpret_cast<HeapObject**>(object); 1263 break; 1264 } 1265 } 1266 if (representative) { 1267 ImplicitRefGroup* group = new ImplicitRefGroup( 1268 representative, 1269 current_implicit_refs_end - current_implicit_refs_start); 1270 for (int j = current_implicit_refs_start; 1271 j < current_implicit_refs_end; 1272 ++j) { 1273 group->children[j - current_implicit_refs_start] = 1274 implicit_ref_connections_[j].object; 1275 } 1276 implicit_ref_groups_.Add(group); 1277 } 1278 current_implicit_refs_start = current_implicit_refs_end; 1279 } 1280 1281 // Find a RetainedObjectInfo for the group. 1282 RetainedObjectInfo* info = NULL; 1283 while (info_index < retainer_infos_.length() && 1284 retainer_infos_[info_index].id < current_group_id) { 1285 retainer_infos_[info_index].info->Dispose(); 1286 ++info_index; 1287 } 1288 if (info_index < retainer_infos_.length() && 1289 retainer_infos_[info_index].id == current_group_id) { 1290 // This object group has an associated ObjectGroupRetainerInfo. 1291 info = retainer_infos_[info_index].info; 1292 ++info_index; 1293 } 1294 1295 // Ignore groups which only contain one object. 1296 if (i > current_group_start + 1) { 1297 ObjectGroup* group = new ObjectGroup(i - current_group_start); 1298 for (int j = current_group_start; j < i; ++j) { 1299 group->objects[j - current_group_start] = 1300 object_group_connections_[j].object; 1301 } 1302 group->info = info; 1303 object_groups_.Add(group); 1304 } else if (info) { 1305 info->Dispose(); 1306 } 1307 1308 if (i < object_group_connections_.length()) { 1309 current_group_id = object_group_connections_[i].id; 1310 current_group_start = i; 1311 } 1312 } 1313 } 1314 object_group_connections_.Clear(); 1315 object_group_connections_.Initialize(kObjectGroupConnectionsCapacity); 1316 retainer_infos_.Clear(); 1317 implicit_ref_connections_.Clear(); 1318 } 1319 1320 1321 EternalHandles::EternalHandles() : size_(0) { 1322 for (unsigned i = 0; i < arraysize(singleton_handles_); i++) { 1323 singleton_handles_[i] = kInvalidIndex; 1324 } 1325 } 1326 1327 1328 EternalHandles::~EternalHandles() { 1329 for (int i = 0; i < blocks_.length(); i++) delete[] blocks_[i]; 1330 } 1331 1332 1333 void EternalHandles::IterateAllRoots(ObjectVisitor* visitor) { 1334 int limit = size_; 1335 for (int i = 0; i < blocks_.length(); i++) { 1336 DCHECK(limit > 0); 1337 Object** block = blocks_[i]; 1338 visitor->VisitPointers(block, block + Min(limit, kSize)); 1339 limit -= kSize; 1340 } 1341 } 1342 1343 1344 void EternalHandles::IterateNewSpaceRoots(ObjectVisitor* visitor) { 1345 for (int i = 0; i < new_space_indices_.length(); i++) { 1346 visitor->VisitPointer(GetLocation(new_space_indices_[i])); 1347 } 1348 } 1349 1350 1351 void EternalHandles::PostGarbageCollectionProcessing(Heap* heap) { 1352 int last = 0; 1353 for (int i = 0; i < new_space_indices_.length(); i++) { 1354 int index = new_space_indices_[i]; 1355 if (heap->InNewSpace(*GetLocation(index))) { 1356 new_space_indices_[last++] = index; 1357 } 1358 } 1359 new_space_indices_.Rewind(last); 1360 } 1361 1362 1363 void EternalHandles::Create(Isolate* isolate, Object* object, int* index) { 1364 DCHECK_EQ(kInvalidIndex, *index); 1365 if (object == NULL) return; 1366 DCHECK_NE(isolate->heap()->the_hole_value(), object); 1367 int block = size_ >> kShift; 1368 int offset = size_ & kMask; 1369 // need to resize 1370 if (offset == 0) { 1371 Object** next_block = new Object*[kSize]; 1372 Object* the_hole = isolate->heap()->the_hole_value(); 1373 MemsetPointer(next_block, the_hole, kSize); 1374 blocks_.Add(next_block); 1375 } 1376 DCHECK_EQ(isolate->heap()->the_hole_value(), blocks_[block][offset]); 1377 blocks_[block][offset] = object; 1378 if (isolate->heap()->InNewSpace(object)) { 1379 new_space_indices_.Add(size_); 1380 } 1381 *index = size_++; 1382 } 1383 1384 1385 } // namespace internal 1386 } // namespace v8 1387