Home | History | Annotate | Download | only in resampler
      1 /*
      2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 // Modified from the Chromium original:
     12 // src/media/base/sinc_resampler.cc
     13 
     14 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
     15 // and r4_ will move after the first load):
     16 //
     17 // |----------------|-----------------------------------------|----------------|
     18 //
     19 //                                        request_frames_
     20 //                   <--------------------------------------------------------->
     21 //                                    r0_ (during first load)
     22 //
     23 //  kKernelSize / 2   kKernelSize / 2         kKernelSize / 2   kKernelSize / 2
     24 // <---------------> <--------------->       <---------------> <--------------->
     25 //        r1_               r2_                     r3_               r4_
     26 //
     27 //                             block_size_ == r4_ - r2_
     28 //                   <--------------------------------------->
     29 //
     30 //                                                  request_frames_
     31 //                                    <------------------ ... ----------------->
     32 //                                               r0_ (during second load)
     33 //
     34 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
     35 // and block_size_ are reinitialized via step (3) in the algorithm below.
     36 //
     37 // These new regions remain constant until a Flush() occurs.  While complicated,
     38 // this allows us to reduce jitter by always requesting the same amount from the
     39 // provided callback.
     40 //
     41 // The algorithm:
     42 //
     43 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
     44 //    there's enough room to read request_frames_ from the callback into region
     45 //    r0_ (which will move between the first and subsequent passes).
     46 //
     47 // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
     48 //
     49 //        r0_ = input_buffer_ + kKernelSize / 2
     50 //        r1_ = input_buffer_
     51 //        r2_ = r0_
     52 //
     53 //    r0_ is always request_frames_ in size.  r1_, r2_ are kKernelSize / 2 in
     54 //    size.  r1_ must be zero initialized to avoid convolution with garbage (see
     55 //    step (5) for why).
     56 //
     57 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
     58 //    r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
     59 //
     60 //        r3_ = r0_ + request_frames_ - kKernelSize
     61 //        r4_ = r0_ + request_frames_ - kKernelSize / 2
     62 //        block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
     63 //
     64 // 4) Consume request_frames_ frames into r0_.
     65 //
     66 // 5) Position kernel centered at start of r2_ and generate output frames until
     67 //    the kernel is centered at the start of r4_ or we've finished generating
     68 //    all the output frames.
     69 //
     70 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
     71 //
     72 // 7) If we're on the second load, in order to avoid overwriting the frames we
     73 //    just wrapped from r4_ we need to slide r0_ to the right by the size of
     74 //    r4_, which is kKernelSize / 2:
     75 //
     76 //        r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
     77 //
     78 //    r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
     79 //
     80 // 8) Else, if we're not on the second load, goto (4).
     81 //
     82 // Note: we're glossing over how the sub-sample handling works with
     83 // |virtual_source_idx_|, etc.
     84 
     85 // MSVC++ requires this to be set before any other includes to get M_PI.
     86 #define _USE_MATH_DEFINES
     87 
     88 #include "webrtc/common_audio/resampler/sinc_resampler.h"
     89 
     90 #include <assert.h>
     91 #include <math.h>
     92 #include <string.h>
     93 
     94 #include <limits>
     95 
     96 #include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
     97 #include "webrtc/typedefs.h"
     98 
     99 namespace webrtc {
    100 
    101 namespace {
    102 
    103 double SincScaleFactor(double io_ratio) {
    104   // |sinc_scale_factor| is basically the normalized cutoff frequency of the
    105   // low-pass filter.
    106   double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
    107 
    108   // The sinc function is an idealized brick-wall filter, but since we're
    109   // windowing it the transition from pass to stop does not happen right away.
    110   // So we should adjust the low pass filter cutoff slightly downward to avoid
    111   // some aliasing at the very high-end.
    112   // TODO(crogers): this value is empirical and to be more exact should vary
    113   // depending on kKernelSize.
    114   sinc_scale_factor *= 0.9;
    115 
    116   return sinc_scale_factor;
    117 }
    118 
    119 }  // namespace
    120 
    121 // If we know the minimum architecture at compile time, avoid CPU detection.
    122 #if defined(WEBRTC_ARCH_X86_FAMILY)
    123 #if defined(__SSE2__)
    124 #define CONVOLVE_FUNC Convolve_SSE
    125 void SincResampler::InitializeCPUSpecificFeatures() {}
    126 #else
    127 // x86 CPU detection required.  Function will be set by
    128 // InitializeCPUSpecificFeatures().
    129 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
    130 #define CONVOLVE_FUNC convolve_proc_
    131 
    132 void SincResampler::InitializeCPUSpecificFeatures() {
    133   convolve_proc_ = WebRtc_GetCPUInfo(kSSE2) ? Convolve_SSE : Convolve_C;
    134 }
    135 #endif
    136 #elif defined(WEBRTC_HAS_NEON)
    137 #define CONVOLVE_FUNC Convolve_NEON
    138 void SincResampler::InitializeCPUSpecificFeatures() {}
    139 #elif defined(WEBRTC_DETECT_NEON)
    140 #define CONVOLVE_FUNC convolve_proc_
    141 void SincResampler::InitializeCPUSpecificFeatures() {
    142   convolve_proc_ = WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON ?
    143       Convolve_NEON : Convolve_C;
    144 }
    145 #else
    146 // Unknown architecture.
    147 #define CONVOLVE_FUNC Convolve_C
    148 void SincResampler::InitializeCPUSpecificFeatures() {}
    149 #endif
    150 
    151 SincResampler::SincResampler(double io_sample_rate_ratio,
    152                              size_t request_frames,
    153                              SincResamplerCallback* read_cb)
    154     : io_sample_rate_ratio_(io_sample_rate_ratio),
    155       read_cb_(read_cb),
    156       request_frames_(request_frames),
    157       input_buffer_size_(request_frames_ + kKernelSize),
    158       // Create input buffers with a 16-byte alignment for SSE optimizations.
    159       kernel_storage_(static_cast<float*>(
    160           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
    161       kernel_pre_sinc_storage_(static_cast<float*>(
    162           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
    163       kernel_window_storage_(static_cast<float*>(
    164           AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))),
    165       input_buffer_(static_cast<float*>(
    166           AlignedMalloc(sizeof(float) * input_buffer_size_, 16))),
    167 #if defined(WEBRTC_CPU_DETECTION)
    168       convolve_proc_(NULL),
    169 #endif
    170       r1_(input_buffer_.get()),
    171       r2_(input_buffer_.get() + kKernelSize / 2) {
    172 #if defined(WEBRTC_CPU_DETECTION)
    173   InitializeCPUSpecificFeatures();
    174   assert(convolve_proc_);
    175 #endif
    176   assert(request_frames_ > 0);
    177   Flush();
    178   assert(block_size_ > kKernelSize);
    179 
    180   memset(kernel_storage_.get(), 0,
    181          sizeof(*kernel_storage_.get()) * kKernelStorageSize);
    182   memset(kernel_pre_sinc_storage_.get(), 0,
    183          sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
    184   memset(kernel_window_storage_.get(), 0,
    185          sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
    186 
    187   InitializeKernel();
    188 }
    189 
    190 SincResampler::~SincResampler() {}
    191 
    192 void SincResampler::UpdateRegions(bool second_load) {
    193   // Setup various region pointers in the buffer (see diagram above).  If we're
    194   // on the second load we need to slide r0_ to the right by kKernelSize / 2.
    195   r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
    196   r3_ = r0_ + request_frames_ - kKernelSize;
    197   r4_ = r0_ + request_frames_ - kKernelSize / 2;
    198   block_size_ = r4_ - r2_;
    199 
    200   // r1_ at the beginning of the buffer.
    201   assert(r1_ == input_buffer_.get());
    202   // r1_ left of r2_, r4_ left of r3_ and size correct.
    203   assert(r2_ - r1_ == r4_ - r3_);
    204   // r2_ left of r3.
    205   assert(r2_ < r3_);
    206 }
    207 
    208 void SincResampler::InitializeKernel() {
    209   // Blackman window parameters.
    210   static const double kAlpha = 0.16;
    211   static const double kA0 = 0.5 * (1.0 - kAlpha);
    212   static const double kA1 = 0.5;
    213   static const double kA2 = 0.5 * kAlpha;
    214 
    215   // Generates a set of windowed sinc() kernels.
    216   // We generate a range of sub-sample offsets from 0.0 to 1.0.
    217   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
    218   for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    219     const float subsample_offset =
    220         static_cast<float>(offset_idx) / kKernelOffsetCount;
    221 
    222     for (size_t i = 0; i < kKernelSize; ++i) {
    223       const size_t idx = i + offset_idx * kKernelSize;
    224       const float pre_sinc = static_cast<float>(M_PI *
    225           (static_cast<int>(i) - static_cast<int>(kKernelSize / 2) -
    226            subsample_offset));
    227       kernel_pre_sinc_storage_[idx] = pre_sinc;
    228 
    229       // Compute Blackman window, matching the offset of the sinc().
    230       const float x = (i - subsample_offset) / kKernelSize;
    231       const float window = static_cast<float>(kA0 - kA1 * cos(2.0 * M_PI * x) +
    232           kA2 * cos(4.0 * M_PI * x));
    233       kernel_window_storage_[idx] = window;
    234 
    235       // Compute the sinc with offset, then window the sinc() function and store
    236       // at the correct offset.
    237       kernel_storage_[idx] = static_cast<float>(window *
    238           ((pre_sinc == 0) ?
    239               sinc_scale_factor :
    240               (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
    241     }
    242   }
    243 }
    244 
    245 void SincResampler::SetRatio(double io_sample_rate_ratio) {
    246   if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
    247       std::numeric_limits<double>::epsilon()) {
    248     return;
    249   }
    250 
    251   io_sample_rate_ratio_ = io_sample_rate_ratio;
    252 
    253   // Optimize reinitialization by reusing values which are independent of
    254   // |sinc_scale_factor|.  Provides a 3x speedup.
    255   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
    256   for (size_t offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    257     for (size_t i = 0; i < kKernelSize; ++i) {
    258       const size_t idx = i + offset_idx * kKernelSize;
    259       const float window = kernel_window_storage_[idx];
    260       const float pre_sinc = kernel_pre_sinc_storage_[idx];
    261 
    262       kernel_storage_[idx] = static_cast<float>(window *
    263           ((pre_sinc == 0) ?
    264               sinc_scale_factor :
    265               (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
    266     }
    267   }
    268 }
    269 
    270 void SincResampler::Resample(size_t frames, float* destination) {
    271   size_t remaining_frames = frames;
    272 
    273   // Step (1) -- Prime the input buffer at the start of the input stream.
    274   if (!buffer_primed_ && remaining_frames) {
    275     read_cb_->Run(request_frames_, r0_);
    276     buffer_primed_ = true;
    277   }
    278 
    279   // Step (2) -- Resample!  const what we can outside of the loop for speed.  It
    280   // actually has an impact on ARM performance.  See inner loop comment below.
    281   const double current_io_ratio = io_sample_rate_ratio_;
    282   const float* const kernel_ptr = kernel_storage_.get();
    283   while (remaining_frames) {
    284     // |i| may be negative if the last Resample() call ended on an iteration
    285     // that put |virtual_source_idx_| over the limit.
    286     //
    287     // Note: The loop construct here can severely impact performance on ARM
    288     // or when built with clang.  See https://codereview.chromium.org/18566009/
    289     for (int i = static_cast<int>(
    290              ceil((block_size_ - virtual_source_idx_) / current_io_ratio));
    291          i > 0; --i) {
    292       assert(virtual_source_idx_ < block_size_);
    293 
    294       // |virtual_source_idx_| lies in between two kernel offsets so figure out
    295       // what they are.
    296       const int source_idx = static_cast<int>(virtual_source_idx_);
    297       const double subsample_remainder = virtual_source_idx_ - source_idx;
    298 
    299       const double virtual_offset_idx =
    300           subsample_remainder * kKernelOffsetCount;
    301       const int offset_idx = static_cast<int>(virtual_offset_idx);
    302 
    303       // We'll compute "convolutions" for the two kernels which straddle
    304       // |virtual_source_idx_|.
    305       const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
    306       const float* const k2 = k1 + kKernelSize;
    307 
    308       // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage.  Should always be
    309       // true so long as kKernelSize is a multiple of 16.
    310       assert(0u == (reinterpret_cast<uintptr_t>(k1) & 0x0F));
    311       assert(0u == (reinterpret_cast<uintptr_t>(k2) & 0x0F));
    312 
    313       // Initialize input pointer based on quantized |virtual_source_idx_|.
    314       const float* const input_ptr = r1_ + source_idx;
    315 
    316       // Figure out how much to weight each kernel's "convolution".
    317       const double kernel_interpolation_factor =
    318           virtual_offset_idx - offset_idx;
    319       *destination++ = CONVOLVE_FUNC(
    320           input_ptr, k1, k2, kernel_interpolation_factor);
    321 
    322       // Advance the virtual index.
    323       virtual_source_idx_ += current_io_ratio;
    324 
    325       if (!--remaining_frames)
    326         return;
    327     }
    328 
    329     // Wrap back around to the start.
    330     virtual_source_idx_ -= block_size_;
    331 
    332     // Step (3) -- Copy r3_, r4_ to r1_, r2_.
    333     // This wraps the last input frames back to the start of the buffer.
    334     memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
    335 
    336     // Step (4) -- Reinitialize regions if necessary.
    337     if (r0_ == r2_)
    338       UpdateRegions(true);
    339 
    340     // Step (5) -- Refresh the buffer with more input.
    341     read_cb_->Run(request_frames_, r0_);
    342   }
    343 }
    344 
    345 #undef CONVOLVE_FUNC
    346 
    347 size_t SincResampler::ChunkSize() const {
    348   return static_cast<size_t>(block_size_ / io_sample_rate_ratio_);
    349 }
    350 
    351 void SincResampler::Flush() {
    352   virtual_source_idx_ = 0;
    353   buffer_primed_ = false;
    354   memset(input_buffer_.get(), 0,
    355          sizeof(*input_buffer_.get()) * input_buffer_size_);
    356   UpdateRegions(false);
    357 }
    358 
    359 float SincResampler::Convolve_C(const float* input_ptr, const float* k1,
    360                                 const float* k2,
    361                                 double kernel_interpolation_factor) {
    362   float sum1 = 0;
    363   float sum2 = 0;
    364 
    365   // Generate a single output sample.  Unrolling this loop hurt performance in
    366   // local testing.
    367   size_t n = kKernelSize;
    368   while (n--) {
    369     sum1 += *input_ptr * *k1++;
    370     sum2 += *input_ptr++ * *k2++;
    371   }
    372 
    373   // Linearly interpolate the two "convolutions".
    374   return static_cast<float>((1.0 - kernel_interpolation_factor) * sum1 +
    375       kernel_interpolation_factor * sum2);
    376 }
    377 
    378 }  // namespace webrtc
    379