Home | History | Annotate | Download | only in video_processing
      1 /*
      2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/modules/video_processing/deflickering.h"
     12 
     13 #include <math.h>
     14 #include <stdlib.h>
     15 
     16 #include "webrtc/base/logging.h"
     17 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
     18 #include "webrtc/system_wrappers/include/sort.h"
     19 
     20 namespace webrtc {
     21 
     22 // Detection constants
     23 // (Q4) Maximum allowed deviation for detection.
     24 enum { kFrequencyDeviation = 39 };
     25 // (Q4) Minimum frequency that can be detected.
     26 enum { kMinFrequencyToDetect = 32 };
     27 // Number of flickers before we accept detection
     28 enum { kNumFlickerBeforeDetect = 2 };
     29 enum { kmean_valueScaling = 4 };  // (Q4) In power of 2
     30 // Dead-zone region in terms of pixel values
     31 enum { kZeroCrossingDeadzone = 10 };
     32 // Deflickering constants.
     33 // Compute the quantiles over 1 / DownsamplingFactor of the image.
     34 enum { kDownsamplingFactor = 8 };
     35 enum { kLog2OfDownsamplingFactor = 3 };
     36 
     37 // To generate in Matlab:
     38 // >> probUW16 = round(2^11 *
     39 //     [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.97]);
     40 // >> fprintf('%d, ', probUW16)
     41 // Resolution reduced to avoid overflow when multiplying with the
     42 // (potentially) large number of pixels.
     43 const uint16_t VPMDeflickering::prob_uw16_[kNumProbs] = {
     44     102,  205,  410,  614,  819,  1024,
     45     1229, 1434, 1638, 1843, 1946, 1987};  // <Q11>
     46 
     47 // To generate in Matlab:
     48 // >> numQuants = 14; maxOnlyLength = 5;
     49 // >> weightUW16 = round(2^15 *
     50 //    [linspace(0.5, 1.0, numQuants - maxOnlyLength)]);
     51 // >> fprintf('%d, %d,\n ', weightUW16);
     52 const uint16_t VPMDeflickering::weight_uw16_[kNumQuants - kMaxOnlyLength] = {
     53     16384, 18432, 20480, 22528, 24576, 26624, 28672, 30720, 32768};  // <Q15>
     54 
     55 VPMDeflickering::VPMDeflickering() {
     56   Reset();
     57 }
     58 
     59 VPMDeflickering::~VPMDeflickering() {}
     60 
     61 void VPMDeflickering::Reset() {
     62   mean_buffer_length_ = 0;
     63   detection_state_ = 0;
     64   frame_rate_ = 0;
     65 
     66   memset(mean_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
     67   memset(timestamp_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
     68 
     69   // Initialize the history with a uniformly distributed histogram.
     70   quant_hist_uw8_[0][0] = 0;
     71   quant_hist_uw8_[0][kNumQuants - 1] = 255;
     72   for (int32_t i = 0; i < kNumProbs; i++) {
     73     // Unsigned round. <Q0>
     74     quant_hist_uw8_[0][i + 1] =
     75         static_cast<uint8_t>((prob_uw16_[i] * 255 + (1 << 10)) >> 11);
     76   }
     77 
     78   for (int32_t i = 1; i < kFrameHistory_size; i++) {
     79     memcpy(quant_hist_uw8_[i], quant_hist_uw8_[0],
     80            sizeof(uint8_t) * kNumQuants);
     81   }
     82 }
     83 
     84 int32_t VPMDeflickering::ProcessFrame(VideoFrame* frame,
     85                                       VideoProcessing::FrameStats* stats) {
     86   assert(frame);
     87   uint32_t frame_memory;
     88   uint8_t quant_uw8[kNumQuants];
     89   uint8_t maxquant_uw8[kNumQuants];
     90   uint8_t minquant_uw8[kNumQuants];
     91   uint16_t target_quant_uw16[kNumQuants];
     92   uint16_t increment_uw16;
     93   uint8_t map_uw8[256];
     94 
     95   uint16_t tmp_uw16;
     96   uint32_t tmp_uw32;
     97   int width = frame->width();
     98   int height = frame->height();
     99 
    100   if (frame->IsZeroSize()) {
    101     return VPM_GENERAL_ERROR;
    102   }
    103 
    104   // Stricter height check due to subsampling size calculation below.
    105   if (height < 2) {
    106     LOG(LS_ERROR) << "Invalid frame size.";
    107     return VPM_GENERAL_ERROR;
    108   }
    109 
    110   if (!VideoProcessing::ValidFrameStats(*stats)) {
    111     return VPM_GENERAL_ERROR;
    112   }
    113 
    114   if (PreDetection(frame->timestamp(), *stats) == -1)
    115     return VPM_GENERAL_ERROR;
    116 
    117   // Flicker detection
    118   int32_t det_flicker = DetectFlicker();
    119   if (det_flicker < 0) {
    120     return VPM_GENERAL_ERROR;
    121   } else if (det_flicker != 1) {
    122     return 0;
    123   }
    124 
    125   // Size of luminance component.
    126   const uint32_t y_size = height * width;
    127 
    128   const uint32_t y_sub_size =
    129       width * (((height - 1) >> kLog2OfDownsamplingFactor) + 1);
    130   uint8_t* y_sorted = new uint8_t[y_sub_size];
    131   uint32_t sort_row_idx = 0;
    132   for (int i = 0; i < height; i += kDownsamplingFactor) {
    133     memcpy(y_sorted + sort_row_idx * width, frame->buffer(kYPlane) + i * width,
    134            width);
    135     sort_row_idx++;
    136   }
    137 
    138   webrtc::Sort(y_sorted, y_sub_size, webrtc::TYPE_UWord8);
    139 
    140   uint32_t prob_idx_uw32 = 0;
    141   quant_uw8[0] = 0;
    142   quant_uw8[kNumQuants - 1] = 255;
    143 
    144   // Ensure we won't get an overflow below.
    145   // In practice, the number of subsampled pixels will not become this large.
    146   if (y_sub_size > (1 << 21) - 1) {
    147     LOG(LS_ERROR) << "Subsampled number of pixels too large.";
    148     return -1;
    149   }
    150 
    151   for (int32_t i = 0; i < kNumProbs; i++) {
    152     // <Q0>.
    153     prob_idx_uw32 = WEBRTC_SPL_UMUL_32_16(y_sub_size, prob_uw16_[i]) >> 11;
    154     quant_uw8[i + 1] = y_sorted[prob_idx_uw32];
    155   }
    156 
    157   delete[] y_sorted;
    158   y_sorted = NULL;
    159 
    160   // Shift history for new frame.
    161   memmove(quant_hist_uw8_[1], quant_hist_uw8_[0],
    162           (kFrameHistory_size - 1) * kNumQuants * sizeof(uint8_t));
    163   // Store current frame in history.
    164   memcpy(quant_hist_uw8_[0], quant_uw8, kNumQuants * sizeof(uint8_t));
    165 
    166   // We use a frame memory equal to the ceiling of half the frame rate to
    167   // ensure we capture an entire period of flicker.
    168   frame_memory = (frame_rate_ + (1 << 5)) >> 5;  // Unsigned ceiling. <Q0>
    169                                                  // frame_rate_ in Q4.
    170   if (frame_memory > kFrameHistory_size) {
    171     frame_memory = kFrameHistory_size;
    172   }
    173 
    174   // Get maximum and minimum.
    175   for (int32_t i = 0; i < kNumQuants; i++) {
    176     maxquant_uw8[i] = 0;
    177     minquant_uw8[i] = 255;
    178     for (uint32_t j = 0; j < frame_memory; j++) {
    179       if (quant_hist_uw8_[j][i] > maxquant_uw8[i]) {
    180         maxquant_uw8[i] = quant_hist_uw8_[j][i];
    181       }
    182 
    183       if (quant_hist_uw8_[j][i] < minquant_uw8[i]) {
    184         minquant_uw8[i] = quant_hist_uw8_[j][i];
    185       }
    186     }
    187   }
    188 
    189   // Get target quantiles.
    190   for (int32_t i = 0; i < kNumQuants - kMaxOnlyLength; i++) {
    191     // target = w * maxquant_uw8 + (1 - w) * minquant_uw8
    192     // Weights w = |weight_uw16_| are in Q15, hence the final output has to be
    193     // right shifted by 8 to end up in Q7.
    194     target_quant_uw16[i] = static_cast<uint16_t>(
    195         (weight_uw16_[i] * maxquant_uw8[i] +
    196          ((1 << 15) - weight_uw16_[i]) * minquant_uw8[i]) >>
    197         8);  // <Q7>
    198   }
    199 
    200   for (int32_t i = kNumQuants - kMaxOnlyLength; i < kNumQuants; i++) {
    201     target_quant_uw16[i] = ((uint16_t)maxquant_uw8[i]) << 7;
    202   }
    203 
    204   // Compute the map from input to output pixels.
    205   uint16_t mapUW16;  // <Q7>
    206   for (int32_t i = 1; i < kNumQuants; i++) {
    207     // As quant and targetQuant are limited to UWord8, it's safe to use Q7 here.
    208     tmp_uw32 =
    209         static_cast<uint32_t>(target_quant_uw16[i] - target_quant_uw16[i - 1]);
    210     tmp_uw16 = static_cast<uint16_t>(quant_uw8[i] - quant_uw8[i - 1]);  // <Q0>
    211 
    212     if (tmp_uw16 > 0) {
    213       increment_uw16 =
    214           static_cast<uint16_t>(WebRtcSpl_DivU32U16(tmp_uw32,
    215                                                     tmp_uw16));  // <Q7>
    216     } else {
    217       // The value is irrelevant; the loop below will only iterate once.
    218       increment_uw16 = 0;
    219     }
    220 
    221     mapUW16 = target_quant_uw16[i - 1];
    222     for (uint32_t j = quant_uw8[i - 1]; j < (uint32_t)(quant_uw8[i] + 1); j++) {
    223       // Unsigned round. <Q0>
    224       map_uw8[j] = (uint8_t)((mapUW16 + (1 << 6)) >> 7);
    225       mapUW16 += increment_uw16;
    226     }
    227   }
    228 
    229   // Map to the output frame.
    230   uint8_t* buffer = frame->buffer(kYPlane);
    231   for (uint32_t i = 0; i < y_size; i++) {
    232     buffer[i] = map_uw8[buffer[i]];
    233   }
    234 
    235   // Frame was altered, so reset stats.
    236   VideoProcessing::ClearFrameStats(stats);
    237 
    238   return VPM_OK;
    239 }
    240 
    241 /**
    242    Performs some pre-detection operations. Must be called before
    243    DetectFlicker().
    244 
    245    \param[in] timestamp Timestamp of the current frame.
    246    \param[in] stats     Statistics of the current frame.
    247 
    248    \return 0: Success\n
    249            2: Detection not possible due to flickering frequency too close to
    250               zero.\n
    251           -1: Error
    252 */
    253 int32_t VPMDeflickering::PreDetection(
    254     const uint32_t timestamp,
    255     const VideoProcessing::FrameStats& stats) {
    256   int32_t mean_val;  // Mean value of frame (Q4)
    257   uint32_t frame_rate = 0;
    258   int32_t meanBufferLength;  // Temp variable.
    259 
    260   mean_val = ((stats.sum << kmean_valueScaling) / stats.num_pixels);
    261   // Update mean value buffer.
    262   // This should be done even though we might end up in an unreliable detection.
    263   memmove(mean_buffer_ + 1, mean_buffer_,
    264           (kMeanBufferLength - 1) * sizeof(int32_t));
    265   mean_buffer_[0] = mean_val;
    266 
    267   // Update timestamp buffer.
    268   // This should be done even though we might end up in an unreliable detection.
    269   memmove(timestamp_buffer_ + 1, timestamp_buffer_,
    270           (kMeanBufferLength - 1) * sizeof(uint32_t));
    271   timestamp_buffer_[0] = timestamp;
    272 
    273   /* Compute current frame rate (Q4) */
    274   if (timestamp_buffer_[kMeanBufferLength - 1] != 0) {
    275     frame_rate = ((90000 << 4) * (kMeanBufferLength - 1));
    276     frame_rate /=
    277         (timestamp_buffer_[0] - timestamp_buffer_[kMeanBufferLength - 1]);
    278   } else if (timestamp_buffer_[1] != 0) {
    279     frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
    280   }
    281 
    282   /* Determine required size of mean value buffer (mean_buffer_length_) */
    283   if (frame_rate == 0) {
    284     meanBufferLength = 1;
    285   } else {
    286     meanBufferLength =
    287         (kNumFlickerBeforeDetect * frame_rate) / kMinFrequencyToDetect;
    288   }
    289   /* Sanity check of buffer length */
    290   if (meanBufferLength >= kMeanBufferLength) {
    291     /* Too long buffer. The flickering frequency is too close to zero, which
    292      * makes the estimation unreliable.
    293      */
    294     mean_buffer_length_ = 0;
    295     return 2;
    296   }
    297   mean_buffer_length_ = meanBufferLength;
    298 
    299   if ((timestamp_buffer_[mean_buffer_length_ - 1] != 0) &&
    300       (mean_buffer_length_ != 1)) {
    301     frame_rate = ((90000 << 4) * (mean_buffer_length_ - 1));
    302     frame_rate /=
    303         (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
    304   } else if (timestamp_buffer_[1] != 0) {
    305     frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
    306   }
    307   frame_rate_ = frame_rate;
    308 
    309   return VPM_OK;
    310 }
    311 
    312 /**
    313    This function detects flicker in the video stream. As a side effect the
    314    mean value buffer is updated with the new mean value.
    315 
    316    \return 0: No flickering detected\n
    317            1: Flickering detected\n
    318            2: Detection not possible due to unreliable frequency interval
    319           -1: Error
    320 */
    321 int32_t VPMDeflickering::DetectFlicker() {
    322   uint32_t i;
    323   int32_t freqEst;  // (Q4) Frequency estimate to base detection upon
    324   int32_t ret_val = -1;
    325 
    326   /* Sanity check for mean_buffer_length_ */
    327   if (mean_buffer_length_ < 2) {
    328     /* Not possible to estimate frequency */
    329     return 2;
    330   }
    331   // Count zero crossings with a dead zone to be robust against noise. If the
    332   // noise std is 2 pixel this corresponds to about 95% confidence interval.
    333   int32_t deadzone = (kZeroCrossingDeadzone << kmean_valueScaling);  // Q4
    334   int32_t meanOfBuffer = 0;  // Mean value of mean value buffer.
    335   int32_t numZeros = 0;      // Number of zeros that cross the dead-zone.
    336   int32_t cntState = 0;      // State variable for zero crossing regions.
    337   int32_t cntStateOld = 0;   // Previous state for zero crossing regions.
    338 
    339   for (i = 0; i < mean_buffer_length_; i++) {
    340     meanOfBuffer += mean_buffer_[i];
    341   }
    342   meanOfBuffer += (mean_buffer_length_ >> 1);  // Rounding, not truncation.
    343   meanOfBuffer /= mean_buffer_length_;
    344 
    345   // Count zero crossings.
    346   cntStateOld = (mean_buffer_[0] >= (meanOfBuffer + deadzone));
    347   cntStateOld -= (mean_buffer_[0] <= (meanOfBuffer - deadzone));
    348   for (i = 1; i < mean_buffer_length_; i++) {
    349     cntState = (mean_buffer_[i] >= (meanOfBuffer + deadzone));
    350     cntState -= (mean_buffer_[i] <= (meanOfBuffer - deadzone));
    351     if (cntStateOld == 0) {
    352       cntStateOld = -cntState;
    353     }
    354     if (((cntState + cntStateOld) == 0) && (cntState != 0)) {
    355       numZeros++;
    356       cntStateOld = cntState;
    357     }
    358   }
    359   // END count zero crossings.
    360 
    361   /* Frequency estimation according to:
    362   * freqEst = numZeros * frame_rate / 2 / mean_buffer_length_;
    363   *
    364   * Resolution is set to Q4
    365   */
    366   freqEst = ((numZeros * 90000) << 3);
    367   freqEst /=
    368       (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
    369 
    370   /* Translate frequency estimate to regions close to 100 and 120 Hz */
    371   uint8_t freqState = 0;  // Current translation state;
    372                           // (0) Not in interval,
    373                           // (1) Within valid interval,
    374                           // (2) Out of range
    375   int32_t freqAlias = freqEst;
    376   if (freqEst > kMinFrequencyToDetect) {
    377     uint8_t aliasState = 1;
    378     while (freqState == 0) {
    379       /* Increase frequency */
    380       freqAlias += (aliasState * frame_rate_);
    381       freqAlias += ((freqEst << 1) * (1 - (aliasState << 1)));
    382       /* Compute state */
    383       freqState = (abs(freqAlias - (100 << 4)) <= kFrequencyDeviation);
    384       freqState += (abs(freqAlias - (120 << 4)) <= kFrequencyDeviation);
    385       freqState += 2 * (freqAlias > ((120 << 4) + kFrequencyDeviation));
    386       /* Switch alias state */
    387       aliasState++;
    388       aliasState &= 0x01;
    389     }
    390   }
    391   /* Is frequency estimate within detection region? */
    392   if (freqState == 1) {
    393     ret_val = 1;
    394   } else if (freqState == 0) {
    395     ret_val = 2;
    396   } else {
    397     ret_val = 0;
    398   }
    399   return ret_val;
    400 }
    401 
    402 }  // namespace webrtc
    403