1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/heap/store-buffer.h" 6 7 #include <algorithm> 8 9 #include "src/counters.h" 10 #include "src/heap/incremental-marking.h" 11 #include "src/heap/store-buffer-inl.h" 12 #include "src/isolate.h" 13 #include "src/objects-inl.h" 14 #include "src/v8.h" 15 16 namespace v8 { 17 namespace internal { 18 19 StoreBuffer::StoreBuffer(Heap* heap) 20 : heap_(heap), 21 start_(NULL), 22 limit_(NULL), 23 old_start_(NULL), 24 old_limit_(NULL), 25 old_top_(NULL), 26 old_reserved_limit_(NULL), 27 old_buffer_is_sorted_(false), 28 old_buffer_is_filtered_(false), 29 during_gc_(false), 30 store_buffer_rebuilding_enabled_(false), 31 callback_(NULL), 32 may_move_store_buffer_entries_(true), 33 virtual_memory_(NULL), 34 hash_set_1_(NULL), 35 hash_set_2_(NULL), 36 hash_sets_are_empty_(true) {} 37 38 39 void StoreBuffer::SetUp() { 40 // Allocate 3x the buffer size, so that we can start the new store buffer 41 // aligned to 2x the size. This lets us use a bit test to detect the end of 42 // the area. 43 virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3); 44 uintptr_t start_as_int = 45 reinterpret_cast<uintptr_t>(virtual_memory_->address()); 46 start_ = 47 reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2)); 48 limit_ = start_ + (kStoreBufferSize / kPointerSize); 49 50 // Reserve space for the larger old buffer. 51 old_virtual_memory_ = 52 new base::VirtualMemory(kOldStoreBufferLength * kPointerSize); 53 old_top_ = old_start_ = 54 reinterpret_cast<Address*>(old_virtual_memory_->address()); 55 // Don't know the alignment requirements of the OS, but it is certainly not 56 // less than 0xfff. 57 CHECK((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0); 58 CHECK(kStoreBufferSize >= base::OS::CommitPageSize()); 59 // Initial size of the old buffer is as big as the buffer for new pointers. 60 // This means even if we later fail to enlarge the old buffer due to OOM from 61 // the OS, we will still be able to empty the new pointer buffer into the old 62 // buffer. 63 int initial_length = static_cast<int>(kStoreBufferSize / kPointerSize); 64 CHECK(initial_length > 0); 65 CHECK(initial_length <= kOldStoreBufferLength); 66 old_limit_ = old_start_ + initial_length; 67 old_reserved_limit_ = old_start_ + kOldStoreBufferLength; 68 69 if (!old_virtual_memory_->Commit(reinterpret_cast<void*>(old_start_), 70 (old_limit_ - old_start_) * kPointerSize, 71 false)) { 72 V8::FatalProcessOutOfMemory("StoreBuffer::SetUp"); 73 } 74 75 DCHECK(reinterpret_cast<Address>(start_) >= virtual_memory_->address()); 76 DCHECK(reinterpret_cast<Address>(limit_) >= virtual_memory_->address()); 77 Address* vm_limit = reinterpret_cast<Address*>( 78 reinterpret_cast<char*>(virtual_memory_->address()) + 79 virtual_memory_->size()); 80 DCHECK(start_ <= vm_limit); 81 DCHECK(limit_ <= vm_limit); 82 USE(vm_limit); 83 DCHECK((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0); 84 DCHECK((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) == 85 0); 86 87 if (!virtual_memory_->Commit(reinterpret_cast<Address>(start_), 88 kStoreBufferSize, 89 false)) { // Not executable. 90 V8::FatalProcessOutOfMemory("StoreBuffer::SetUp"); 91 } 92 heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_)); 93 94 hash_set_1_ = new uintptr_t[kHashSetLength]; 95 hash_set_2_ = new uintptr_t[kHashSetLength]; 96 hash_sets_are_empty_ = false; 97 98 ClearFilteringHashSets(); 99 } 100 101 102 void StoreBuffer::TearDown() { 103 delete virtual_memory_; 104 delete old_virtual_memory_; 105 delete[] hash_set_1_; 106 delete[] hash_set_2_; 107 old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL; 108 start_ = limit_ = NULL; 109 heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_)); 110 } 111 112 113 void StoreBuffer::StoreBufferOverflow(Isolate* isolate) { 114 isolate->heap()->store_buffer()->Compact(); 115 isolate->counters()->store_buffer_overflows()->Increment(); 116 } 117 118 119 bool StoreBuffer::SpaceAvailable(intptr_t space_needed) { 120 return old_limit_ - old_top_ >= space_needed; 121 } 122 123 124 void StoreBuffer::EnsureSpace(intptr_t space_needed) { 125 while (old_limit_ - old_top_ < space_needed && 126 old_limit_ < old_reserved_limit_) { 127 size_t grow = old_limit_ - old_start_; // Double size. 128 if (old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_), 129 grow * kPointerSize, false)) { 130 old_limit_ += grow; 131 } else { 132 break; 133 } 134 } 135 136 if (SpaceAvailable(space_needed)) return; 137 138 if (old_buffer_is_filtered_) return; 139 DCHECK(may_move_store_buffer_entries_); 140 Compact(); 141 142 old_buffer_is_filtered_ = true; 143 bool page_has_scan_on_scavenge_flag = false; 144 145 PointerChunkIterator it(heap_); 146 MemoryChunk* chunk; 147 while ((chunk = it.next()) != NULL) { 148 if (chunk->scan_on_scavenge()) { 149 page_has_scan_on_scavenge_flag = true; 150 break; 151 } 152 } 153 154 if (page_has_scan_on_scavenge_flag) { 155 Filter(MemoryChunk::SCAN_ON_SCAVENGE); 156 } 157 158 if (SpaceAvailable(space_needed)) return; 159 160 // Sample 1 entry in 97 and filter out the pages where we estimate that more 161 // than 1 in 8 pointers are to new space. 162 static const int kSampleFinenesses = 5; 163 static const struct Samples { 164 int prime_sample_step; 165 int threshold; 166 } samples[kSampleFinenesses] = { 167 {97, ((Page::kPageSize / kPointerSize) / 97) / 8}, 168 {23, ((Page::kPageSize / kPointerSize) / 23) / 16}, 169 {7, ((Page::kPageSize / kPointerSize) / 7) / 32}, 170 {3, ((Page::kPageSize / kPointerSize) / 3) / 256}, 171 {1, 0}}; 172 for (int i = 0; i < kSampleFinenesses; i++) { 173 ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold); 174 // As a last resort we mark all pages as being exempt from the store buffer. 175 DCHECK(i != (kSampleFinenesses - 1) || old_top_ == old_start_); 176 if (SpaceAvailable(space_needed)) return; 177 } 178 UNREACHABLE(); 179 } 180 181 182 // Sample the store buffer to see if some pages are taking up a lot of space 183 // in the store buffer. 184 void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) { 185 PointerChunkIterator it(heap_); 186 MemoryChunk* chunk; 187 while ((chunk = it.next()) != NULL) { 188 chunk->set_store_buffer_counter(0); 189 } 190 bool created_new_scan_on_scavenge_pages = false; 191 MemoryChunk* previous_chunk = NULL; 192 for (Address* p = old_start_; p < old_top_; p += prime_sample_step) { 193 Address addr = *p; 194 MemoryChunk* containing_chunk = NULL; 195 if (previous_chunk != NULL && previous_chunk->Contains(addr)) { 196 containing_chunk = previous_chunk; 197 } else { 198 containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); 199 } 200 int old_counter = containing_chunk->store_buffer_counter(); 201 if (old_counter >= threshold) { 202 containing_chunk->set_scan_on_scavenge(true); 203 created_new_scan_on_scavenge_pages = true; 204 } 205 containing_chunk->set_store_buffer_counter(old_counter + 1); 206 previous_chunk = containing_chunk; 207 } 208 if (created_new_scan_on_scavenge_pages) { 209 Filter(MemoryChunk::SCAN_ON_SCAVENGE); 210 heap_->isolate()->CountUsage( 211 v8::Isolate::UseCounterFeature::kStoreBufferOverflow); 212 } 213 old_buffer_is_filtered_ = true; 214 } 215 216 217 void StoreBuffer::Filter(int flag) { 218 Address* new_top = old_start_; 219 MemoryChunk* previous_chunk = NULL; 220 for (Address* p = old_start_; p < old_top_; p++) { 221 Address addr = *p; 222 MemoryChunk* containing_chunk = NULL; 223 if (previous_chunk != NULL && previous_chunk->Contains(addr)) { 224 containing_chunk = previous_chunk; 225 } else { 226 containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr); 227 previous_chunk = containing_chunk; 228 } 229 if (!containing_chunk->IsFlagSet(flag)) { 230 *new_top++ = addr; 231 } 232 } 233 old_top_ = new_top; 234 235 // Filtering hash sets are inconsistent with the store buffer after this 236 // operation. 237 ClearFilteringHashSets(); 238 } 239 240 241 bool StoreBuffer::PrepareForIteration() { 242 Compact(); 243 PointerChunkIterator it(heap_); 244 MemoryChunk* chunk; 245 bool page_has_scan_on_scavenge_flag = false; 246 while ((chunk = it.next()) != NULL) { 247 if (chunk->scan_on_scavenge()) { 248 page_has_scan_on_scavenge_flag = true; 249 break; 250 } 251 } 252 253 if (page_has_scan_on_scavenge_flag) { 254 Filter(MemoryChunk::SCAN_ON_SCAVENGE); 255 } 256 257 // Filtering hash sets are inconsistent with the store buffer after 258 // iteration. 259 ClearFilteringHashSets(); 260 261 return page_has_scan_on_scavenge_flag; 262 } 263 264 265 void StoreBuffer::ClearFilteringHashSets() { 266 if (!hash_sets_are_empty_) { 267 memset(reinterpret_cast<void*>(hash_set_1_), 0, 268 sizeof(uintptr_t) * kHashSetLength); 269 memset(reinterpret_cast<void*>(hash_set_2_), 0, 270 sizeof(uintptr_t) * kHashSetLength); 271 hash_sets_are_empty_ = true; 272 } 273 } 274 275 276 void StoreBuffer::GCPrologue() { 277 ClearFilteringHashSets(); 278 during_gc_ = true; 279 } 280 281 282 #ifdef VERIFY_HEAP 283 void StoreBuffer::VerifyPointers(LargeObjectSpace* space) { 284 LargeObjectIterator it(space); 285 for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { 286 if (object->IsFixedArray()) { 287 Address slot_address = object->address(); 288 Address end = object->address() + object->Size(); 289 290 while (slot_address < end) { 291 HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address); 292 // When we are not in GC the Heap::InNewSpace() predicate 293 // checks that pointers which satisfy predicate point into 294 // the active semispace. 295 Object* object = *slot; 296 heap_->InNewSpace(object); 297 slot_address += kPointerSize; 298 } 299 } 300 } 301 } 302 #endif 303 304 305 void StoreBuffer::Verify() { 306 #ifdef VERIFY_HEAP 307 VerifyPointers(heap_->lo_space()); 308 #endif 309 } 310 311 312 void StoreBuffer::GCEpilogue() { 313 during_gc_ = false; 314 #ifdef VERIFY_HEAP 315 if (FLAG_verify_heap) { 316 Verify(); 317 } 318 #endif 319 } 320 321 322 void StoreBuffer::ProcessOldToNewSlot(Address slot_address, 323 ObjectSlotCallback slot_callback) { 324 Object** slot = reinterpret_cast<Object**>(slot_address); 325 Object* object = *slot; 326 327 // If the object is not in from space, it must be a duplicate store buffer 328 // entry and the slot was already updated. 329 if (heap_->InFromSpace(object)) { 330 HeapObject* heap_object = reinterpret_cast<HeapObject*>(object); 331 DCHECK(heap_object->IsHeapObject()); 332 slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object); 333 object = *slot; 334 // If the object was in from space before and is after executing the 335 // callback in to space, the object is still live. 336 // Unfortunately, we do not know about the slot. It could be in a 337 // just freed free space object. 338 if (heap_->InToSpace(object)) { 339 EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot)); 340 } 341 } 342 } 343 344 345 void StoreBuffer::FindPointersToNewSpaceInRegion( 346 Address start, Address end, ObjectSlotCallback slot_callback) { 347 for (Address slot_address = start; slot_address < end; 348 slot_address += kPointerSize) { 349 ProcessOldToNewSlot(slot_address, slot_callback); 350 } 351 } 352 353 354 void StoreBuffer::IteratePointersInStoreBuffer( 355 ObjectSlotCallback slot_callback) { 356 Address* limit = old_top_; 357 old_top_ = old_start_; 358 { 359 DontMoveStoreBufferEntriesScope scope(this); 360 for (Address* current = old_start_; current < limit; current++) { 361 #ifdef DEBUG 362 Address* saved_top = old_top_; 363 #endif 364 ProcessOldToNewSlot(*current, slot_callback); 365 DCHECK(old_top_ == saved_top + 1 || old_top_ == saved_top); 366 } 367 } 368 } 369 370 371 void StoreBuffer::ClearInvalidStoreBufferEntries() { 372 Compact(); 373 Address* new_top = old_start_; 374 for (Address* current = old_start_; current < old_top_; current++) { 375 Address addr = *current; 376 Object** slot = reinterpret_cast<Object**>(addr); 377 Object* object = *slot; 378 if (heap_->InNewSpace(object) && object->IsHeapObject()) { 379 // If the target object is not black, the source slot must be part 380 // of a non-black (dead) object. 381 HeapObject* heap_object = HeapObject::cast(object); 382 if (Marking::IsBlack(Marking::MarkBitFrom(heap_object)) && 383 heap_->mark_compact_collector()->IsSlotInLiveObject(addr)) { 384 *new_top++ = addr; 385 } 386 } 387 } 388 old_top_ = new_top; 389 ClearFilteringHashSets(); 390 391 // Don't scan on scavenge dead large objects. 392 LargeObjectIterator it(heap_->lo_space()); 393 for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { 394 MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); 395 if (chunk->scan_on_scavenge() && 396 Marking::IsWhite(Marking::MarkBitFrom(object))) { 397 chunk->set_scan_on_scavenge(false); 398 } 399 } 400 } 401 402 403 void StoreBuffer::VerifyValidStoreBufferEntries() { 404 for (Address* current = old_start_; current < old_top_; current++) { 405 Object** slot = reinterpret_cast<Object**>(*current); 406 Object* object = *slot; 407 CHECK(object->IsHeapObject()); 408 CHECK(heap_->InNewSpace(object)); 409 heap_->mark_compact_collector()->VerifyIsSlotInLiveObject( 410 reinterpret_cast<Address>(slot), HeapObject::cast(object)); 411 } 412 } 413 414 415 class FindPointersToNewSpaceVisitor final : public ObjectVisitor { 416 public: 417 FindPointersToNewSpaceVisitor(StoreBuffer* store_buffer, 418 ObjectSlotCallback callback) 419 : store_buffer_(store_buffer), callback_(callback) {} 420 421 V8_INLINE void VisitPointers(Object** start, Object** end) override { 422 store_buffer_->FindPointersToNewSpaceInRegion( 423 reinterpret_cast<Address>(start), reinterpret_cast<Address>(end), 424 callback_); 425 } 426 427 V8_INLINE void VisitCodeEntry(Address code_entry_slot) override {} 428 429 private: 430 StoreBuffer* store_buffer_; 431 ObjectSlotCallback callback_; 432 }; 433 434 435 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) { 436 // We do not sort or remove duplicated entries from the store buffer because 437 // we expect that callback will rebuild the store buffer thus removing 438 // all duplicates and pointers to old space. 439 bool some_pages_to_scan = PrepareForIteration(); 440 441 // TODO(gc): we want to skip slots on evacuation candidates 442 // but we can't simply figure that out from slot address 443 // because slot can belong to a large object. 444 IteratePointersInStoreBuffer(slot_callback); 445 446 // We are done scanning all the pointers that were in the store buffer, but 447 // there may be some pages marked scan_on_scavenge that have pointers to new 448 // space that are not in the store buffer. We must scan them now. As we 449 // scan, the surviving pointers to new space will be added to the store 450 // buffer. If there are still a lot of pointers to new space then we will 451 // keep the scan_on_scavenge flag on the page and discard the pointers that 452 // were added to the store buffer. If there are not many pointers to new 453 // space left on the page we will keep the pointers in the store buffer and 454 // remove the flag from the page. 455 if (some_pages_to_scan) { 456 if (callback_ != NULL) { 457 (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent); 458 } 459 PointerChunkIterator it(heap_); 460 MemoryChunk* chunk; 461 FindPointersToNewSpaceVisitor visitor(this, slot_callback); 462 while ((chunk = it.next()) != NULL) { 463 if (chunk->scan_on_scavenge()) { 464 chunk->set_scan_on_scavenge(false); 465 if (callback_ != NULL) { 466 (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent); 467 } 468 if (chunk->owner() == heap_->lo_space()) { 469 LargePage* large_page = reinterpret_cast<LargePage*>(chunk); 470 HeapObject* array = large_page->GetObject(); 471 DCHECK(array->IsFixedArray()); 472 Address start = array->address(); 473 Address end = start + array->Size(); 474 FindPointersToNewSpaceInRegion(start, end, slot_callback); 475 } else { 476 Page* page = reinterpret_cast<Page*>(chunk); 477 PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner()); 478 if (owner == heap_->map_space()) { 479 DCHECK(page->WasSwept()); 480 HeapObjectIterator iterator(page); 481 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; 482 heap_object = iterator.Next()) { 483 // We skip free space objects. 484 if (!heap_object->IsFiller()) { 485 DCHECK(heap_object->IsMap()); 486 FindPointersToNewSpaceInRegion( 487 heap_object->address() + Map::kPointerFieldsBeginOffset, 488 heap_object->address() + Map::kPointerFieldsEndOffset, 489 slot_callback); 490 } 491 } 492 } else { 493 if (page->IsFlagSet(Page::COMPACTION_WAS_ABORTED)) { 494 // Aborted pages require iterating using mark bits because they 495 // don't have an iterable object layout before sweeping (which can 496 // only happen later). Note that we can never reach an 497 // aborted page through the scavenger. 498 DCHECK_EQ(heap_->gc_state(), Heap::MARK_COMPACT); 499 heap_->mark_compact_collector()->VisitLiveObjectsBody(page, 500 &visitor); 501 } else { 502 heap_->mark_compact_collector() 503 ->SweepOrWaitUntilSweepingCompleted(page); 504 HeapObjectIterator iterator(page); 505 for (HeapObject* heap_object = iterator.Next(); 506 heap_object != nullptr; heap_object = iterator.Next()) { 507 // We iterate over objects that contain new space pointers only. 508 heap_object->IterateBody(&visitor); 509 } 510 } 511 } 512 } 513 } 514 } 515 if (callback_ != NULL) { 516 (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent); 517 } 518 } 519 } 520 521 522 void StoreBuffer::Compact() { 523 Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top()); 524 525 if (top == start_) return; 526 527 // There's no check of the limit in the loop below so we check here for 528 // the worst case (compaction doesn't eliminate any pointers). 529 DCHECK(top <= limit_); 530 heap_->set_store_buffer_top(reinterpret_cast<Smi*>(start_)); 531 EnsureSpace(top - start_); 532 DCHECK(may_move_store_buffer_entries_); 533 // Goes through the addresses in the store buffer attempting to remove 534 // duplicates. In the interest of speed this is a lossy operation. Some 535 // duplicates will remain. We have two hash sets with different hash 536 // functions to reduce the number of unnecessary clashes. 537 hash_sets_are_empty_ = false; // Hash sets are in use. 538 for (Address* current = start_; current < top; current++) { 539 DCHECK(!heap_->code_space()->Contains(*current)); 540 uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current); 541 // Shift out the last bits including any tags. 542 int_addr >>= kPointerSizeLog2; 543 // The upper part of an address is basically random because of ASLR and OS 544 // non-determinism, so we use only the bits within a page for hashing to 545 // make v8's behavior (more) deterministic. 546 uintptr_t hash_addr = 547 int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2); 548 int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) & 549 (kHashSetLength - 1)); 550 if (hash_set_1_[hash1] == int_addr) continue; 551 uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2)); 552 hash2 ^= hash2 >> (kHashSetLengthLog2 * 2); 553 hash2 &= (kHashSetLength - 1); 554 if (hash_set_2_[hash2] == int_addr) continue; 555 if (hash_set_1_[hash1] == 0) { 556 hash_set_1_[hash1] = int_addr; 557 } else if (hash_set_2_[hash2] == 0) { 558 hash_set_2_[hash2] = int_addr; 559 } else { 560 // Rather than slowing down we just throw away some entries. This will 561 // cause some duplicates to remain undetected. 562 hash_set_1_[hash1] = int_addr; 563 hash_set_2_[hash2] = 0; 564 } 565 old_buffer_is_sorted_ = false; 566 old_buffer_is_filtered_ = false; 567 *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2); 568 DCHECK(old_top_ <= old_limit_); 569 } 570 heap_->isolate()->counters()->store_buffer_compactions()->Increment(); 571 } 572 573 574 void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) { 575 if (event == kStoreBufferStartScanningPagesEvent) { 576 start_of_current_page_ = NULL; 577 current_page_ = NULL; 578 } else if (event == kStoreBufferScanningPageEvent) { 579 if (current_page_ != NULL) { 580 // If this page already overflowed the store buffer during this iteration. 581 if (current_page_->scan_on_scavenge()) { 582 // Then we should wipe out the entries that have been added for it. 583 store_buffer_->SetTop(start_of_current_page_); 584 } else if (store_buffer_->Top() - start_of_current_page_ >= 585 (store_buffer_->Limit() - store_buffer_->Top()) >> 2) { 586 // Did we find too many pointers in the previous page? The heuristic is 587 // that no page can take more then 1/5 the remaining slots in the store 588 // buffer. 589 current_page_->set_scan_on_scavenge(true); 590 store_buffer_->SetTop(start_of_current_page_); 591 } else { 592 // In this case the page we scanned took a reasonable number of slots in 593 // the store buffer. It has now been rehabilitated and is no longer 594 // marked scan_on_scavenge. 595 DCHECK(!current_page_->scan_on_scavenge()); 596 } 597 } 598 start_of_current_page_ = store_buffer_->Top(); 599 current_page_ = page; 600 } else if (event == kStoreBufferFullEvent) { 601 // The current page overflowed the store buffer again. Wipe out its entries 602 // in the store buffer and mark it scan-on-scavenge again. This may happen 603 // several times while scanning. 604 if (current_page_ == NULL) { 605 // Store Buffer overflowed while scanning promoted objects. These are not 606 // in any particular page, though they are likely to be clustered by the 607 // allocation routines. 608 store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2); 609 } else { 610 // Store Buffer overflowed while scanning a particular old space page for 611 // pointers to new space. 612 DCHECK(current_page_ == page); 613 DCHECK(page != NULL); 614 current_page_->set_scan_on_scavenge(true); 615 DCHECK(start_of_current_page_ != store_buffer_->Top()); 616 store_buffer_->SetTop(start_of_current_page_); 617 } 618 } else { 619 UNREACHABLE(); 620 } 621 } 622 623 } // namespace internal 624 } // namespace v8 625