1 2 // Copyright (c) 1994-2006 Sun Microsystems Inc. 3 // All Rights Reserved. 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // - Redistributions of source code must retain the above copyright notice, 10 // this list of conditions and the following disclaimer. 11 // 12 // - Redistribution in binary form must reproduce the above copyright 13 // notice, this list of conditions and the following disclaimer in the 14 // documentation and/or other materials provided with the distribution. 15 // 16 // - Neither the name of Sun Microsystems or the names of contributors may 17 // be used to endorse or promote products derived from this software without 18 // specific prior written permission. 19 // 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 32 // The original source code covered by the above license above has been 33 // modified significantly by Google Inc. 34 // Copyright 2012 the V8 project authors. All rights reserved. 35 36 37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_ 38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_ 39 40 #include "src/mips64/assembler-mips64.h" 41 42 #include "src/assembler.h" 43 #include "src/debug/debug.h" 44 45 46 namespace v8 { 47 namespace internal { 48 49 50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); } 51 52 53 // ----------------------------------------------------------------------------- 54 // Operand and MemOperand. 55 56 Operand::Operand(int64_t immediate, RelocInfo::Mode rmode) { 57 rm_ = no_reg; 58 imm64_ = immediate; 59 rmode_ = rmode; 60 } 61 62 63 Operand::Operand(const ExternalReference& f) { 64 rm_ = no_reg; 65 imm64_ = reinterpret_cast<int64_t>(f.address()); 66 rmode_ = RelocInfo::EXTERNAL_REFERENCE; 67 } 68 69 70 Operand::Operand(Smi* value) { 71 rm_ = no_reg; 72 imm64_ = reinterpret_cast<intptr_t>(value); 73 rmode_ = RelocInfo::NONE32; 74 } 75 76 77 Operand::Operand(Register rm) { 78 rm_ = rm; 79 } 80 81 82 bool Operand::is_reg() const { 83 return rm_.is_valid(); 84 } 85 86 87 // ----------------------------------------------------------------------------- 88 // RelocInfo. 89 90 void RelocInfo::apply(intptr_t delta) { 91 if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) { 92 // Absolute code pointer inside code object moves with the code object. 93 byte* p = reinterpret_cast<byte*>(pc_); 94 int count = Assembler::RelocateInternalReference(rmode_, p, delta); 95 Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t)); 96 } 97 } 98 99 100 Address RelocInfo::target_address() { 101 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); 102 return Assembler::target_address_at(pc_, host_); 103 } 104 105 106 Address RelocInfo::target_address_address() { 107 DCHECK(IsCodeTarget(rmode_) || 108 IsRuntimeEntry(rmode_) || 109 rmode_ == EMBEDDED_OBJECT || 110 rmode_ == EXTERNAL_REFERENCE); 111 // Read the address of the word containing the target_address in an 112 // instruction stream. 113 // The only architecture-independent user of this function is the serializer. 114 // The serializer uses it to find out how many raw bytes of instruction to 115 // output before the next target. 116 // For an instruction like LUI/ORI where the target bits are mixed into the 117 // instruction bits, the size of the target will be zero, indicating that the 118 // serializer should not step forward in memory after a target is resolved 119 // and written. In this case the target_address_address function should 120 // return the end of the instructions to be patched, allowing the 121 // deserializer to deserialize the instructions as raw bytes and put them in 122 // place, ready to be patched with the target. After jump optimization, 123 // that is the address of the instruction that follows J/JAL/JR/JALR 124 // instruction. 125 // return reinterpret_cast<Address>( 126 // pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize); 127 return reinterpret_cast<Address>( 128 pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize); 129 } 130 131 132 Address RelocInfo::constant_pool_entry_address() { 133 UNREACHABLE(); 134 return NULL; 135 } 136 137 138 int RelocInfo::target_address_size() { 139 return Assembler::kSpecialTargetSize; 140 } 141 142 143 void RelocInfo::set_target_address(Address target, 144 WriteBarrierMode write_barrier_mode, 145 ICacheFlushMode icache_flush_mode) { 146 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); 147 Assembler::set_target_address_at(isolate_, pc_, host_, target, 148 icache_flush_mode); 149 if (write_barrier_mode == UPDATE_WRITE_BARRIER && 150 host() != NULL && IsCodeTarget(rmode_)) { 151 Object* target_code = Code::GetCodeFromTargetAddress(target); 152 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( 153 host(), this, HeapObject::cast(target_code)); 154 } 155 } 156 157 158 Address Assembler::target_address_from_return_address(Address pc) { 159 return pc - kCallTargetAddressOffset; 160 } 161 162 163 void Assembler::set_target_internal_reference_encoded_at(Address pc, 164 Address target) { 165 // Encoded internal references are j/jal instructions. 166 Instr instr = Assembler::instr_at(pc + 0 * Assembler::kInstrSize); 167 168 uint64_t imm28 = 169 (reinterpret_cast<uint64_t>(target) & static_cast<uint64_t>(kImm28Mask)); 170 171 instr &= ~kImm26Mask; 172 uint64_t imm26 = imm28 >> 2; 173 DCHECK(is_uint26(imm26)); 174 175 instr_at_put(pc, instr | (imm26 & kImm26Mask)); 176 // Currently used only by deserializer, and all code will be flushed 177 // after complete deserialization, no need to flush on each reference. 178 } 179 180 181 void Assembler::deserialization_set_target_internal_reference_at( 182 Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { 183 if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { 184 DCHECK(IsJ(instr_at(pc))); 185 set_target_internal_reference_encoded_at(pc, target); 186 } else { 187 DCHECK(mode == RelocInfo::INTERNAL_REFERENCE); 188 Memory::Address_at(pc) = target; 189 } 190 } 191 192 193 Object* RelocInfo::target_object() { 194 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 195 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); 196 } 197 198 199 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { 200 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 201 return Handle<Object>(reinterpret_cast<Object**>( 202 Assembler::target_address_at(pc_, host_))); 203 } 204 205 206 void RelocInfo::set_target_object(Object* target, 207 WriteBarrierMode write_barrier_mode, 208 ICacheFlushMode icache_flush_mode) { 209 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); 210 Assembler::set_target_address_at(isolate_, pc_, host_, 211 reinterpret_cast<Address>(target), 212 icache_flush_mode); 213 if (write_barrier_mode == UPDATE_WRITE_BARRIER && 214 host() != NULL && 215 target->IsHeapObject()) { 216 host()->GetHeap()->incremental_marking()->RecordWrite( 217 host(), &Memory::Object_at(pc_), HeapObject::cast(target)); 218 } 219 } 220 221 222 Address RelocInfo::target_external_reference() { 223 DCHECK(rmode_ == EXTERNAL_REFERENCE); 224 return Assembler::target_address_at(pc_, host_); 225 } 226 227 228 Address RelocInfo::target_internal_reference() { 229 if (rmode_ == INTERNAL_REFERENCE) { 230 return Memory::Address_at(pc_); 231 } else { 232 // Encoded internal references are j/jal instructions. 233 DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED); 234 Instr instr = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize); 235 instr &= kImm26Mask; 236 uint64_t imm28 = instr << 2; 237 uint64_t segment = 238 (reinterpret_cast<uint64_t>(pc_) & ~static_cast<uint64_t>(kImm28Mask)); 239 return reinterpret_cast<Address>(segment | imm28); 240 } 241 } 242 243 244 Address RelocInfo::target_internal_reference_address() { 245 DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED); 246 return reinterpret_cast<Address>(pc_); 247 } 248 249 250 Address RelocInfo::target_runtime_entry(Assembler* origin) { 251 DCHECK(IsRuntimeEntry(rmode_)); 252 return target_address(); 253 } 254 255 256 void RelocInfo::set_target_runtime_entry(Address target, 257 WriteBarrierMode write_barrier_mode, 258 ICacheFlushMode icache_flush_mode) { 259 DCHECK(IsRuntimeEntry(rmode_)); 260 if (target_address() != target) 261 set_target_address(target, write_barrier_mode, icache_flush_mode); 262 } 263 264 265 Handle<Cell> RelocInfo::target_cell_handle() { 266 DCHECK(rmode_ == RelocInfo::CELL); 267 Address address = Memory::Address_at(pc_); 268 return Handle<Cell>(reinterpret_cast<Cell**>(address)); 269 } 270 271 272 Cell* RelocInfo::target_cell() { 273 DCHECK(rmode_ == RelocInfo::CELL); 274 return Cell::FromValueAddress(Memory::Address_at(pc_)); 275 } 276 277 278 void RelocInfo::set_target_cell(Cell* cell, 279 WriteBarrierMode write_barrier_mode, 280 ICacheFlushMode icache_flush_mode) { 281 DCHECK(rmode_ == RelocInfo::CELL); 282 Address address = cell->address() + Cell::kValueOffset; 283 Memory::Address_at(pc_) = address; 284 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { 285 // TODO(1550) We are passing NULL as a slot because cell can never be on 286 // evacuation candidate. 287 host()->GetHeap()->incremental_marking()->RecordWrite( 288 host(), NULL, cell); 289 } 290 } 291 292 293 static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize; 294 295 296 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { 297 UNREACHABLE(); // This should never be reached on Arm. 298 return Handle<Object>(); 299 } 300 301 302 Code* RelocInfo::code_age_stub() { 303 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); 304 return Code::GetCodeFromTargetAddress( 305 Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_)); 306 } 307 308 309 void RelocInfo::set_code_age_stub(Code* stub, 310 ICacheFlushMode icache_flush_mode) { 311 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); 312 Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_, 313 stub->instruction_start()); 314 } 315 316 317 Address RelocInfo::debug_call_address() { 318 // The pc_ offset of 0 assumes patched debug break slot or return 319 // sequence. 320 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); 321 return Assembler::target_address_at(pc_, host_); 322 } 323 324 325 void RelocInfo::set_debug_call_address(Address target) { 326 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); 327 // The pc_ offset of 0 assumes patched debug break slot or return 328 // sequence. 329 Assembler::set_target_address_at(isolate_, pc_, host_, target); 330 if (host() != NULL) { 331 Object* target_code = Code::GetCodeFromTargetAddress(target); 332 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( 333 host(), this, HeapObject::cast(target_code)); 334 } 335 } 336 337 338 void RelocInfo::WipeOut() { 339 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || 340 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || 341 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); 342 if (IsInternalReference(rmode_)) { 343 Memory::Address_at(pc_) = NULL; 344 } else if (IsInternalReferenceEncoded(rmode_)) { 345 Assembler::set_target_internal_reference_encoded_at(pc_, nullptr); 346 } else { 347 Assembler::set_target_address_at(isolate_, pc_, host_, NULL); 348 } 349 } 350 351 352 bool RelocInfo::IsPatchedReturnSequence() { 353 Instr instr0 = Assembler::instr_at(pc_); // lui. 354 Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize); // ori. 355 Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize); // dsll. 356 Instr instr3 = Assembler::instr_at(pc_ + 3 * Assembler::kInstrSize); // ori. 357 Instr instr4 = Assembler::instr_at(pc_ + 4 * Assembler::kInstrSize); // jalr. 358 359 bool patched_return = ((instr0 & kOpcodeMask) == LUI && 360 (instr1 & kOpcodeMask) == ORI && 361 (instr2 & kFunctionFieldMask) == DSLL && 362 (instr3 & kOpcodeMask) == ORI && 363 (instr4 & kFunctionFieldMask) == JALR); 364 return patched_return; 365 } 366 367 368 bool RelocInfo::IsPatchedDebugBreakSlotSequence() { 369 Instr current_instr = Assembler::instr_at(pc_); 370 return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP); 371 } 372 373 374 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { 375 RelocInfo::Mode mode = rmode(); 376 if (mode == RelocInfo::EMBEDDED_OBJECT) { 377 visitor->VisitEmbeddedPointer(this); 378 } else if (RelocInfo::IsCodeTarget(mode)) { 379 visitor->VisitCodeTarget(this); 380 } else if (mode == RelocInfo::CELL) { 381 visitor->VisitCell(this); 382 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { 383 visitor->VisitExternalReference(this); 384 } else if (mode == RelocInfo::INTERNAL_REFERENCE || 385 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { 386 visitor->VisitInternalReference(this); 387 } else if (RelocInfo::IsCodeAgeSequence(mode)) { 388 visitor->VisitCodeAgeSequence(this); 389 } else if (RelocInfo::IsDebugBreakSlot(mode) && 390 IsPatchedDebugBreakSlotSequence()) { 391 visitor->VisitDebugTarget(this); 392 } else if (RelocInfo::IsRuntimeEntry(mode)) { 393 visitor->VisitRuntimeEntry(this); 394 } 395 } 396 397 398 template<typename StaticVisitor> 399 void RelocInfo::Visit(Heap* heap) { 400 RelocInfo::Mode mode = rmode(); 401 if (mode == RelocInfo::EMBEDDED_OBJECT) { 402 StaticVisitor::VisitEmbeddedPointer(heap, this); 403 } else if (RelocInfo::IsCodeTarget(mode)) { 404 StaticVisitor::VisitCodeTarget(heap, this); 405 } else if (mode == RelocInfo::CELL) { 406 StaticVisitor::VisitCell(heap, this); 407 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { 408 StaticVisitor::VisitExternalReference(this); 409 } else if (mode == RelocInfo::INTERNAL_REFERENCE || 410 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { 411 StaticVisitor::VisitInternalReference(this); 412 } else if (RelocInfo::IsCodeAgeSequence(mode)) { 413 StaticVisitor::VisitCodeAgeSequence(heap, this); 414 } else if (RelocInfo::IsDebugBreakSlot(mode) && 415 IsPatchedDebugBreakSlotSequence()) { 416 StaticVisitor::VisitDebugTarget(heap, this); 417 } else if (RelocInfo::IsRuntimeEntry(mode)) { 418 StaticVisitor::VisitRuntimeEntry(this); 419 } 420 } 421 422 423 // ----------------------------------------------------------------------------- 424 // Assembler. 425 426 427 void Assembler::CheckBuffer() { 428 if (buffer_space() <= kGap) { 429 GrowBuffer(); 430 } 431 } 432 433 434 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) { 435 if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) { 436 CheckTrampolinePool(); 437 } 438 } 439 440 441 void Assembler::CheckForEmitInForbiddenSlot() { 442 if (!is_buffer_growth_blocked()) { 443 CheckBuffer(); 444 } 445 if (IsPrevInstrCompactBranch()) { 446 // Nop instruction to preceed a CTI in forbidden slot: 447 Instr nop = SPECIAL | SLL; 448 *reinterpret_cast<Instr*>(pc_) = nop; 449 pc_ += kInstrSize; 450 451 ClearCompactBranchState(); 452 } 453 } 454 455 456 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) { 457 if (IsPrevInstrCompactBranch()) { 458 if (Instruction::IsForbiddenAfterBranchInstr(x)) { 459 // Nop instruction to preceed a CTI in forbidden slot: 460 Instr nop = SPECIAL | SLL; 461 *reinterpret_cast<Instr*>(pc_) = nop; 462 pc_ += kInstrSize; 463 } 464 ClearCompactBranchState(); 465 } 466 *reinterpret_cast<Instr*>(pc_) = x; 467 pc_ += kInstrSize; 468 if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) { 469 EmittedCompactBranchInstruction(); 470 } 471 CheckTrampolinePoolQuick(); 472 } 473 474 475 template <typename T> 476 void Assembler::EmitHelper(T x) { 477 *reinterpret_cast<T*>(pc_) = x; 478 pc_ += sizeof(x); 479 CheckTrampolinePoolQuick(); 480 } 481 482 483 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) { 484 if (!is_buffer_growth_blocked()) { 485 CheckBuffer(); 486 } 487 EmitHelper(x, is_compact_branch); 488 } 489 490 491 void Assembler::emit(uint64_t data) { 492 CheckForEmitInForbiddenSlot(); 493 EmitHelper(data); 494 } 495 496 497 } // namespace internal 498 } // namespace v8 499 500 #endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_ 501