Home | History | Annotate | Download | only in enc
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Macroblock analysis
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include <stdlib.h>
     15 #include <string.h>
     16 #include <assert.h>
     17 
     18 #include "./vp8enci.h"
     19 #include "./cost.h"
     20 #include "../utils/utils.h"
     21 
     22 #define MAX_ITERS_K_MEANS  6
     23 
     24 //------------------------------------------------------------------------------
     25 // Smooth the segment map by replacing isolated block by the majority of its
     26 // neighbours.
     27 
     28 static void SmoothSegmentMap(VP8Encoder* const enc) {
     29   int n, x, y;
     30   const int w = enc->mb_w_;
     31   const int h = enc->mb_h_;
     32   const int majority_cnt_3_x_3_grid = 5;
     33   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
     34   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
     35 
     36   if (tmp == NULL) return;
     37   for (y = 1; y < h - 1; ++y) {
     38     for (x = 1; x < w - 1; ++x) {
     39       int cnt[NUM_MB_SEGMENTS] = { 0 };
     40       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
     41       int majority_seg = mb->segment_;
     42       // Check the 8 neighbouring segment values.
     43       cnt[mb[-w - 1].segment_]++;  // top-left
     44       cnt[mb[-w + 0].segment_]++;  // top
     45       cnt[mb[-w + 1].segment_]++;  // top-right
     46       cnt[mb[   - 1].segment_]++;  // left
     47       cnt[mb[   + 1].segment_]++;  // right
     48       cnt[mb[ w - 1].segment_]++;  // bottom-left
     49       cnt[mb[ w + 0].segment_]++;  // bottom
     50       cnt[mb[ w + 1].segment_]++;  // bottom-right
     51       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
     52         if (cnt[n] >= majority_cnt_3_x_3_grid) {
     53           majority_seg = n;
     54           break;
     55         }
     56       }
     57       tmp[x + y * w] = majority_seg;
     58     }
     59   }
     60   for (y = 1; y < h - 1; ++y) {
     61     for (x = 1; x < w - 1; ++x) {
     62       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
     63       mb->segment_ = tmp[x + y * w];
     64     }
     65   }
     66   WebPSafeFree(tmp);
     67 }
     68 
     69 //------------------------------------------------------------------------------
     70 // set segment susceptibility alpha_ / beta_
     71 
     72 static WEBP_INLINE int clip(int v, int m, int M) {
     73   return (v < m) ? m : (v > M) ? M : v;
     74 }
     75 
     76 static void SetSegmentAlphas(VP8Encoder* const enc,
     77                              const int centers[NUM_MB_SEGMENTS],
     78                              int mid) {
     79   const int nb = enc->segment_hdr_.num_segments_;
     80   int min = centers[0], max = centers[0];
     81   int n;
     82 
     83   if (nb > 1) {
     84     for (n = 0; n < nb; ++n) {
     85       if (min > centers[n]) min = centers[n];
     86       if (max < centers[n]) max = centers[n];
     87     }
     88   }
     89   if (max == min) max = min + 1;
     90   assert(mid <= max && mid >= min);
     91   for (n = 0; n < nb; ++n) {
     92     const int alpha = 255 * (centers[n] - mid) / (max - min);
     93     const int beta = 255 * (centers[n] - min) / (max - min);
     94     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
     95     enc->dqm_[n].beta_ = clip(beta, 0, 255);
     96   }
     97 }
     98 
     99 //------------------------------------------------------------------------------
    100 // Compute susceptibility based on DCT-coeff histograms:
    101 // the higher, the "easier" the macroblock is to compress.
    102 
    103 #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
    104 #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
    105 #define DEFAULT_ALPHA (-1)
    106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
    107 
    108 static int FinalAlphaValue(int alpha) {
    109   alpha = MAX_ALPHA - alpha;
    110   return clip(alpha, 0, MAX_ALPHA);
    111 }
    112 
    113 static int GetAlpha(const VP8Histogram* const histo) {
    114   // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
    115   // values which happen to be mostly noise. This leaves the maximum precision
    116   // for handling the useful small values which contribute most.
    117   const int max_value = histo->max_value;
    118   const int last_non_zero = histo->last_non_zero;
    119   const int alpha =
    120       (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
    121   return alpha;
    122 }
    123 
    124 static void InitHistogram(VP8Histogram* const histo) {
    125   histo->max_value = 0;
    126   histo->last_non_zero = 1;
    127 }
    128 
    129 static void MergeHistograms(const VP8Histogram* const in,
    130                             VP8Histogram* const out) {
    131   if (in->max_value > out->max_value) {
    132     out->max_value = in->max_value;
    133   }
    134   if (in->last_non_zero > out->last_non_zero) {
    135     out->last_non_zero = in->last_non_zero;
    136   }
    137 }
    138 
    139 //------------------------------------------------------------------------------
    140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
    141 
    142 static void AssignSegments(VP8Encoder* const enc,
    143                            const int alphas[MAX_ALPHA + 1]) {
    144   // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
    145   // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
    146   // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
    147   const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
    148                  enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
    149   int centers[NUM_MB_SEGMENTS];
    150   int weighted_average = 0;
    151   int map[MAX_ALPHA + 1];
    152   int a, n, k;
    153   int min_a = 0, max_a = MAX_ALPHA, range_a;
    154   // 'int' type is ok for histo, and won't overflow
    155   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
    156 
    157   assert(nb >= 1);
    158   assert(nb <= NUM_MB_SEGMENTS);
    159 
    160   // bracket the input
    161   for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
    162   min_a = n;
    163   for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
    164   max_a = n;
    165   range_a = max_a - min_a;
    166 
    167   // Spread initial centers evenly
    168   for (k = 0, n = 1; k < nb; ++k, n += 2) {
    169     assert(n < 2 * nb);
    170     centers[k] = min_a + (n * range_a) / (2 * nb);
    171   }
    172 
    173   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
    174     int total_weight;
    175     int displaced;
    176     // Reset stats
    177     for (n = 0; n < nb; ++n) {
    178       accum[n] = 0;
    179       dist_accum[n] = 0;
    180     }
    181     // Assign nearest center for each 'a'
    182     n = 0;    // track the nearest center for current 'a'
    183     for (a = min_a; a <= max_a; ++a) {
    184       if (alphas[a]) {
    185         while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
    186           n++;
    187         }
    188         map[a] = n;
    189         // accumulate contribution into best centroid
    190         dist_accum[n] += a * alphas[a];
    191         accum[n] += alphas[a];
    192       }
    193     }
    194     // All point are classified. Move the centroids to the
    195     // center of their respective cloud.
    196     displaced = 0;
    197     weighted_average = 0;
    198     total_weight = 0;
    199     for (n = 0; n < nb; ++n) {
    200       if (accum[n]) {
    201         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
    202         displaced += abs(centers[n] - new_center);
    203         centers[n] = new_center;
    204         weighted_average += new_center * accum[n];
    205         total_weight += accum[n];
    206       }
    207     }
    208     weighted_average = (weighted_average + total_weight / 2) / total_weight;
    209     if (displaced < 5) break;   // no need to keep on looping...
    210   }
    211 
    212   // Map each original value to the closest centroid
    213   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    214     VP8MBInfo* const mb = &enc->mb_info_[n];
    215     const int alpha = mb->alpha_;
    216     mb->segment_ = map[alpha];
    217     mb->alpha_ = centers[map[alpha]];  // for the record.
    218   }
    219 
    220   if (nb > 1) {
    221     const int smooth = (enc->config_->preprocessing & 1);
    222     if (smooth) SmoothSegmentMap(enc);
    223   }
    224 
    225   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
    226 }
    227 
    228 //------------------------------------------------------------------------------
    229 // Macroblock analysis: collect histogram for each mode, deduce the maximal
    230 // susceptibility and set best modes for this macroblock.
    231 // Segment assignment is done later.
    232 
    233 // Number of modes to inspect for alpha_ evaluation. We don't need to test all
    234 // the possible modes during the analysis phase: we risk falling into a local
    235 // optimum, or be subject to boundary effect
    236 #define MAX_INTRA16_MODE 2
    237 #define MAX_INTRA4_MODE  2
    238 #define MAX_UV_MODE      2
    239 
    240 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
    241   const int max_mode = MAX_INTRA16_MODE;
    242   int mode;
    243   int best_alpha = DEFAULT_ALPHA;
    244   int best_mode = 0;
    245 
    246   VP8MakeLuma16Preds(it);
    247   for (mode = 0; mode < max_mode; ++mode) {
    248     VP8Histogram histo;
    249     int alpha;
    250 
    251     InitHistogram(&histo);
    252     VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC,
    253                         it->yuv_p_ + VP8I16ModeOffsets[mode],
    254                         0, 16, &histo);
    255     alpha = GetAlpha(&histo);
    256     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
    257       best_alpha = alpha;
    258       best_mode = mode;
    259     }
    260   }
    261   VP8SetIntra16Mode(it, best_mode);
    262   return best_alpha;
    263 }
    264 
    265 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
    266                                    int best_alpha) {
    267   uint8_t modes[16];
    268   const int max_mode = MAX_INTRA4_MODE;
    269   int i4_alpha;
    270   VP8Histogram total_histo;
    271   int cur_histo = 0;
    272   InitHistogram(&total_histo);
    273 
    274   VP8IteratorStartI4(it);
    275   do {
    276     int mode;
    277     int best_mode_alpha = DEFAULT_ALPHA;
    278     VP8Histogram histos[2];
    279     const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_];
    280 
    281     VP8MakeIntra4Preds(it);
    282     for (mode = 0; mode < max_mode; ++mode) {
    283       int alpha;
    284 
    285       InitHistogram(&histos[cur_histo]);
    286       VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
    287                           0, 1, &histos[cur_histo]);
    288       alpha = GetAlpha(&histos[cur_histo]);
    289       if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
    290         best_mode_alpha = alpha;
    291         modes[it->i4_] = mode;
    292         cur_histo ^= 1;   // keep track of best histo so far.
    293       }
    294     }
    295     // accumulate best histogram
    296     MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
    297     // Note: we reuse the original samples for predictors
    298   } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC));
    299 
    300   i4_alpha = GetAlpha(&total_histo);
    301   if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
    302     VP8SetIntra4Mode(it, modes);
    303     best_alpha = i4_alpha;
    304   }
    305   return best_alpha;
    306 }
    307 
    308 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
    309   int best_alpha = DEFAULT_ALPHA;
    310   int best_mode = 0;
    311   const int max_mode = MAX_UV_MODE;
    312   int mode;
    313 
    314   VP8MakeChroma8Preds(it);
    315   for (mode = 0; mode < max_mode; ++mode) {
    316     VP8Histogram histo;
    317     int alpha;
    318     InitHistogram(&histo);
    319     VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC,
    320                         it->yuv_p_ + VP8UVModeOffsets[mode],
    321                         16, 16 + 4 + 4, &histo);
    322     alpha = GetAlpha(&histo);
    323     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
    324       best_alpha = alpha;
    325       best_mode = mode;
    326     }
    327   }
    328   VP8SetIntraUVMode(it, best_mode);
    329   return best_alpha;
    330 }
    331 
    332 static void MBAnalyze(VP8EncIterator* const it,
    333                       int alphas[MAX_ALPHA + 1],
    334                       int* const alpha, int* const uv_alpha) {
    335   const VP8Encoder* const enc = it->enc_;
    336   int best_alpha, best_uv_alpha;
    337 
    338   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
    339   VP8SetSkip(it, 0);         // not skipped
    340   VP8SetSegment(it, 0);      // default segment, spec-wise.
    341 
    342   best_alpha = MBAnalyzeBestIntra16Mode(it);
    343   if (enc->method_ >= 5) {
    344     // We go and make a fast decision for intra4/intra16.
    345     // It's usually not a good and definitive pick, but helps seeding the stats
    346     // about level bit-cost.
    347     // TODO(skal): improve criterion.
    348     best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
    349   }
    350   best_uv_alpha = MBAnalyzeBestUVMode(it);
    351 
    352   // Final susceptibility mix
    353   best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
    354   best_alpha = FinalAlphaValue(best_alpha);
    355   alphas[best_alpha]++;
    356   it->mb_->alpha_ = best_alpha;   // for later remapping.
    357 
    358   // Accumulate for later complexity analysis.
    359   *alpha += best_alpha;   // mixed susceptibility (not just luma)
    360   *uv_alpha += best_uv_alpha;
    361 }
    362 
    363 static void DefaultMBInfo(VP8MBInfo* const mb) {
    364   mb->type_ = 1;     // I16x16
    365   mb->uv_mode_ = 0;
    366   mb->skip_ = 0;     // not skipped
    367   mb->segment_ = 0;  // default segment
    368   mb->alpha_ = 0;
    369 }
    370 
    371 //------------------------------------------------------------------------------
    372 // Main analysis loop:
    373 // Collect all susceptibilities for each macroblock and record their
    374 // distribution in alphas[]. Segments is assigned a-posteriori, based on
    375 // this histogram.
    376 // We also pick an intra16 prediction mode, which shouldn't be considered
    377 // final except for fast-encode settings. We can also pick some intra4 modes
    378 // and decide intra4/intra16, but that's usually almost always a bad choice at
    379 // this stage.
    380 
    381 static void ResetAllMBInfo(VP8Encoder* const enc) {
    382   int n;
    383   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    384     DefaultMBInfo(&enc->mb_info_[n]);
    385   }
    386   // Default susceptibilities.
    387   enc->dqm_[0].alpha_ = 0;
    388   enc->dqm_[0].beta_ = 0;
    389   // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
    390   enc->alpha_ = 0;
    391   enc->uv_alpha_ = 0;
    392   WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
    393 }
    394 
    395 // struct used to collect job result
    396 typedef struct {
    397   WebPWorker worker;
    398   int alphas[MAX_ALPHA + 1];
    399   int alpha, uv_alpha;
    400   VP8EncIterator it;
    401   int delta_progress;
    402 } SegmentJob;
    403 
    404 // main work call
    405 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
    406   int ok = 1;
    407   if (!VP8IteratorIsDone(it)) {
    408     uint8_t tmp[32 + WEBP_ALIGN_CST];
    409     uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp);
    410     do {
    411       // Let's pretend we have perfect lossless reconstruction.
    412       VP8IteratorImport(it, scratch);
    413       MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
    414       ok = VP8IteratorProgress(it, job->delta_progress);
    415     } while (ok && VP8IteratorNext(it));
    416   }
    417   return ok;
    418 }
    419 
    420 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
    421   int i;
    422   for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
    423   dst->alpha += src->alpha;
    424   dst->uv_alpha += src->uv_alpha;
    425 }
    426 
    427 // initialize the job struct with some TODOs
    428 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
    429                            int start_row, int end_row) {
    430   WebPGetWorkerInterface()->Init(&job->worker);
    431   job->worker.data1 = job;
    432   job->worker.data2 = &job->it;
    433   job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
    434   VP8IteratorInit(enc, &job->it);
    435   VP8IteratorSetRow(&job->it, start_row);
    436   VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
    437   memset(job->alphas, 0, sizeof(job->alphas));
    438   job->alpha = 0;
    439   job->uv_alpha = 0;
    440   // only one of both jobs can record the progress, since we don't
    441   // expect the user's hook to be multi-thread safe
    442   job->delta_progress = (start_row == 0) ? 20 : 0;
    443 }
    444 
    445 // main entry point
    446 int VP8EncAnalyze(VP8Encoder* const enc) {
    447   int ok = 1;
    448   const int do_segments =
    449       enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
    450       (enc->segment_hdr_.num_segments_ > 1) ||
    451       (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
    452   if (do_segments) {
    453     const int last_row = enc->mb_h_;
    454     // We give a little more than a half work to the main thread.
    455     const int split_row = (9 * last_row + 15) >> 4;
    456     const int total_mb = last_row * enc->mb_w_;
    457 #ifdef WEBP_USE_THREAD
    458     const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
    459     const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
    460 #else
    461     const int do_mt = 0;
    462 #endif
    463     const WebPWorkerInterface* const worker_interface =
    464         WebPGetWorkerInterface();
    465     SegmentJob main_job;
    466     if (do_mt) {
    467       SegmentJob side_job;
    468       // Note the use of '&' instead of '&&' because we must call the functions
    469       // no matter what.
    470       InitSegmentJob(enc, &main_job, 0, split_row);
    471       InitSegmentJob(enc, &side_job, split_row, last_row);
    472       // we don't need to call Reset() on main_job.worker, since we're calling
    473       // WebPWorkerExecute() on it
    474       ok &= worker_interface->Reset(&side_job.worker);
    475       // launch the two jobs in parallel
    476       if (ok) {
    477         worker_interface->Launch(&side_job.worker);
    478         worker_interface->Execute(&main_job.worker);
    479         ok &= worker_interface->Sync(&side_job.worker);
    480         ok &= worker_interface->Sync(&main_job.worker);
    481       }
    482       worker_interface->End(&side_job.worker);
    483       if (ok) MergeJobs(&side_job, &main_job);  // merge results together
    484     } else {
    485       // Even for single-thread case, we use the generic Worker tools.
    486       InitSegmentJob(enc, &main_job, 0, last_row);
    487       worker_interface->Execute(&main_job.worker);
    488       ok &= worker_interface->Sync(&main_job.worker);
    489     }
    490     worker_interface->End(&main_job.worker);
    491     if (ok) {
    492       enc->alpha_ = main_job.alpha / total_mb;
    493       enc->uv_alpha_ = main_job.uv_alpha / total_mb;
    494       AssignSegments(enc, main_job.alphas);
    495     }
    496   } else {   // Use only one default segment.
    497     ResetAllMBInfo(enc);
    498   }
    499   return ok;
    500 }
    501 
    502