1 2 // Copyright (c) 1994-2006 Sun Microsystems Inc. 3 // All Rights Reserved. 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // - Redistributions of source code must retain the above copyright notice, 10 // this list of conditions and the following disclaimer. 11 // 12 // - Redistribution in binary form must reproduce the above copyright 13 // notice, this list of conditions and the following disclaimer in the 14 // documentation and/or other materials provided with the distribution. 15 // 16 // - Neither the name of Sun Microsystems or the names of contributors may 17 // be used to endorse or promote products derived from this software without 18 // specific prior written permission. 19 // 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 32 // The original source code covered by the above license above has been 33 // modified significantly by Google Inc. 34 // Copyright 2012 the V8 project authors. All rights reserved. 35 36 37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_ 38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_ 39 40 #include "src/mips/assembler-mips.h" 41 42 #include "src/assembler.h" 43 #include "src/debug/debug.h" 44 45 46 namespace v8 { 47 namespace internal { 48 49 50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); } 51 52 53 // ----------------------------------------------------------------------------- 54 // Operand and MemOperand. 55 56 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) { 57 rm_ = no_reg; 58 imm32_ = immediate; 59 rmode_ = rmode; 60 } 61 62 63 Operand::Operand(const ExternalReference& f) { 64 rm_ = no_reg; 65 imm32_ = reinterpret_cast<int32_t>(f.address()); 66 rmode_ = RelocInfo::EXTERNAL_REFERENCE; 67 } 68 69 70 Operand::Operand(Smi* value) { 71 rm_ = no_reg; 72 imm32_ = reinterpret_cast<intptr_t>(value); 73 rmode_ = RelocInfo::NONE32; 74 } 75 76 77 Operand::Operand(Register rm) { 78 rm_ = rm; 79 } 80 81 82 bool Operand::is_reg() const { 83 return rm_.is_valid(); 84 } 85 86 87 // ----------------------------------------------------------------------------- 88 // RelocInfo. 89 90 void RelocInfo::apply(intptr_t delta) { 91 if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) { 92 // Absolute code pointer inside code object moves with the code object. 93 byte* p = reinterpret_cast<byte*>(pc_); 94 int count = Assembler::RelocateInternalReference(rmode_, p, delta); 95 Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t)); 96 } 97 } 98 99 100 Address RelocInfo::target_address() { 101 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); 102 return Assembler::target_address_at(pc_, host_); 103 } 104 105 106 Address RelocInfo::target_address_address() { 107 DCHECK(IsCodeTarget(rmode_) || 108 IsRuntimeEntry(rmode_) || 109 rmode_ == EMBEDDED_OBJECT || 110 rmode_ == EXTERNAL_REFERENCE); 111 // Read the address of the word containing the target_address in an 112 // instruction stream. 113 // The only architecture-independent user of this function is the serializer. 114 // The serializer uses it to find out how many raw bytes of instruction to 115 // output before the next target. 116 // For an instruction like LUI/ORI where the target bits are mixed into the 117 // instruction bits, the size of the target will be zero, indicating that the 118 // serializer should not step forward in memory after a target is resolved 119 // and written. In this case the target_address_address function should 120 // return the end of the instructions to be patched, allowing the 121 // deserializer to deserialize the instructions as raw bytes and put them in 122 // place, ready to be patched with the target. After jump optimization, 123 // that is the address of the instruction that follows J/JAL/JR/JALR 124 // instruction. 125 return reinterpret_cast<Address>( 126 pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize); 127 } 128 129 130 Address RelocInfo::constant_pool_entry_address() { 131 UNREACHABLE(); 132 return NULL; 133 } 134 135 136 int RelocInfo::target_address_size() { 137 return Assembler::kSpecialTargetSize; 138 } 139 140 141 void RelocInfo::set_target_address(Address target, 142 WriteBarrierMode write_barrier_mode, 143 ICacheFlushMode icache_flush_mode) { 144 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); 145 Assembler::set_target_address_at(isolate_, pc_, host_, target, 146 icache_flush_mode); 147 if (write_barrier_mode == UPDATE_WRITE_BARRIER && 148 host() != NULL && IsCodeTarget(rmode_)) { 149 Object* target_code = Code::GetCodeFromTargetAddress(target); 150 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( 151 host(), this, HeapObject::cast(target_code)); 152 } 153 } 154 155 156 Address Assembler::target_address_from_return_address(Address pc) { 157 return pc - kCallTargetAddressOffset; 158 } 159 160 161 void Assembler::set_target_internal_reference_encoded_at(Address pc, 162 Address target) { 163 // Encoded internal references are lui/ori load of 32-bit abolute address. 164 Instr instr_lui = Assembler::instr_at(pc + 0 * Assembler::kInstrSize); 165 Instr instr_ori = Assembler::instr_at(pc + 1 * Assembler::kInstrSize); 166 DCHECK(Assembler::IsLui(instr_lui)); 167 DCHECK(Assembler::IsOri(instr_ori)); 168 instr_lui &= ~kImm16Mask; 169 instr_ori &= ~kImm16Mask; 170 int32_t imm = reinterpret_cast<int32_t>(target); 171 DCHECK((imm & 3) == 0); 172 Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize, 173 instr_lui | ((imm >> kLuiShift) & kImm16Mask)); 174 Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize, 175 instr_ori | (imm & kImm16Mask)); 176 177 // Currently used only by deserializer, and all code will be flushed 178 // after complete deserialization, no need to flush on each reference. 179 } 180 181 182 void Assembler::deserialization_set_target_internal_reference_at( 183 Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { 184 if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { 185 DCHECK(IsLui(instr_at(pc))); 186 set_target_internal_reference_encoded_at(pc, target); 187 } else { 188 DCHECK(mode == RelocInfo::INTERNAL_REFERENCE); 189 Memory::Address_at(pc) = target; 190 } 191 } 192 193 194 Object* RelocInfo::target_object() { 195 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 196 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); 197 } 198 199 200 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { 201 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 202 return Handle<Object>(reinterpret_cast<Object**>( 203 Assembler::target_address_at(pc_, host_))); 204 } 205 206 207 void RelocInfo::set_target_object(Object* target, 208 WriteBarrierMode write_barrier_mode, 209 ICacheFlushMode icache_flush_mode) { 210 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 211 Assembler::set_target_address_at(isolate_, pc_, host_, 212 reinterpret_cast<Address>(target), 213 icache_flush_mode); 214 if (write_barrier_mode == UPDATE_WRITE_BARRIER && 215 host() != NULL && 216 target->IsHeapObject()) { 217 host()->GetHeap()->incremental_marking()->RecordWrite( 218 host(), &Memory::Object_at(pc_), HeapObject::cast(target)); 219 } 220 } 221 222 223 Address RelocInfo::target_external_reference() { 224 DCHECK(rmode_ == EXTERNAL_REFERENCE); 225 return Assembler::target_address_at(pc_, host_); 226 } 227 228 229 Address RelocInfo::target_internal_reference() { 230 if (rmode_ == INTERNAL_REFERENCE) { 231 return Memory::Address_at(pc_); 232 } else { 233 // Encoded internal references are lui/ori load of 32-bit abolute address. 234 DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED); 235 Instr instr_lui = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize); 236 Instr instr_ori = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize); 237 DCHECK(Assembler::IsLui(instr_lui)); 238 DCHECK(Assembler::IsOri(instr_ori)); 239 int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift; 240 imm |= (instr_ori & static_cast<int32_t>(kImm16Mask)); 241 return reinterpret_cast<Address>(imm); 242 } 243 } 244 245 246 Address RelocInfo::target_internal_reference_address() { 247 DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED); 248 return reinterpret_cast<Address>(pc_); 249 } 250 251 252 Address RelocInfo::target_runtime_entry(Assembler* origin) { 253 DCHECK(IsRuntimeEntry(rmode_)); 254 return target_address(); 255 } 256 257 258 void RelocInfo::set_target_runtime_entry(Address target, 259 WriteBarrierMode write_barrier_mode, 260 ICacheFlushMode icache_flush_mode) { 261 DCHECK(IsRuntimeEntry(rmode_)); 262 if (target_address() != target) 263 set_target_address(target, write_barrier_mode, icache_flush_mode); 264 } 265 266 267 Handle<Cell> RelocInfo::target_cell_handle() { 268 DCHECK(rmode_ == RelocInfo::CELL); 269 Address address = Memory::Address_at(pc_); 270 return Handle<Cell>(reinterpret_cast<Cell**>(address)); 271 } 272 273 274 Cell* RelocInfo::target_cell() { 275 DCHECK(rmode_ == RelocInfo::CELL); 276 return Cell::FromValueAddress(Memory::Address_at(pc_)); 277 } 278 279 280 void RelocInfo::set_target_cell(Cell* cell, 281 WriteBarrierMode write_barrier_mode, 282 ICacheFlushMode icache_flush_mode) { 283 DCHECK(rmode_ == RelocInfo::CELL); 284 Address address = cell->address() + Cell::kValueOffset; 285 Memory::Address_at(pc_) = address; 286 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { 287 // TODO(1550) We are passing NULL as a slot because cell can never be on 288 // evacuation candidate. 289 host()->GetHeap()->incremental_marking()->RecordWrite( 290 host(), NULL, cell); 291 } 292 } 293 294 295 static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize; 296 297 298 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { 299 UNREACHABLE(); // This should never be reached on Arm. 300 return Handle<Object>(); 301 } 302 303 304 Code* RelocInfo::code_age_stub() { 305 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); 306 return Code::GetCodeFromTargetAddress( 307 Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_)); 308 } 309 310 311 void RelocInfo::set_code_age_stub(Code* stub, 312 ICacheFlushMode icache_flush_mode) { 313 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); 314 Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_, 315 stub->instruction_start()); 316 } 317 318 319 Address RelocInfo::debug_call_address() { 320 // The pc_ offset of 0 assumes patched debug break slot or return 321 // sequence. 322 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); 323 return Assembler::target_address_at(pc_, host_); 324 } 325 326 327 void RelocInfo::set_debug_call_address(Address target) { 328 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); 329 // The pc_ offset of 0 assumes patched debug break slot or return 330 // sequence. 331 Assembler::set_target_address_at(isolate_, pc_, host_, target); 332 if (host() != NULL) { 333 Object* target_code = Code::GetCodeFromTargetAddress(target); 334 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( 335 host(), this, HeapObject::cast(target_code)); 336 } 337 } 338 339 340 void RelocInfo::WipeOut() { 341 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || 342 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || 343 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); 344 if (IsInternalReference(rmode_)) { 345 Memory::Address_at(pc_) = NULL; 346 } else if (IsInternalReferenceEncoded(rmode_)) { 347 Assembler::set_target_internal_reference_encoded_at(pc_, nullptr); 348 } else { 349 Assembler::set_target_address_at(isolate_, pc_, host_, NULL); 350 } 351 } 352 353 354 bool RelocInfo::IsPatchedReturnSequence() { 355 Instr instr0 = Assembler::instr_at(pc_); 356 Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize); 357 Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize); 358 bool patched_return = ((instr0 & kOpcodeMask) == LUI && 359 (instr1 & kOpcodeMask) == ORI && 360 ((instr2 & kOpcodeMask) == JAL || 361 ((instr2 & kOpcodeMask) == SPECIAL && 362 (instr2 & kFunctionFieldMask) == JALR))); 363 return patched_return; 364 } 365 366 367 bool RelocInfo::IsPatchedDebugBreakSlotSequence() { 368 Instr current_instr = Assembler::instr_at(pc_); 369 return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP); 370 } 371 372 373 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { 374 RelocInfo::Mode mode = rmode(); 375 if (mode == RelocInfo::EMBEDDED_OBJECT) { 376 visitor->VisitEmbeddedPointer(this); 377 } else if (RelocInfo::IsCodeTarget(mode)) { 378 visitor->VisitCodeTarget(this); 379 } else if (mode == RelocInfo::CELL) { 380 visitor->VisitCell(this); 381 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { 382 visitor->VisitExternalReference(this); 383 } else if (mode == RelocInfo::INTERNAL_REFERENCE || 384 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { 385 visitor->VisitInternalReference(this); 386 } else if (RelocInfo::IsCodeAgeSequence(mode)) { 387 visitor->VisitCodeAgeSequence(this); 388 } else if (RelocInfo::IsDebugBreakSlot(mode) && 389 IsPatchedDebugBreakSlotSequence()) { 390 visitor->VisitDebugTarget(this); 391 } else if (RelocInfo::IsRuntimeEntry(mode)) { 392 visitor->VisitRuntimeEntry(this); 393 } 394 } 395 396 397 template<typename StaticVisitor> 398 void RelocInfo::Visit(Heap* heap) { 399 RelocInfo::Mode mode = rmode(); 400 if (mode == RelocInfo::EMBEDDED_OBJECT) { 401 StaticVisitor::VisitEmbeddedPointer(heap, this); 402 } else if (RelocInfo::IsCodeTarget(mode)) { 403 StaticVisitor::VisitCodeTarget(heap, this); 404 } else if (mode == RelocInfo::CELL) { 405 StaticVisitor::VisitCell(heap, this); 406 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { 407 StaticVisitor::VisitExternalReference(this); 408 } else if (mode == RelocInfo::INTERNAL_REFERENCE || 409 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { 410 StaticVisitor::VisitInternalReference(this); 411 } else if (RelocInfo::IsCodeAgeSequence(mode)) { 412 StaticVisitor::VisitCodeAgeSequence(heap, this); 413 } else if (RelocInfo::IsDebugBreakSlot(mode) && 414 IsPatchedDebugBreakSlotSequence()) { 415 StaticVisitor::VisitDebugTarget(heap, this); 416 } else if (RelocInfo::IsRuntimeEntry(mode)) { 417 StaticVisitor::VisitRuntimeEntry(this); 418 } 419 } 420 421 422 // ----------------------------------------------------------------------------- 423 // Assembler. 424 425 426 void Assembler::CheckBuffer() { 427 if (buffer_space() <= kGap) { 428 GrowBuffer(); 429 } 430 } 431 432 433 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) { 434 if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) { 435 CheckTrampolinePool(); 436 } 437 } 438 439 440 void Assembler::CheckForEmitInForbiddenSlot() { 441 if (!is_buffer_growth_blocked()) { 442 CheckBuffer(); 443 } 444 if (IsPrevInstrCompactBranch()) { 445 // Nop instruction to preceed a CTI in forbidden slot: 446 Instr nop = SPECIAL | SLL; 447 *reinterpret_cast<Instr*>(pc_) = nop; 448 pc_ += kInstrSize; 449 450 ClearCompactBranchState(); 451 } 452 } 453 454 455 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) { 456 if (IsPrevInstrCompactBranch()) { 457 if (Instruction::IsForbiddenAfterBranchInstr(x)) { 458 // Nop instruction to preceed a CTI in forbidden slot: 459 Instr nop = SPECIAL | SLL; 460 *reinterpret_cast<Instr*>(pc_) = nop; 461 pc_ += kInstrSize; 462 } 463 ClearCompactBranchState(); 464 } 465 *reinterpret_cast<Instr*>(pc_) = x; 466 pc_ += kInstrSize; 467 if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) { 468 EmittedCompactBranchInstruction(); 469 } 470 CheckTrampolinePoolQuick(); 471 } 472 473 474 template <typename T> 475 void Assembler::EmitHelper(T x) { 476 *reinterpret_cast<T*>(pc_) = x; 477 pc_ += sizeof(x); 478 CheckTrampolinePoolQuick(); 479 } 480 481 482 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) { 483 if (!is_buffer_growth_blocked()) { 484 CheckBuffer(); 485 } 486 EmitHelper(x, is_compact_branch); 487 } 488 489 490 } // namespace internal 491 } // namespace v8 492 493 #endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_ 494