Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
      6 #define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
      7 
      8 #include "src/arm64/assembler-arm64.h"
      9 #include "src/macro-assembler.h"
     10 #include "src/regexp/regexp-macro-assembler.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 
     16 #ifndef V8_INTERPRETED_REGEXP
     17 class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler {
     18  public:
     19   RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
     20                             int registers_to_save);
     21   virtual ~RegExpMacroAssemblerARM64();
     22   virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
     23   virtual int stack_limit_slack();
     24   virtual void AdvanceCurrentPosition(int by);
     25   virtual void AdvanceRegister(int reg, int by);
     26   virtual void Backtrack();
     27   virtual void Bind(Label* label);
     28   virtual void CheckAtStart(Label* on_at_start);
     29   virtual void CheckCharacter(unsigned c, Label* on_equal);
     30   virtual void CheckCharacterAfterAnd(unsigned c,
     31                                       unsigned mask,
     32                                       Label* on_equal);
     33   virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
     34   virtual void CheckCharacterLT(uc16 limit, Label* on_less);
     35   virtual void CheckCharacters(Vector<const uc16> str,
     36                                int cp_offset,
     37                                Label* on_failure,
     38                                bool check_end_of_string);
     39   // A "greedy loop" is a loop that is both greedy and with a simple
     40   // body. It has a particularly simple implementation.
     41   virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
     42   virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
     43   virtual void CheckNotBackReference(int start_reg, bool read_backward,
     44                                      Label* on_no_match);
     45   virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
     46                                                bool read_backward,
     47                                                Label* on_no_match);
     48   virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
     49   virtual void CheckNotCharacterAfterAnd(unsigned c,
     50                                          unsigned mask,
     51                                          Label* on_not_equal);
     52   virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
     53                                               uc16 minus,
     54                                               uc16 mask,
     55                                               Label* on_not_equal);
     56   virtual void CheckCharacterInRange(uc16 from,
     57                                      uc16 to,
     58                                      Label* on_in_range);
     59   virtual void CheckCharacterNotInRange(uc16 from,
     60                                         uc16 to,
     61                                         Label* on_not_in_range);
     62   virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
     63 
     64   // Checks whether the given offset from the current position is before
     65   // the end of the string.
     66   virtual void CheckPosition(int cp_offset, Label* on_outside_input);
     67   virtual bool CheckSpecialCharacterClass(uc16 type,
     68                                           Label* on_no_match);
     69   virtual void Fail();
     70   virtual Handle<HeapObject> GetCode(Handle<String> source);
     71   virtual void GoTo(Label* label);
     72   virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
     73   virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
     74   virtual void IfRegisterEqPos(int reg, Label* if_eq);
     75   virtual IrregexpImplementation Implementation();
     76   virtual void LoadCurrentCharacter(int cp_offset,
     77                                     Label* on_end_of_input,
     78                                     bool check_bounds = true,
     79                                     int characters = 1);
     80   virtual void PopCurrentPosition();
     81   virtual void PopRegister(int register_index);
     82   virtual void PushBacktrack(Label* label);
     83   virtual void PushCurrentPosition();
     84   virtual void PushRegister(int register_index,
     85                             StackCheckFlag check_stack_limit);
     86   virtual void ReadCurrentPositionFromRegister(int reg);
     87   virtual void ReadStackPointerFromRegister(int reg);
     88   virtual void SetCurrentPositionFromEnd(int by);
     89   virtual void SetRegister(int register_index, int to);
     90   virtual bool Succeed();
     91   virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
     92   virtual void ClearRegisters(int reg_from, int reg_to);
     93   virtual void WriteStackPointerToRegister(int reg);
     94   virtual bool CanReadUnaligned();
     95 
     96   // Called from RegExp if the stack-guard is triggered.
     97   // If the code object is relocated, the return address is fixed before
     98   // returning.
     99   static int CheckStackGuardState(Address* return_address,
    100                                   Code* re_code,
    101                                   Address re_frame,
    102                                   int start_offset,
    103                                   const byte** input_start,
    104                                   const byte** input_end);
    105 
    106  private:
    107   // Above the frame pointer - Stored registers and stack passed parameters.
    108   // Callee-saved registers x19-x29, where x29 is the old frame pointer.
    109   static const int kCalleeSavedRegisters = 0;
    110   // Return address.
    111   // It is placed above the 11 callee-saved registers.
    112   static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
    113   static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
    114   // Stack parameter placed by caller.
    115   static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
    116 
    117   // Below the frame pointer.
    118   // Register parameters stored by setup code.
    119   static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
    120   static const int kStackBase = kDirectCall - kPointerSize;
    121   static const int kOutputSize = kStackBase - kPointerSize;
    122   static const int kInput = kOutputSize - kPointerSize;
    123   // When adding local variables remember to push space for them in
    124   // the frame in GetCode.
    125   static const int kSuccessCounter = kInput - kPointerSize;
    126   // First position register address on the stack. Following positions are
    127   // below it. A position is a 32 bit value.
    128   static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
    129   // A capture is a 64 bit value holding two position.
    130   static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
    131 
    132   // Initial size of code buffer.
    133   static const size_t kRegExpCodeSize = 1024;
    134 
    135   // When initializing registers to a non-position value we can unroll
    136   // the loop. Set the limit of registers to unroll.
    137   static const int kNumRegistersToUnroll = 16;
    138 
    139   // We are using x0 to x7 as a register cache. Each hardware register must
    140   // contain one capture, that is two 32 bit registers. We can cache at most
    141   // 16 registers.
    142   static const int kNumCachedRegisters = 16;
    143 
    144   // Load a number of characters at the given offset from the
    145   // current position, into the current-character register.
    146   void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
    147 
    148   // Check whether preemption has been requested.
    149   void CheckPreemption();
    150 
    151   // Check whether we are exceeding the stack limit on the backtrack stack.
    152   void CheckStackLimit();
    153 
    154   // Generate a call to CheckStackGuardState.
    155   void CallCheckStackGuardState(Register scratch);
    156 
    157   // Location of a 32 bit position register.
    158   MemOperand register_location(int register_index);
    159 
    160   // Location of a 64 bit capture, combining two position registers.
    161   MemOperand capture_location(int register_index, Register scratch);
    162 
    163   // Register holding the current input position as negative offset from
    164   // the end of the string.
    165   Register current_input_offset() { return w21; }
    166 
    167   // The register containing the current character after LoadCurrentCharacter.
    168   Register current_character() { return w22; }
    169 
    170   // Register holding address of the end of the input string.
    171   Register input_end() { return x25; }
    172 
    173   // Register holding address of the start of the input string.
    174   Register input_start() { return x26; }
    175 
    176   // Register holding the offset from the start of the string where we should
    177   // start matching.
    178   Register start_offset() { return w27; }
    179 
    180   // Pointer to the output array's first element.
    181   Register output_array() { return x28; }
    182 
    183   // Register holding the frame address. Local variables, parameters and
    184   // regexp registers are addressed relative to this.
    185   Register frame_pointer() { return fp; }
    186 
    187   // The register containing the backtrack stack top. Provides a meaningful
    188   // name to the register.
    189   Register backtrack_stackpointer() { return x23; }
    190 
    191   // Register holding pointer to the current code object.
    192   Register code_pointer() { return x20; }
    193 
    194   // Register holding the value used for clearing capture registers.
    195   Register string_start_minus_one() { return w24; }
    196   // The top 32 bit of this register is used to store this value
    197   // twice. This is used for clearing more than one register at a time.
    198   Register twice_non_position_value() { return x24; }
    199 
    200   // Byte size of chars in the string to match (decided by the Mode argument)
    201   int char_size() { return static_cast<int>(mode_); }
    202 
    203   // Equivalent to a conditional branch to the label, unless the label
    204   // is NULL, in which case it is a conditional Backtrack.
    205   void BranchOrBacktrack(Condition condition, Label* to);
    206 
    207   // Compares reg against immmediate before calling BranchOrBacktrack.
    208   // It makes use of the Cbz and Cbnz instructions.
    209   void CompareAndBranchOrBacktrack(Register reg,
    210                                    int immediate,
    211                                    Condition condition,
    212                                    Label* to);
    213 
    214   inline void CallIf(Label* to, Condition condition);
    215 
    216   // Save and restore the link register on the stack in a way that
    217   // is GC-safe.
    218   inline void SaveLinkRegister();
    219   inline void RestoreLinkRegister();
    220 
    221   // Pushes the value of a register on the backtrack stack. Decrements the
    222   // stack pointer by a word size and stores the register's value there.
    223   inline void Push(Register source);
    224 
    225   // Pops a value from the backtrack stack. Reads the word at the stack pointer
    226   // and increments it by a word size.
    227   inline void Pop(Register target);
    228 
    229   // This state indicates where the register actually is.
    230   enum RegisterState {
    231     STACKED,     // Resides in memory.
    232     CACHED_LSW,  // Least Significant Word of a 64 bit hardware register.
    233     CACHED_MSW   // Most Significant Word of a 64 bit hardware register.
    234   };
    235 
    236   RegisterState GetRegisterState(int register_index) {
    237     DCHECK(register_index >= 0);
    238     if (register_index >= kNumCachedRegisters) {
    239       return STACKED;
    240     } else {
    241       if ((register_index % 2) == 0) {
    242         return CACHED_LSW;
    243       } else {
    244         return CACHED_MSW;
    245       }
    246     }
    247   }
    248 
    249   // Store helper that takes the state of the register into account.
    250   inline void StoreRegister(int register_index, Register source);
    251 
    252   // Returns a hardware W register that holds the value of the capture
    253   // register.
    254   //
    255   // This function will try to use an existing cache register (w0-w7) for the
    256   // result. Otherwise, it will load the value into maybe_result.
    257   //
    258   // If the returned register is anything other than maybe_result, calling code
    259   // must not write to it.
    260   inline Register GetRegister(int register_index, Register maybe_result);
    261 
    262   // Returns the harware register (x0-x7) holding the value of the capture
    263   // register.
    264   // This assumes that the state of the register is not STACKED.
    265   inline Register GetCachedRegister(int register_index);
    266 
    267   Isolate* isolate() const { return masm_->isolate(); }
    268 
    269   MacroAssembler* masm_;
    270 
    271   // Which mode to generate code for (LATIN1 or UC16).
    272   Mode mode_;
    273 
    274   // One greater than maximal register index actually used.
    275   int num_registers_;
    276 
    277   // Number of registers to output at the end (the saved registers
    278   // are always 0..num_saved_registers_-1)
    279   int num_saved_registers_;
    280 
    281   // Labels used internally.
    282   Label entry_label_;
    283   Label start_label_;
    284   Label success_label_;
    285   Label backtrack_label_;
    286   Label exit_label_;
    287   Label check_preempt_label_;
    288   Label stack_overflow_label_;
    289 };
    290 
    291 #endif  // V8_INTERPRETED_REGEXP
    292 
    293 
    294 }  // namespace internal
    295 }  // namespace v8
    296 
    297 #endif  // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
    298