Home | History | Annotate | Download | only in doc
      1 <!--{
      2 	"Title": "The Go Programming Language Specification",
      3 	"Subtitle": "Version of August 5, 2015",
      4 	"Path": "/ref/spec"
      5 }-->
      6 
      7 <h2 id="Introduction">Introduction</h2>
      8 
      9 <p>
     10 This is a reference manual for the Go programming language. For
     11 more information and other documents, see <a href="/">golang.org</a>.
     12 </p>
     13 
     14 <p>
     15 Go is a general-purpose language designed with systems programming
     16 in mind. It is strongly typed and garbage-collected and has explicit
     17 support for concurrent programming.  Programs are constructed from
     18 <i>packages</i>, whose properties allow efficient management of
     19 dependencies. The existing implementations use a traditional
     20 compile/link model to generate executable binaries.
     21 </p>
     22 
     23 <p>
     24 The grammar is compact and regular, allowing for easy analysis by
     25 automatic tools such as integrated development environments.
     26 </p>
     27 
     28 <h2 id="Notation">Notation</h2>
     29 <p>
     30 The syntax is specified using Extended Backus-Naur Form (EBNF):
     31 </p>
     32 
     33 <pre class="grammar">
     34 Production  = production_name "=" [ Expression ] "." .
     35 Expression  = Alternative { "|" Alternative } .
     36 Alternative = Term { Term } .
     37 Term        = production_name | token [ "" token ] | Group | Option | Repetition .
     38 Group       = "(" Expression ")" .
     39 Option      = "[" Expression "]" .
     40 Repetition  = "{" Expression "}" .
     41 </pre>
     42 
     43 <p>
     44 Productions are expressions constructed from terms and the following
     45 operators, in increasing precedence:
     46 </p>
     47 <pre class="grammar">
     48 |   alternation
     49 ()  grouping
     50 []  option (0 or 1 times)
     51 {}  repetition (0 to n times)
     52 </pre>
     53 
     54 <p>
     55 Lower-case production names are used to identify lexical tokens.
     56 Non-terminals are in CamelCase. Lexical tokens are enclosed in
     57 double quotes <code>""</code> or back quotes <code>``</code>.
     58 </p>
     59 
     60 <p>
     61 The form <code>a  b</code> represents the set of characters from
     62 <code>a</code> through <code>b</code> as alternatives. The horizontal
     63 ellipsis <code></code> is also used elsewhere in the spec to informally denote various
     64 enumerations or code snippets that are not further specified. The character <code></code>
     65 (as opposed to the three characters <code>...</code>) is not a token of the Go
     66 language.
     67 </p>
     68 
     69 <h2 id="Source_code_representation">Source code representation</h2>
     70 
     71 <p>
     72 Source code is Unicode text encoded in
     73 <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
     74 canonicalized, so a single accented code point is distinct from the
     75 same character constructed from combining an accent and a letter;
     76 those are treated as two code points.  For simplicity, this document
     77 will use the unqualified term <i>character</i> to refer to a Unicode code point
     78 in the source text.
     79 </p>
     80 <p>
     81 Each code point is distinct; for instance, upper and lower case letters
     82 are different characters.
     83 </p>
     84 <p>
     85 Implementation restriction: For compatibility with other tools, a
     86 compiler may disallow the NUL character (U+0000) in the source text.
     87 </p>
     88 <p>
     89 Implementation restriction: For compatibility with other tools, a
     90 compiler may ignore a UTF-8-encoded byte order mark
     91 (U+FEFF) if it is the first Unicode code point in the source text.
     92 A byte order mark may be disallowed anywhere else in the source.
     93 </p>
     94 
     95 <h3 id="Characters">Characters</h3>
     96 
     97 <p>
     98 The following terms are used to denote specific Unicode character classes:
     99 </p>
    100 <pre class="ebnf">
    101 newline        = /* the Unicode code point U+000A */ .
    102 unicode_char   = /* an arbitrary Unicode code point except newline */ .
    103 unicode_letter = /* a Unicode code point classified as "Letter" */ .
    104 unicode_digit  = /* a Unicode code point classified as "Decimal Digit" */ .
    105 </pre>
    106 
    107 <p>
    108 In <a href="http://www.unicode.org/versions/Unicode6.3.0/">The Unicode Standard 6.3</a>,
    109 Section 4.5 "General Category"
    110 defines a set of character categories.  Go treats
    111 those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters,
    112 and those in category Nd as Unicode digits.
    113 </p>
    114 
    115 <h3 id="Letters_and_digits">Letters and digits</h3>
    116 
    117 <p>
    118 The underscore character <code>_</code> (U+005F) is considered a letter.
    119 </p>
    120 <pre class="ebnf">
    121 letter        = unicode_letter | "_" .
    122 decimal_digit = "0"  "9" .
    123 octal_digit   = "0"  "7" .
    124 hex_digit     = "0"  "9" | "A"  "F" | "a"  "f" .
    125 </pre>
    126 
    127 <h2 id="Lexical_elements">Lexical elements</h2>
    128 
    129 <h3 id="Comments">Comments</h3>
    130 
    131 <p>
    132 Comments serve as program documentation. There are two forms:
    133 </p>
    134 
    135 <ol>
    136 <li>
    137 <i>Line comments</i> start with the character sequence <code>//</code>
    138 and stop at the end of the line.
    139 </li>
    140 <li>
    141 <i>General comments</i> start with the character sequence <code>/*</code>
    142 and stop with the first subsequent character sequence <code>*/</code>.
    143 </li>
    144 </ol>
    145 
    146 <p>
    147 A comment cannot start inside a <a href="#Rune_literals">rune</a> or
    148 <a href="#String_literals">string literal</a>, or inside a comment.
    149 A general comment containing no newlines acts like a space.
    150 Any other comment acts like a newline.
    151 </p>
    152 
    153 <h3 id="Tokens">Tokens</h3>
    154 
    155 <p>
    156 Tokens form the vocabulary of the Go language.
    157 There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
    158 and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
    159 spaces (U+0020), horizontal tabs (U+0009),
    160 carriage returns (U+000D), and newlines (U+000A),
    161 is ignored except as it separates tokens
    162 that would otherwise combine into a single token. Also, a newline or end of file
    163 may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
    164 While breaking the input into tokens,
    165 the next token is the longest sequence of characters that form a
    166 valid token.
    167 </p>
    168 
    169 <h3 id="Semicolons">Semicolons</h3>
    170 
    171 <p>
    172 The formal grammar uses semicolons <code>";"</code> as terminators in
    173 a number of productions. Go programs may omit most of these semicolons
    174 using the following two rules:
    175 </p>
    176 
    177 <ol>
    178 <li>
    179 When the input is broken into tokens, a semicolon is automatically inserted
    180 into the token stream immediately after a line's final token if that token is
    181 <ul>
    182 	<li>an
    183 	    <a href="#Identifiers">identifier</a>
    184 	</li>
    185 
    186 	<li>an
    187 	    <a href="#Integer_literals">integer</a>,
    188 	    <a href="#Floating-point_literals">floating-point</a>,
    189 	    <a href="#Imaginary_literals">imaginary</a>,
    190 	    <a href="#Rune_literals">rune</a>, or
    191 	    <a href="#String_literals">string</a> literal
    192 	</li>
    193 
    194 	<li>one of the <a href="#Keywords">keywords</a>
    195 	    <code>break</code>,
    196 	    <code>continue</code>,
    197 	    <code>fallthrough</code>, or
    198 	    <code>return</code>
    199 	</li>
    200 
    201 	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
    202 	    <code>++</code>,
    203 	    <code>--</code>,
    204 	    <code>)</code>,
    205 	    <code>]</code>, or
    206 	    <code>}</code>
    207 	</li>
    208 </ul>
    209 </li>
    210 
    211 <li>
    212 To allow complex statements to occupy a single line, a semicolon
    213 may be omitted before a closing <code>")"</code> or <code>"}"</code>.
    214 </li>
    215 </ol>
    216 
    217 <p>
    218 To reflect idiomatic use, code examples in this document elide semicolons
    219 using these rules.
    220 </p>
    221 
    222 
    223 <h3 id="Identifiers">Identifiers</h3>
    224 
    225 <p>
    226 Identifiers name program entities such as variables and types.
    227 An identifier is a sequence of one or more letters and digits.
    228 The first character in an identifier must be a letter.
    229 </p>
    230 <pre class="ebnf">
    231 identifier = letter { letter | unicode_digit } .
    232 </pre>
    233 <pre>
    234 a
    235 _x9
    236 ThisVariableIsExported
    237 
    238 </pre>
    239 
    240 <p>
    241 Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
    242 </p>
    243 
    244 
    245 <h3 id="Keywords">Keywords</h3>
    246 
    247 <p>
    248 The following keywords are reserved and may not be used as identifiers.
    249 </p>
    250 <pre class="grammar">
    251 break        default      func         interface    select
    252 case         defer        go           map          struct
    253 chan         else         goto         package      switch
    254 const        fallthrough  if           range        type
    255 continue     for          import       return       var
    256 </pre>
    257 
    258 <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
    259 
    260 <p>
    261 The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
    262 </p>
    263 <pre class="grammar">
    264 +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
    265 -    |     -=    |=     ||    &lt;     &lt;=    [    ]
    266 *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
    267 /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
    268 %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
    269      &amp;^          &amp;^=
    270 </pre>
    271 
    272 <h3 id="Integer_literals">Integer literals</h3>
    273 
    274 <p>
    275 An integer literal is a sequence of digits representing an
    276 <a href="#Constants">integer constant</a>.
    277 An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
    278 <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
    279 <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
    280 </p>
    281 <pre class="ebnf">
    282 int_lit     = decimal_lit | octal_lit | hex_lit .
    283 decimal_lit = ( "1"  "9" ) { decimal_digit } .
    284 octal_lit   = "0" { octal_digit } .
    285 hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
    286 </pre>
    287 
    288 <pre>
    289 42
    290 0600
    291 0xBadFace
    292 170141183460469231731687303715884105727
    293 </pre>
    294 
    295 <h3 id="Floating-point_literals">Floating-point literals</h3>
    296 <p>
    297 A floating-point literal is a decimal representation of a
    298 <a href="#Constants">floating-point constant</a>.
    299 It has an integer part, a decimal point, a fractional part,
    300 and an exponent part.  The integer and fractional part comprise
    301 decimal digits; the exponent part is an <code>e</code> or <code>E</code>
    302 followed by an optionally signed decimal exponent.  One of the
    303 integer part or the fractional part may be elided; one of the decimal
    304 point or the exponent may be elided.
    305 </p>
    306 <pre class="ebnf">
    307 float_lit = decimals "." [ decimals ] [ exponent ] |
    308             decimals exponent |
    309             "." decimals [ exponent ] .
    310 decimals  = decimal_digit { decimal_digit } .
    311 exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
    312 </pre>
    313 
    314 <pre>
    315 0.
    316 72.40
    317 072.40  // == 72.40
    318 2.71828
    319 1.e+0
    320 6.67428e-11
    321 1E6
    322 .25
    323 .12345E+5
    324 </pre>
    325 
    326 <h3 id="Imaginary_literals">Imaginary literals</h3>
    327 <p>
    328 An imaginary literal is a decimal representation of the imaginary part of a
    329 <a href="#Constants">complex constant</a>.
    330 It consists of a
    331 <a href="#Floating-point_literals">floating-point literal</a>
    332 or decimal integer followed
    333 by the lower-case letter <code>i</code>.
    334 </p>
    335 <pre class="ebnf">
    336 imaginary_lit = (decimals | float_lit) "i" .
    337 </pre>
    338 
    339 <pre>
    340 0i
    341 011i  // == 11i
    342 0.i
    343 2.71828i
    344 1.e+0i
    345 6.67428e-11i
    346 1E6i
    347 .25i
    348 .12345E+5i
    349 </pre>
    350 
    351 
    352 <h3 id="Rune_literals">Rune literals</h3>
    353 
    354 <p>
    355 A rune literal represents a <a href="#Constants">rune constant</a>,
    356 an integer value identifying a Unicode code point.
    357 A rune literal is expressed as one or more characters enclosed in single quotes,
    358 as in <code>'x'</code> or <code>'\n'</code>.
    359 Within the quotes, any character may appear except newline and unescaped single
    360 quote. A single quoted character represents the Unicode value
    361 of the character itself,
    362 while multi-character sequences beginning with a backslash encode
    363 values in various formats.
    364 </p>
    365 <p>
    366 The simplest form represents the single character within the quotes;
    367 since Go source text is Unicode characters encoded in UTF-8, multiple
    368 UTF-8-encoded bytes may represent a single integer value.  For
    369 instance, the literal <code>'a'</code> holds a single byte representing
    370 a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
    371 <code>''</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
    372 a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
    373 </p>
    374 <p>
    375 Several backslash escapes allow arbitrary values to be encoded as
    376 ASCII text.  There are four ways to represent the integer value
    377 as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
    378 digits; <code>\u</code> followed by exactly four hexadecimal digits;
    379 <code>\U</code> followed by exactly eight hexadecimal digits, and a
    380 plain backslash <code>\</code> followed by exactly three octal digits.
    381 In each case the value of the literal is the value represented by
    382 the digits in the corresponding base.
    383 </p>
    384 <p>
    385 Although these representations all result in an integer, they have
    386 different valid ranges.  Octal escapes must represent a value between
    387 0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
    388 by construction. The escapes <code>\u</code> and <code>\U</code>
    389 represent Unicode code points so within them some values are illegal,
    390 in particular those above <code>0x10FFFF</code> and surrogate halves.
    391 </p>
    392 <p>
    393 After a backslash, certain single-character escapes represent special values:
    394 </p>
    395 <pre class="grammar">
    396 \a   U+0007 alert or bell
    397 \b   U+0008 backspace
    398 \f   U+000C form feed
    399 \n   U+000A line feed or newline
    400 \r   U+000D carriage return
    401 \t   U+0009 horizontal tab
    402 \v   U+000b vertical tab
    403 \\   U+005c backslash
    404 \'   U+0027 single quote  (valid escape only within rune literals)
    405 \"   U+0022 double quote  (valid escape only within string literals)
    406 </pre>
    407 <p>
    408 All other sequences starting with a backslash are illegal inside rune literals.
    409 </p>
    410 <pre class="ebnf">
    411 rune_lit         = "'" ( unicode_value | byte_value ) "'" .
    412 unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
    413 byte_value       = octal_byte_value | hex_byte_value .
    414 octal_byte_value = `\` octal_digit octal_digit octal_digit .
    415 hex_byte_value   = `\` "x" hex_digit hex_digit .
    416 little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
    417 big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
    418                            hex_digit hex_digit hex_digit hex_digit .
    419 escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
    420 </pre>
    421 
    422 <pre>
    423 'a'
    424 ''
    425 ''
    426 '\t'
    427 '\000'
    428 '\007'
    429 '\377'
    430 '\x07'
    431 '\xff'
    432 '\u12e4'
    433 '\U00101234'
    434 '\''         // rune literal containing single quote character
    435 'aa'         // illegal: too many characters
    436 '\xa'        // illegal: too few hexadecimal digits
    437 '\0'         // illegal: too few octal digits
    438 '\uDFFF'     // illegal: surrogate half
    439 '\U00110000' // illegal: invalid Unicode code point
    440 </pre>
    441 
    442 
    443 <h3 id="String_literals">String literals</h3>
    444 
    445 <p>
    446 A string literal represents a <a href="#Constants">string constant</a>
    447 obtained from concatenating a sequence of characters. There are two forms:
    448 raw string literals and interpreted string literals.
    449 </p>
    450 <p>
    451 Raw string literals are character sequences between back quotes, as in
    452 <code>`foo`</code>.  Within the quotes, any character may appear except
    453 back quote. The value of a raw string literal is the
    454 string composed of the uninterpreted (implicitly UTF-8-encoded) characters
    455 between the quotes;
    456 in particular, backslashes have no special meaning and the string may
    457 contain newlines.
    458 Carriage return characters ('\r') inside raw string literals
    459 are discarded from the raw string value.
    460 </p>
    461 <p>
    462 Interpreted string literals are character sequences between double
    463 quotes, as in <code>&quot;bar&quot;</code>.
    464 Within the quotes, any character may appear except newline and unescaped double quote.
    465 The text between the quotes forms the
    466 value of the literal, with backslash escapes interpreted as they
    467 are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
    468 <code>\"</code> is legal), with the same restrictions.
    469 The three-digit octal (<code>\</code><i>nnn</i>)
    470 and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
    471 <i>bytes</i> of the resulting string; all other escapes represent
    472 the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
    473 Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
    474 a single byte of value <code>0xFF</code>=255, while <code></code>,
    475 <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
    476 the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
    477 U+00FF.
    478 </p>
    479 
    480 <pre class="ebnf">
    481 string_lit             = raw_string_lit | interpreted_string_lit .
    482 raw_string_lit         = "`" { unicode_char | newline } "`" .
    483 interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
    484 </pre>
    485 
    486 <pre>
    487 `abc`                // same as "abc"
    488 `\n
    489 \n`                  // same as "\\n\n\\n"
    490 "\n"
    491 "\""                 // same as `"`
    492 "Hello, world!\n"
    493 ""
    494 "\u65e5\U00008a9e"
    495 "\xff\u00FF"
    496 "\uD800"             // illegal: surrogate half
    497 "\U00110000"         // illegal: invalid Unicode code point
    498 </pre>
    499 
    500 <p>
    501 These examples all represent the same string:
    502 </p>
    503 
    504 <pre>
    505 ""                                 // UTF-8 input text
    506 ``                                 // UTF-8 input text as a raw literal
    507 "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
    508 "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
    509 "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
    510 </pre>
    511 
    512 <p>
    513 If the source code represents a character as two code points, such as
    514 a combining form involving an accent and a letter, the result will be
    515 an error if placed in a rune literal (it is not a single code
    516 point), and will appear as two code points if placed in a string
    517 literal.
    518 </p>
    519 
    520 
    521 <h2 id="Constants">Constants</h2>
    522 
    523 <p>There are <i>boolean constants</i>,
    524 <i>rune constants</i>,
    525 <i>integer constants</i>,
    526 <i>floating-point constants</i>, <i>complex constants</i>,
    527 and <i>string constants</i>. Rune, integer, floating-point,
    528 and complex constants are
    529 collectively called <i>numeric constants</i>.
    530 </p>
    531 
    532 <p>
    533 A constant value is represented by a
    534 <a href="#Rune_literals">rune</a>,
    535 <a href="#Integer_literals">integer</a>,
    536 <a href="#Floating-point_literals">floating-point</a>,
    537 <a href="#Imaginary_literals">imaginary</a>,
    538 or
    539 <a href="#String_literals">string</a> literal,
    540 an identifier denoting a constant,
    541 a <a href="#Constant_expressions">constant expression</a>,
    542 a <a href="#Conversions">conversion</a> with a result that is a constant, or
    543 the result value of some built-in functions such as
    544 <code>unsafe.Sizeof</code> applied to any value,
    545 <code>cap</code> or <code>len</code> applied to
    546 <a href="#Length_and_capacity">some expressions</a>,
    547 <code>real</code> and <code>imag</code> applied to a complex constant
    548 and <code>complex</code> applied to numeric constants.
    549 The boolean truth values are represented by the predeclared constants
    550 <code>true</code> and <code>false</code>. The predeclared identifier
    551 <a href="#Iota">iota</a> denotes an integer constant.
    552 </p>
    553 
    554 <p>
    555 In general, complex constants are a form of
    556 <a href="#Constant_expressions">constant expression</a>
    557 and are discussed in that section.
    558 </p>
    559 
    560 <p>
    561 Numeric constants represent values of arbitrary precision and do not overflow.
    562 </p>
    563 
    564 <p>
    565 Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
    566 Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
    567 and certain <a href="#Constant_expressions">constant expressions</a>
    568 containing only untyped constant operands are untyped.
    569 </p>
    570 
    571 <p>
    572 A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
    573 or <a href="#Conversions">conversion</a>, or implicitly when used in a
    574 <a href="#Variable_declarations">variable declaration</a> or an
    575 <a href="#Assignments">assignment</a> or as an
    576 operand in an <a href="#Expressions">expression</a>.
    577 It is an error if the constant value
    578 cannot be represented as a value of the respective type.
    579 For instance, <code>3.0</code> can be given any integer or any
    580 floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
    581 can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
    582 not <code>int32</code> or <code>string</code>.
    583 </p>
    584 
    585 <p>
    586 An untyped constant has a <i>default type</i> which is the type to which the
    587 constant is implicitly converted in contexts where a typed value is required,
    588 for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
    589 such as <code>i := 0</code> where there is no explicit type.
    590 The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
    591 <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
    592 respectively, depending on whether it is a boolean, rune, integer, floating-point,
    593 complex, or string constant.
    594 </p>
    595 
    596 <p>
    597 There are no constants denoting the IEEE-754 infinity and not-a-number values,
    598 but the <a href="/pkg/math/"><code>math</code> package</a>'s
    599 <a href="/pkg/math/#Inf">Inf</a>,
    600 <a href="/pkg/math/#NaN">NaN</a>,
    601 <a href="/pkg/math/#IsInf">IsInf</a>, and
    602 <a href="/pkg/math/#IsNaN">IsNaN</a>
    603 functions return and test for those values at run time.
    604 </p>
    605 
    606 <p>
    607 Implementation restriction: Although numeric constants have arbitrary
    608 precision in the language, a compiler may implement them using an
    609 internal representation with limited precision.  That said, every
    610 implementation must:
    611 </p>
    612 <ul>
    613 	<li>Represent integer constants with at least 256 bits.</li>
    614 
    615 	<li>Represent floating-point constants, including the parts of
    616 	    a complex constant, with a mantissa of at least 256 bits
    617 	    and a signed exponent of at least 32 bits.</li>
    618 
    619 	<li>Give an error if unable to represent an integer constant
    620 	    precisely.</li>
    621 
    622 	<li>Give an error if unable to represent a floating-point or
    623 	    complex constant due to overflow.</li>
    624 
    625 	<li>Round to the nearest representable constant if unable to
    626 	    represent a floating-point or complex constant due to limits
    627 	    on precision.</li>
    628 </ul>
    629 <p>
    630 These requirements apply both to literal constants and to the result
    631 of evaluating <a href="#Constant_expressions">constant
    632 expressions</a>.
    633 </p>
    634 
    635 <h2 id="Variables">Variables</h2>
    636 
    637 <p>
    638 A variable is a storage location for holding a <i>value</i>.
    639 The set of permissible values is determined by the
    640 variable's <i><a href="#Types">type</a></i>.
    641 </p>
    642 
    643 <p>
    644 A <a href="#Variable_declarations">variable declaration</a>
    645 or, for function parameters and results, the signature
    646 of a <a href="#Function_declarations">function declaration</a>
    647 or <a href="#Function_literals">function literal</a> reserves
    648 storage for a named variable.
    649 
    650 Calling the built-in function <a href="#Allocation"><code>new</code></a>
    651 or taking the address of a <a href="#Composite_literals">composite literal</a>
    652 allocates storage for a variable at run time.
    653 Such an anonymous variable is referred to via a (possibly implicit)
    654 <a href="#Address_operators">pointer indirection</a>.
    655 </p>
    656 
    657 <p>
    658 <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
    659 and <a href="#Struct_types">struct</a> types have elements and fields that may
    660 be <a href="#Address_operators">addressed</a> individually. Each such element
    661 acts like a variable.
    662 </p>
    663 
    664 <p>
    665 The <i>static type</i> (or just <i>type</i>) of a variable is the
    666 type given in its declaration, the type provided in the
    667 <code>new</code> call or composite literal, or the type of
    668 an element of a structured variable.
    669 Variables of interface type also have a distinct <i>dynamic type</i>,
    670 which is the concrete type of the value assigned to the variable at run time
    671 (unless the value is the predeclared identifier <code>nil</code>,
    672 which has no type).
    673 The dynamic type may vary during execution but values stored in interface
    674 variables are always <a href="#Assignability">assignable</a>
    675 to the static type of the variable.
    676 </p>
    677 
    678 <pre>
    679 var x interface{}  // x is nil and has static type interface{}
    680 var v *T           // v has value nil, static type *T
    681 x = 42             // x has value 42 and dynamic type int
    682 x = v              // x has value (*T)(nil) and dynamic type *T
    683 </pre>
    684 
    685 <p>
    686 A variable's value is retrieved by referring to the variable in an
    687 <a href="#Expressions">expression</a>; it is the most recent value
    688 <a href="#Assignments">assigned</a> to the variable.
    689 If a variable has not yet been assigned a value, its value is the
    690 <a href="#The_zero_value">zero value</a> for its type.
    691 </p>
    692 
    693 
    694 <h2 id="Types">Types</h2>
    695 
    696 <p>
    697 A type determines the set of values and operations specific to values of that
    698 type. Types may be <i>named</i> or <i>unnamed</i>. Named types are specified
    699 by a (possibly <a href="#Qualified_identifiers">qualified</a>)
    700 <a href="#Type_declarations"><i>type name</i></a>; unnamed types are specified
    701 using a <i>type literal</i>, which composes a new type from existing types.
    702 </p>
    703 
    704 <pre class="ebnf">
    705 Type      = TypeName | TypeLit | "(" Type ")" .
    706 TypeName  = identifier | QualifiedIdent .
    707 TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
    708 	    SliceType | MapType | ChannelType .
    709 </pre>
    710 
    711 <p>
    712 Named instances of the boolean, numeric, and string types are
    713 <a href="#Predeclared_identifiers">predeclared</a>.
    714 <i>Composite types</i>&mdash;array, struct, pointer, function,
    715 interface, slice, map, and channel types&mdash;may be constructed using
    716 type literals.
    717 </p>
    718 
    719 <p>
    720 Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
    721 is one of the predeclared boolean, numeric, or string types, or a type literal,
    722 the corresponding underlying
    723 type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
    724 is the underlying type of the type to which <code>T</code> refers in its
    725 <a href="#Type_declarations">type declaration</a>.
    726 </p>
    727 
    728 <pre>
    729    type T1 string
    730    type T2 T1
    731    type T3 []T1
    732    type T4 T3
    733 </pre>
    734 
    735 <p>
    736 The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code>
    737 is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>,
    738 and <code>T4</code> is <code>[]T1</code>.
    739 </p>
    740 
    741 <h3 id="Method_sets">Method sets</h3>
    742 <p>
    743 A type may have a <i>method set</i> associated with it.
    744 The method set of an <a href="#Interface_types">interface type</a> is its interface.
    745 The method set of any other type <code>T</code> consists of all
    746 <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
    747 The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
    748 is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
    749 (that is, it also contains the method set of <code>T</code>).
    750 Further rules apply to structs containing anonymous fields, as described
    751 in the section on <a href="#Struct_types">struct types</a>.
    752 Any other type has an empty method set.
    753 In a method set, each method must have a
    754 <a href="#Uniqueness_of_identifiers">unique</a>
    755 non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
    756 </p>
    757 
    758 <p>
    759 The method set of a type determines the interfaces that the
    760 type <a href="#Interface_types">implements</a>
    761 and the methods that can be <a href="#Calls">called</a>
    762 using a receiver of that type.
    763 </p>
    764 
    765 <h3 id="Boolean_types">Boolean types</h3>
    766 
    767 <p>
    768 A <i>boolean type</i> represents the set of Boolean truth values
    769 denoted by the predeclared constants <code>true</code>
    770 and <code>false</code>. The predeclared boolean type is <code>bool</code>.
    771 </p>
    772 
    773 <h3 id="Numeric_types">Numeric types</h3>
    774 
    775 <p>
    776 A <i>numeric type</i> represents sets of integer or floating-point values.
    777 The predeclared architecture-independent numeric types are:
    778 </p>
    779 
    780 <pre class="grammar">
    781 uint8       the set of all unsigned  8-bit integers (0 to 255)
    782 uint16      the set of all unsigned 16-bit integers (0 to 65535)
    783 uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
    784 uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
    785 
    786 int8        the set of all signed  8-bit integers (-128 to 127)
    787 int16       the set of all signed 16-bit integers (-32768 to 32767)
    788 int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
    789 int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
    790 
    791 float32     the set of all IEEE-754 32-bit floating-point numbers
    792 float64     the set of all IEEE-754 64-bit floating-point numbers
    793 
    794 complex64   the set of all complex numbers with float32 real and imaginary parts
    795 complex128  the set of all complex numbers with float64 real and imaginary parts
    796 
    797 byte        alias for uint8
    798 rune        alias for int32
    799 </pre>
    800 
    801 <p>
    802 The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
    803 <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
    804 </p>
    805 
    806 <p>
    807 There is also a set of predeclared numeric types with implementation-specific sizes:
    808 </p>
    809 
    810 <pre class="grammar">
    811 uint     either 32 or 64 bits
    812 int      same size as uint
    813 uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
    814 </pre>
    815 
    816 <p>
    817 To avoid portability issues all numeric types are distinct except
    818 <code>byte</code>, which is an alias for <code>uint8</code>, and
    819 <code>rune</code>, which is an alias for <code>int32</code>.
    820 Conversions
    821 are required when different numeric types are mixed in an expression
    822 or assignment. For instance, <code>int32</code> and <code>int</code>
    823 are not the same type even though they may have the same size on a
    824 particular architecture.
    825 
    826 
    827 <h3 id="String_types">String types</h3>
    828 
    829 <p>
    830 A <i>string type</i> represents the set of string values.
    831 A string value is a (possibly empty) sequence of bytes.
    832 Strings are immutable: once created,
    833 it is impossible to change the contents of a string.
    834 The predeclared string type is <code>string</code>.
    835 </p>
    836 
    837 <p>
    838 The length of a string <code>s</code> (its size in bytes) can be discovered using
    839 the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
    840 The length is a compile-time constant if the string is a constant.
    841 A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
    842 0 through <code>len(s)-1</code>.
    843 It is illegal to take the address of such an element; if
    844 <code>s[i]</code> is the <code>i</code>'th byte of a
    845 string, <code>&amp;s[i]</code> is invalid.
    846 </p>
    847 
    848 
    849 <h3 id="Array_types">Array types</h3>
    850 
    851 <p>
    852 An array is a numbered sequence of elements of a single
    853 type, called the element type.
    854 The number of elements is called the length and is never
    855 negative.
    856 </p>
    857 
    858 <pre class="ebnf">
    859 ArrayType   = "[" ArrayLength "]" ElementType .
    860 ArrayLength = Expression .
    861 ElementType = Type .
    862 </pre>
    863 
    864 <p>
    865 The length is part of the array's type; it must evaluate to a
    866 non-negative <a href="#Constants">constant</a> representable by a value
    867 of type <code>int</code>.
    868 The length of array <code>a</code> can be discovered
    869 using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
    870 The elements can be addressed by integer <a href="#Index_expressions">indices</a>
    871 0 through <code>len(a)-1</code>.
    872 Array types are always one-dimensional but may be composed to form
    873 multi-dimensional types.
    874 </p>
    875 
    876 <pre>
    877 [32]byte
    878 [2*N] struct { x, y int32 }
    879 [1000]*float64
    880 [3][5]int
    881 [2][2][2]float64  // same as [2]([2]([2]float64))
    882 </pre>
    883 
    884 <h3 id="Slice_types">Slice types</h3>
    885 
    886 <p>
    887 A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
    888 provides access to a numbered sequence of elements from that array.
    889 A slice type denotes the set of all slices of arrays of its element type.
    890 The value of an uninitialized slice is <code>nil</code>.
    891 </p>
    892 
    893 <pre class="ebnf">
    894 SliceType = "[" "]" ElementType .
    895 </pre>
    896 
    897 <p>
    898 Like arrays, slices are indexable and have a length.  The length of a
    899 slice <code>s</code> can be discovered by the built-in function
    900 <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
    901 execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
    902 0 through <code>len(s)-1</code>.  The slice index of a
    903 given element may be less than the index of the same element in the
    904 underlying array.
    905 </p>
    906 <p>
    907 A slice, once initialized, is always associated with an underlying
    908 array that holds its elements.  A slice therefore shares storage
    909 with its array and with other slices of the same array; by contrast,
    910 distinct arrays always represent distinct storage.
    911 </p>
    912 <p>
    913 The array underlying a slice may extend past the end of the slice.
    914 The <i>capacity</i> is a measure of that extent: it is the sum of
    915 the length of the slice and the length of the array beyond the slice;
    916 a slice of length up to that capacity can be created by
    917 <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
    918 The capacity of a slice <code>a</code> can be discovered using the
    919 built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
    920 </p>
    921 
    922 <p>
    923 A new, initialized slice value for a given element type <code>T</code> is
    924 made using the built-in function
    925 <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
    926 which takes a slice type
    927 and parameters specifying the length and optionally the capacity.
    928 A slice created with <code>make</code> always allocates a new, hidden array
    929 to which the returned slice value refers. That is, executing
    930 </p>
    931 
    932 <pre>
    933 make([]T, length, capacity)
    934 </pre>
    935 
    936 <p>
    937 produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
    938 it, so these two expressions are equivalent:
    939 </p>
    940 
    941 <pre>
    942 make([]int, 50, 100)
    943 new([100]int)[0:50]
    944 </pre>
    945 
    946 <p>
    947 Like arrays, slices are always one-dimensional but may be composed to construct
    948 higher-dimensional objects.
    949 With arrays of arrays, the inner arrays are, by construction, always the same length;
    950 however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
    951 Moreover, the inner slices must be initialized individually.
    952 </p>
    953 
    954 <h3 id="Struct_types">Struct types</h3>
    955 
    956 <p>
    957 A struct is a sequence of named elements, called fields, each of which has a
    958 name and a type. Field names may be specified explicitly (IdentifierList) or
    959 implicitly (AnonymousField).
    960 Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
    961 be <a href="#Uniqueness_of_identifiers">unique</a>.
    962 </p>
    963 
    964 <pre class="ebnf">
    965 StructType     = "struct" "{" { FieldDecl ";" } "}" .
    966 FieldDecl      = (IdentifierList Type | AnonymousField) [ Tag ] .
    967 AnonymousField = [ "*" ] TypeName .
    968 Tag            = string_lit .
    969 </pre>
    970 
    971 <pre>
    972 // An empty struct.
    973 struct {}
    974 
    975 // A struct with 6 fields.
    976 struct {
    977 	x, y int
    978 	u float32
    979 	_ float32  // padding
    980 	A *[]int
    981 	F func()
    982 }
    983 </pre>
    984 
    985 <p>
    986 A field declared with a type but no explicit field name is an <i>anonymous field</i>,
    987 also called an <i>embedded</i> field or an embedding of the type in the struct.
    988 An embedded type must be specified as
    989 a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
    990 and <code>T</code> itself may not be
    991 a pointer type. The unqualified type name acts as the field name.
    992 </p>
    993 
    994 <pre>
    995 // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
    996 struct {
    997 	T1        // field name is T1
    998 	*T2       // field name is T2
    999 	P.T3      // field name is T3
   1000 	*P.T4     // field name is T4
   1001 	x, y int  // field names are x and y
   1002 }
   1003 </pre>
   1004 
   1005 <p>
   1006 The following declaration is illegal because field names must be unique
   1007 in a struct type:
   1008 </p>
   1009 
   1010 <pre>
   1011 struct {
   1012 	T     // conflicts with anonymous field *T and *P.T
   1013 	*T    // conflicts with anonymous field T and *P.T
   1014 	*P.T  // conflicts with anonymous field T and *T
   1015 }
   1016 </pre>
   1017 
   1018 <p>
   1019 A field or <a href="#Method_declarations">method</a> <code>f</code> of an
   1020 anonymous field in a struct <code>x</code> is called <i>promoted</i> if
   1021 <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
   1022 that field or method <code>f</code>.
   1023 </p>
   1024 
   1025 <p>
   1026 Promoted fields act like ordinary fields
   1027 of a struct except that they cannot be used as field names in
   1028 <a href="#Composite_literals">composite literals</a> of the struct.
   1029 </p>
   1030 
   1031 <p>
   1032 Given a struct type <code>S</code> and a type named <code>T</code>,
   1033 promoted methods are included in the method set of the struct as follows:
   1034 </p>
   1035 <ul>
   1036 	<li>
   1037 	If <code>S</code> contains an anonymous field <code>T</code>,
   1038 	the <a href="#Method_sets">method sets</a> of <code>S</code>
   1039 	and <code>*S</code> both include promoted methods with receiver
   1040 	<code>T</code>. The method set of <code>*S</code> also
   1041 	includes promoted methods with receiver <code>*T</code>.
   1042 	</li>
   1043 
   1044 	<li>
   1045 	If <code>S</code> contains an anonymous field <code>*T</code>,
   1046 	the method sets of <code>S</code> and <code>*S</code> both
   1047 	include promoted methods with receiver <code>T</code> or
   1048 	<code>*T</code>.
   1049 	</li>
   1050 </ul>
   1051 
   1052 <p>
   1053 A field declaration may be followed by an optional string literal <i>tag</i>,
   1054 which becomes an attribute for all the fields in the corresponding
   1055 field declaration. The tags are made
   1056 visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
   1057 and take part in <a href="#Type_identity">type identity</a> for structs
   1058 but are otherwise ignored.
   1059 </p>
   1060 
   1061 <pre>
   1062 // A struct corresponding to the TimeStamp protocol buffer.
   1063 // The tag strings define the protocol buffer field numbers.
   1064 struct {
   1065 	microsec  uint64 "field 1"
   1066 	serverIP6 uint64 "field 2"
   1067 	process   string "field 3"
   1068 }
   1069 </pre>
   1070 
   1071 <h3 id="Pointer_types">Pointer types</h3>
   1072 
   1073 <p>
   1074 A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
   1075 type, called the <i>base type</i> of the pointer.
   1076 The value of an uninitialized pointer is <code>nil</code>.
   1077 </p>
   1078 
   1079 <pre class="ebnf">
   1080 PointerType = "*" BaseType .
   1081 BaseType    = Type .
   1082 </pre>
   1083 
   1084 <pre>
   1085 *Point
   1086 *[4]int
   1087 </pre>
   1088 
   1089 <h3 id="Function_types">Function types</h3>
   1090 
   1091 <p>
   1092 A function type denotes the set of all functions with the same parameter
   1093 and result types. The value of an uninitialized variable of function type
   1094 is <code>nil</code>.
   1095 </p>
   1096 
   1097 <pre class="ebnf">
   1098 FunctionType   = "func" Signature .
   1099 Signature      = Parameters [ Result ] .
   1100 Result         = Parameters | Type .
   1101 Parameters     = "(" [ ParameterList [ "," ] ] ")" .
   1102 ParameterList  = ParameterDecl { "," ParameterDecl } .
   1103 ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
   1104 </pre>
   1105 
   1106 <p>
   1107 Within a list of parameters or results, the names (IdentifierList)
   1108 must either all be present or all be absent. If present, each name
   1109 stands for one item (parameter or result) of the specified type and
   1110 all non-<a href="#Blank_identifier">blank</a> names in the signature
   1111 must be <a href="#Uniqueness_of_identifiers">unique</a>.
   1112 If absent, each type stands for one item of that type.
   1113 Parameter and result
   1114 lists are always parenthesized except that if there is exactly
   1115 one unnamed result it may be written as an unparenthesized type.
   1116 </p>
   1117 
   1118 <p>
   1119 The final parameter in a function signature may have
   1120 a type prefixed with <code>...</code>.
   1121 A function with such a parameter is called <i>variadic</i> and
   1122 may be invoked with zero or more arguments for that parameter.
   1123 </p>
   1124 
   1125 <pre>
   1126 func()
   1127 func(x int) int
   1128 func(a, _ int, z float32) bool
   1129 func(a, b int, z float32) (bool)
   1130 func(prefix string, values ...int)
   1131 func(a, b int, z float64, opt ...interface{}) (success bool)
   1132 func(int, int, float64) (float64, *[]int)
   1133 func(n int) func(p *T)
   1134 </pre>
   1135 
   1136 
   1137 <h3 id="Interface_types">Interface types</h3>
   1138 
   1139 <p>
   1140 An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
   1141 A variable of interface type can store a value of any type with a method set
   1142 that is any superset of the interface. Such a type is said to
   1143 <i>implement the interface</i>.
   1144 The value of an uninitialized variable of interface type is <code>nil</code>.
   1145 </p>
   1146 
   1147 <pre class="ebnf">
   1148 InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
   1149 MethodSpec         = MethodName Signature | InterfaceTypeName .
   1150 MethodName         = identifier .
   1151 InterfaceTypeName  = TypeName .
   1152 </pre>
   1153 
   1154 <p>
   1155 As with all method sets, in an interface type, each method must have a
   1156 <a href="#Uniqueness_of_identifiers">unique</a>
   1157 non-<a href="#Blank_identifier">blank</a> name.
   1158 </p>
   1159 
   1160 <pre>
   1161 // A simple File interface
   1162 interface {
   1163 	Read(b Buffer) bool
   1164 	Write(b Buffer) bool
   1165 	Close()
   1166 }
   1167 </pre>
   1168 
   1169 <p>
   1170 More than one type may implement an interface.
   1171 For instance, if two types <code>S1</code> and <code>S2</code>
   1172 have the method set
   1173 </p>
   1174 
   1175 <pre>
   1176 func (p T) Read(b Buffer) bool { return  }
   1177 func (p T) Write(b Buffer) bool { return  }
   1178 func (p T) Close() {  }
   1179 </pre>
   1180 
   1181 <p>
   1182 (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
   1183 then the <code>File</code> interface is implemented by both <code>S1</code> and
   1184 <code>S2</code>, regardless of what other methods
   1185 <code>S1</code> and <code>S2</code> may have or share.
   1186 </p>
   1187 
   1188 <p>
   1189 A type implements any interface comprising any subset of its methods
   1190 and may therefore implement several distinct interfaces. For
   1191 instance, all types implement the <i>empty interface</i>:
   1192 </p>
   1193 
   1194 <pre>
   1195 interface{}
   1196 </pre>
   1197 
   1198 <p>
   1199 Similarly, consider this interface specification,
   1200 which appears within a <a href="#Type_declarations">type declaration</a>
   1201 to define an interface called <code>Locker</code>:
   1202 </p>
   1203 
   1204 <pre>
   1205 type Locker interface {
   1206 	Lock()
   1207 	Unlock()
   1208 }
   1209 </pre>
   1210 
   1211 <p>
   1212 If <code>S1</code> and <code>S2</code> also implement
   1213 </p>
   1214 
   1215 <pre>
   1216 func (p T) Lock() {  }
   1217 func (p T) Unlock() {  }
   1218 </pre>
   1219 
   1220 <p>
   1221 they implement the <code>Locker</code> interface as well
   1222 as the <code>File</code> interface.
   1223 </p>
   1224 
   1225 <p>
   1226 An interface <code>T</code> may use a (possibly qualified) interface type
   1227 name <code>E</code> in place of a method specification. This is called
   1228 <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
   1229 all (exported and non-exported) methods of <code>E</code> to the interface
   1230 <code>T</code>.
   1231 </p>
   1232 
   1233 <pre>
   1234 type ReadWriter interface {
   1235 	Read(b Buffer) bool
   1236 	Write(b Buffer) bool
   1237 }
   1238 
   1239 type File interface {
   1240 	ReadWriter  // same as adding the methods of ReadWriter
   1241 	Locker      // same as adding the methods of Locker
   1242 	Close()
   1243 }
   1244 
   1245 type LockedFile interface {
   1246 	Locker
   1247 	File        // illegal: Lock, Unlock not unique
   1248 	Lock()      // illegal: Lock not unique
   1249 }
   1250 </pre>
   1251 
   1252 <p>
   1253 An interface type <code>T</code> may not embed itself
   1254 or any interface type that embeds <code>T</code>, recursively.
   1255 </p>
   1256 
   1257 <pre>
   1258 // illegal: Bad cannot embed itself
   1259 type Bad interface {
   1260 	Bad
   1261 }
   1262 
   1263 // illegal: Bad1 cannot embed itself using Bad2
   1264 type Bad1 interface {
   1265 	Bad2
   1266 }
   1267 type Bad2 interface {
   1268 	Bad1
   1269 }
   1270 </pre>
   1271 
   1272 <h3 id="Map_types">Map types</h3>
   1273 
   1274 <p>
   1275 A map is an unordered group of elements of one type, called the
   1276 element type, indexed by a set of unique <i>keys</i> of another type,
   1277 called the key type.
   1278 The value of an uninitialized map is <code>nil</code>.
   1279 </p>
   1280 
   1281 <pre class="ebnf">
   1282 MapType     = "map" "[" KeyType "]" ElementType .
   1283 KeyType     = Type .
   1284 </pre>
   1285 
   1286 <p>
   1287 The <a href="#Comparison_operators">comparison operators</a>
   1288 <code>==</code> and <code>!=</code> must be fully defined
   1289 for operands of the key type; thus the key type must not be a function, map, or
   1290 slice.
   1291 If the key type is an interface type, these
   1292 comparison operators must be defined for the dynamic key values;
   1293 failure will cause a <a href="#Run_time_panics">run-time panic</a>.
   1294 
   1295 </p>
   1296 
   1297 <pre>
   1298 map[string]int
   1299 map[*T]struct{ x, y float64 }
   1300 map[string]interface{}
   1301 </pre>
   1302 
   1303 <p>
   1304 The number of map elements is called its length.
   1305 For a map <code>m</code>, it can be discovered using the
   1306 built-in function <a href="#Length_and_capacity"><code>len</code></a>
   1307 and may change during execution. Elements may be added during execution
   1308 using <a href="#Assignments">assignments</a> and retrieved with
   1309 <a href="#Index_expressions">index expressions</a>; they may be removed with the
   1310 <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
   1311 </p>
   1312 <p>
   1313 A new, empty map value is made using the built-in
   1314 function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   1315 which takes the map type and an optional capacity hint as arguments:
   1316 </p>
   1317 
   1318 <pre>
   1319 make(map[string]int)
   1320 make(map[string]int, 100)
   1321 </pre>
   1322 
   1323 <p>
   1324 The initial capacity does not bound its size:
   1325 maps grow to accommodate the number of items
   1326 stored in them, with the exception of <code>nil</code> maps.
   1327 A <code>nil</code> map is equivalent to an empty map except that no elements
   1328 may be added.
   1329 
   1330 <h3 id="Channel_types">Channel types</h3>
   1331 
   1332 <p>
   1333 A channel provides a mechanism for
   1334 <a href="#Go_statements">concurrently executing functions</a>
   1335 to communicate by
   1336 <a href="#Send_statements">sending</a> and
   1337 <a href="#Receive_operator">receiving</a>
   1338 values of a specified element type.
   1339 The value of an uninitialized channel is <code>nil</code>.
   1340 </p>
   1341 
   1342 <pre class="ebnf">
   1343 ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
   1344 </pre>
   1345 
   1346 <p>
   1347 The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
   1348 <i>send</i> or <i>receive</i>. If no direction is given, the channel is
   1349 <i>bidirectional</i>.
   1350 A channel may be constrained only to send or only to receive by
   1351 <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
   1352 </p>
   1353 
   1354 <pre>
   1355 chan T          // can be used to send and receive values of type T
   1356 chan&lt;- float64  // can only be used to send float64s
   1357 &lt;-chan int      // can only be used to receive ints
   1358 </pre>
   1359 
   1360 <p>
   1361 The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
   1362 possible:
   1363 </p>
   1364 
   1365 <pre>
   1366 chan&lt;- chan int    // same as chan&lt;- (chan int)
   1367 chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
   1368 &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
   1369 chan (&lt;-chan int)
   1370 </pre>
   1371 
   1372 <p>
   1373 A new, initialized channel
   1374 value can be made using the built-in function
   1375 <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   1376 which takes the channel type and an optional <i>capacity</i> as arguments:
   1377 </p>
   1378 
   1379 <pre>
   1380 make(chan int, 100)
   1381 </pre>
   1382 
   1383 <p>
   1384 The capacity, in number of elements, sets the size of the buffer in the channel.
   1385 If the capacity is zero or absent, the channel is unbuffered and communication
   1386 succeeds only when both a sender and receiver are ready. Otherwise, the channel
   1387 is buffered and communication succeeds without blocking if the buffer
   1388 is not full (sends) or not empty (receives).
   1389 A <code>nil</code> channel is never ready for communication.
   1390 </p>
   1391 
   1392 <p>
   1393 A channel may be closed with the built-in function
   1394 <a href="#Close"><code>close</code></a>.
   1395 The multi-valued assignment form of the
   1396 <a href="#Receive_operator">receive operator</a>
   1397 reports whether a received value was sent before
   1398 the channel was closed.
   1399 </p>
   1400 
   1401 <p>
   1402 A single channel may be used in
   1403 <a href="#Send_statements">send statements</a>,
   1404 <a href="#Receive_operator">receive operations</a>,
   1405 and calls to the built-in functions
   1406 <a href="#Length_and_capacity"><code>cap</code></a> and
   1407 <a href="#Length_and_capacity"><code>len</code></a>
   1408 by any number of goroutines without further synchronization.
   1409 Channels act as first-in-first-out queues.
   1410 For example, if one goroutine sends values on a channel
   1411 and a second goroutine receives them, the values are
   1412 received in the order sent.
   1413 </p>
   1414 
   1415 <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
   1416 
   1417 <h3 id="Type_identity">Type identity</h3>
   1418 
   1419 <p>
   1420 Two types are either <i>identical</i> or <i>different</i>.
   1421 </p>
   1422 
   1423 <p>
   1424 Two <a href="#Types">named types</a> are identical if their type names originate in the same
   1425 <a href="#Type_declarations">TypeSpec</a>.
   1426 A named and an <a href="#Types">unnamed type</a> are always different. Two unnamed types are identical
   1427 if the corresponding type literals are identical, that is, if they have the same
   1428 literal structure and corresponding components have identical types. In detail:
   1429 </p>
   1430 
   1431 <ul>
   1432 	<li>Two array types are identical if they have identical element types and
   1433 	    the same array length.</li>
   1434 
   1435 	<li>Two slice types are identical if they have identical element types.</li>
   1436 
   1437 	<li>Two struct types are identical if they have the same sequence of fields,
   1438 	    and if corresponding fields have the same names, and identical types,
   1439 	    and identical tags.
   1440 	    Two anonymous fields are considered to have the same name. Lower-case field
   1441 	    names from different packages are always different.</li>
   1442 
   1443 	<li>Two pointer types are identical if they have identical base types.</li>
   1444 
   1445 	<li>Two function types are identical if they have the same number of parameters
   1446 	    and result values, corresponding parameter and result types are
   1447 	    identical, and either both functions are variadic or neither is.
   1448 	    Parameter and result names are not required to match.</li>
   1449 
   1450 	<li>Two interface types are identical if they have the same set of methods
   1451 	    with the same names and identical function types. Lower-case method names from
   1452 	    different packages are always different. The order of the methods is irrelevant.</li>
   1453 
   1454 	<li>Two map types are identical if they have identical key and value types.</li>
   1455 
   1456 	<li>Two channel types are identical if they have identical value types and
   1457 	    the same direction.</li>
   1458 </ul>
   1459 
   1460 <p>
   1461 Given the declarations
   1462 </p>
   1463 
   1464 <pre>
   1465 type (
   1466 	T0 []string
   1467 	T1 []string
   1468 	T2 struct{ a, b int }
   1469 	T3 struct{ a, c int }
   1470 	T4 func(int, float64) *T0
   1471 	T5 func(x int, y float64) *[]string
   1472 )
   1473 </pre>
   1474 
   1475 <p>
   1476 these types are identical:
   1477 </p>
   1478 
   1479 <pre>
   1480 T0 and T0
   1481 []int and []int
   1482 struct{ a, b *T5 } and struct{ a, b *T5 }
   1483 func(x int, y float64) *[]string and func(int, float64) (result *[]string)
   1484 </pre>
   1485 
   1486 <p>
   1487 <code>T0</code> and <code>T1</code> are different because they are named types
   1488 with distinct declarations; <code>func(int, float64) *T0</code> and
   1489 <code>func(x int, y float64) *[]string</code> are different because <code>T0</code>
   1490 is different from <code>[]string</code>.
   1491 </p>
   1492 
   1493 
   1494 <h3 id="Assignability">Assignability</h3>
   1495 
   1496 <p>
   1497 A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
   1498 ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
   1499 </p>
   1500 
   1501 <ul>
   1502 <li>
   1503 <code>x</code>'s type is identical to <code>T</code>.
   1504 </li>
   1505 <li>
   1506 <code>x</code>'s type <code>V</code> and <code>T</code> have identical
   1507 <a href="#Types">underlying types</a> and at least one of <code>V</code>
   1508 or <code>T</code> is not a <a href="#Types">named type</a>.
   1509 </li>
   1510 <li>
   1511 <code>T</code> is an interface type and
   1512 <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
   1513 </li>
   1514 <li>
   1515 <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
   1516 <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
   1517 and at least one of <code>V</code> or <code>T</code> is not a named type.
   1518 </li>
   1519 <li>
   1520 <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
   1521 is a pointer, function, slice, map, channel, or interface type.
   1522 </li>
   1523 <li>
   1524 <code>x</code> is an untyped <a href="#Constants">constant</a> representable
   1525 by a value of type <code>T</code>.
   1526 </li>
   1527 </ul>
   1528 
   1529 
   1530 <h2 id="Blocks">Blocks</h2>
   1531 
   1532 <p>
   1533 A <i>block</i> is a possibly empty sequence of declarations and statements
   1534 within matching brace brackets.
   1535 </p>
   1536 
   1537 <pre class="ebnf">
   1538 Block = "{" StatementList "}" .
   1539 StatementList = { Statement ";" } .
   1540 </pre>
   1541 
   1542 <p>
   1543 In addition to explicit blocks in the source code, there are implicit blocks:
   1544 </p>
   1545 
   1546 <ol>
   1547 	<li>The <i>universe block</i> encompasses all Go source text.</li>
   1548 
   1549 	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
   1550 	    Go source text for that package.</li>
   1551 
   1552 	<li>Each file has a <i>file block</i> containing all Go source text
   1553 	    in that file.</li>
   1554 
   1555 	<li>Each <a href="#If_statements">"if"</a>,
   1556 	    <a href="#For_statements">"for"</a>, and
   1557 	    <a href="#Switch_statements">"switch"</a>
   1558 	    statement is considered to be in its own implicit block.</li>
   1559 
   1560 	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
   1561 	    or <a href="#Select_statements">"select"</a> statement
   1562 	    acts as an implicit block.</li>
   1563 </ol>
   1564 
   1565 <p>
   1566 Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
   1567 </p>
   1568 
   1569 
   1570 <h2 id="Declarations_and_scope">Declarations and scope</h2>
   1571 
   1572 <p>
   1573 A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
   1574 <a href="#Constant_declarations">constant</a>,
   1575 <a href="#Type_declarations">type</a>,
   1576 <a href="#Variable_declarations">variable</a>,
   1577 <a href="#Function_declarations">function</a>,
   1578 <a href="#Labeled_statements">label</a>, or
   1579 <a href="#Import_declarations">package</a>.
   1580 Every identifier in a program must be declared.
   1581 No identifier may be declared twice in the same block, and
   1582 no identifier may be declared in both the file and package block.
   1583 </p>
   1584 
   1585 <p>
   1586 The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
   1587 in a declaration, but it does not introduce a binding and thus is not declared.
   1588 In the package block, the identifier <code>init</code> may only be used for
   1589 <a href="#Package_initialization"><code>init</code> function</a> declarations,
   1590 and like the blank identifier it does not introduce a new binding.
   1591 </p>
   1592 
   1593 <pre class="ebnf">
   1594 Declaration   = ConstDecl | TypeDecl | VarDecl .
   1595 TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
   1596 </pre>
   1597 
   1598 <p>
   1599 The <i>scope</i> of a declared identifier is the extent of source text in which
   1600 the identifier denotes the specified constant, type, variable, function, label, or package.
   1601 </p>
   1602 
   1603 <p>
   1604 Go is lexically scoped using <a href="#Blocks">blocks</a>:
   1605 </p>
   1606 
   1607 <ol>
   1608 	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
   1609 
   1610 	<li>The scope of an identifier denoting a constant, type, variable,
   1611 	    or function (but not method) declared at top level (outside any
   1612 	    function) is the package block.</li>
   1613 
   1614 	<li>The scope of the package name of an imported package is the file block
   1615 	    of the file containing the import declaration.</li>
   1616 
   1617 	<li>The scope of an identifier denoting a method receiver, function parameter,
   1618 	    or result variable is the function body.</li>
   1619 
   1620 	<li>The scope of a constant or variable identifier declared
   1621 	    inside a function begins at the end of the ConstSpec or VarSpec
   1622 	    (ShortVarDecl for short variable declarations)
   1623 	    and ends at the end of the innermost containing block.</li>
   1624 
   1625 	<li>The scope of a type identifier declared inside a function
   1626 	    begins at the identifier in the TypeSpec
   1627 	    and ends at the end of the innermost containing block.</li>
   1628 </ol>
   1629 
   1630 <p>
   1631 An identifier declared in a block may be redeclared in an inner block.
   1632 While the identifier of the inner declaration is in scope, it denotes
   1633 the entity declared by the inner declaration.
   1634 </p>
   1635 
   1636 <p>
   1637 The <a href="#Package_clause">package clause</a> is not a declaration; the package name
   1638 does not appear in any scope. Its purpose is to identify the files belonging
   1639 to the same <a href="#Packages">package</a> and to specify the default package name for import
   1640 declarations.
   1641 </p>
   1642 
   1643 
   1644 <h3 id="Label_scopes">Label scopes</h3>
   1645 
   1646 <p>
   1647 Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
   1648 used in the <a href="#Break_statements">"break"</a>,
   1649 <a href="#Continue_statements">"continue"</a>, and
   1650 <a href="#Goto_statements">"goto"</a> statements.
   1651 It is illegal to define a label that is never used.
   1652 In contrast to other identifiers, labels are not block scoped and do
   1653 not conflict with identifiers that are not labels. The scope of a label
   1654 is the body of the function in which it is declared and excludes
   1655 the body of any nested function.
   1656 </p>
   1657 
   1658 
   1659 <h3 id="Blank_identifier">Blank identifier</h3>
   1660 
   1661 <p>
   1662 The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
   1663 It serves as an anonymous placeholder instead of a regular (non-blank)
   1664 identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
   1665 as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
   1666 </p>
   1667 
   1668 
   1669 <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
   1670 
   1671 <p>
   1672 The following identifiers are implicitly declared in the
   1673 <a href="#Blocks">universe block</a>:
   1674 </p>
   1675 <pre class="grammar">
   1676 Types:
   1677 	bool byte complex64 complex128 error float32 float64
   1678 	int int8 int16 int32 int64 rune string
   1679 	uint uint8 uint16 uint32 uint64 uintptr
   1680 
   1681 Constants:
   1682 	true false iota
   1683 
   1684 Zero value:
   1685 	nil
   1686 
   1687 Functions:
   1688 	append cap close complex copy delete imag len
   1689 	make new panic print println real recover
   1690 </pre>
   1691 
   1692 
   1693 <h3 id="Exported_identifiers">Exported identifiers</h3>
   1694 
   1695 <p>
   1696 An identifier may be <i>exported</i> to permit access to it from another package.
   1697 An identifier is exported if both:
   1698 </p>
   1699 <ol>
   1700 	<li>the first character of the identifier's name is a Unicode upper case
   1701 	letter (Unicode class "Lu"); and</li>
   1702 	<li>the identifier is declared in the <a href="#Blocks">package block</a>
   1703 	or it is a <a href="#Struct_types">field name</a> or
   1704 	<a href="#MethodName">method name</a>.</li>
   1705 </ol>
   1706 <p>
   1707 All other identifiers are not exported.
   1708 </p>
   1709 
   1710 
   1711 <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
   1712 
   1713 <p>
   1714 Given a set of identifiers, an identifier is called <i>unique</i> if it is
   1715 <i>different</i> from every other in the set.
   1716 Two identifiers are different if they are spelled differently, or if they
   1717 appear in different <a href="#Packages">packages</a> and are not
   1718 <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
   1719 </p>
   1720 
   1721 <h3 id="Constant_declarations">Constant declarations</h3>
   1722 
   1723 <p>
   1724 A constant declaration binds a list of identifiers (the names of
   1725 the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
   1726 The number of identifiers must be equal
   1727 to the number of expressions, and the <i>n</i>th identifier on
   1728 the left is bound to the value of the <i>n</i>th expression on the
   1729 right.
   1730 </p>
   1731 
   1732 <pre class="ebnf">
   1733 ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
   1734 ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
   1735 
   1736 IdentifierList = identifier { "," identifier } .
   1737 ExpressionList = Expression { "," Expression } .
   1738 </pre>
   1739 
   1740 <p>
   1741 If the type is present, all constants take the type specified, and
   1742 the expressions must be <a href="#Assignability">assignable</a> to that type.
   1743 If the type is omitted, the constants take the
   1744 individual types of the corresponding expressions.
   1745 If the expression values are untyped <a href="#Constants">constants</a>,
   1746 the declared constants remain untyped and the constant identifiers
   1747 denote the constant values. For instance, if the expression is a
   1748 floating-point literal, the constant identifier denotes a floating-point
   1749 constant, even if the literal's fractional part is zero.
   1750 </p>
   1751 
   1752 <pre>
   1753 const Pi float64 = 3.14159265358979323846
   1754 const zero = 0.0         // untyped floating-point constant
   1755 const (
   1756 	size int64 = 1024
   1757 	eof        = -1  // untyped integer constant
   1758 )
   1759 const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
   1760 const u, v float32 = 0, 3    // u = 0.0, v = 3.0
   1761 </pre>
   1762 
   1763 <p>
   1764 Within a parenthesized <code>const</code> declaration list the
   1765 expression list may be omitted from any but the first declaration.
   1766 Such an empty list is equivalent to the textual substitution of the
   1767 first preceding non-empty expression list and its type if any.
   1768 Omitting the list of expressions is therefore equivalent to
   1769 repeating the previous list.  The number of identifiers must be equal
   1770 to the number of expressions in the previous list.
   1771 Together with the <a href="#Iota"><code>iota</code> constant generator</a>
   1772 this mechanism permits light-weight declaration of sequential values:
   1773 </p>
   1774 
   1775 <pre>
   1776 const (
   1777 	Sunday = iota
   1778 	Monday
   1779 	Tuesday
   1780 	Wednesday
   1781 	Thursday
   1782 	Friday
   1783 	Partyday
   1784 	numberOfDays  // this constant is not exported
   1785 )
   1786 </pre>
   1787 
   1788 
   1789 <h3 id="Iota">Iota</h3>
   1790 
   1791 <p>
   1792 Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
   1793 <code>iota</code> represents successive untyped integer <a href="#Constants">
   1794 constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
   1795 appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
   1796 It can be used to construct a set of related constants:
   1797 </p>
   1798 
   1799 <pre>
   1800 const (  // iota is reset to 0
   1801 	c0 = iota  // c0 == 0
   1802 	c1 = iota  // c1 == 1
   1803 	c2 = iota  // c2 == 2
   1804 )
   1805 
   1806 const (
   1807 	a = 1 &lt;&lt; iota  // a == 1 (iota has been reset)
   1808 	b = 1 &lt;&lt; iota  // b == 2
   1809 	c = 1 &lt;&lt; iota  // c == 4
   1810 )
   1811 
   1812 const (
   1813 	u         = iota * 42  // u == 0     (untyped integer constant)
   1814 	v float64 = iota * 42  // v == 42.0  (float64 constant)
   1815 	w         = iota * 42  // w == 84    (untyped integer constant)
   1816 )
   1817 
   1818 const x = iota  // x == 0 (iota has been reset)
   1819 const y = iota  // y == 0 (iota has been reset)
   1820 </pre>
   1821 
   1822 <p>
   1823 Within an ExpressionList, the value of each <code>iota</code> is the same because
   1824 it is only incremented after each ConstSpec:
   1825 </p>
   1826 
   1827 <pre>
   1828 const (
   1829 	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
   1830 	bit1, mask1                           // bit1 == 2, mask1 == 1
   1831 	_, _                                  // skips iota == 2
   1832 	bit3, mask3                           // bit3 == 8, mask3 == 7
   1833 )
   1834 </pre>
   1835 
   1836 <p>
   1837 This last example exploits the implicit repetition of the
   1838 last non-empty expression list.
   1839 </p>
   1840 
   1841 
   1842 <h3 id="Type_declarations">Type declarations</h3>
   1843 
   1844 <p>
   1845 A type declaration binds an identifier, the <i>type name</i>, to a new type
   1846 that has the same <a href="#Types">underlying type</a> as an existing type,
   1847 and operations defined for the existing type are also defined for the new type.
   1848 The new type is <a href="#Type_identity">different</a> from the existing type.
   1849 </p>
   1850 
   1851 <pre class="ebnf">
   1852 TypeDecl     = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
   1853 TypeSpec     = identifier Type .
   1854 </pre>
   1855 
   1856 <pre>
   1857 type IntArray [16]int
   1858 
   1859 type (
   1860 	Point struct{ x, y float64 }
   1861 	Polar Point
   1862 )
   1863 
   1864 type TreeNode struct {
   1865 	left, right *TreeNode
   1866 	value *Comparable
   1867 }
   1868 
   1869 type Block interface {
   1870 	BlockSize() int
   1871 	Encrypt(src, dst []byte)
   1872 	Decrypt(src, dst []byte)
   1873 }
   1874 </pre>
   1875 
   1876 <p>
   1877 The declared type does not inherit any <a href="#Method_declarations">methods</a>
   1878 bound to the existing type, but the <a href="#Method_sets">method set</a>
   1879 of an interface type or of elements of a composite type remains unchanged:
   1880 </p>
   1881 
   1882 <pre>
   1883 // A Mutex is a data type with two methods, Lock and Unlock.
   1884 type Mutex struct         { /* Mutex fields */ }
   1885 func (m *Mutex) Lock()    { /* Lock implementation */ }
   1886 func (m *Mutex) Unlock()  { /* Unlock implementation */ }
   1887 
   1888 // NewMutex has the same composition as Mutex but its method set is empty.
   1889 type NewMutex Mutex
   1890 
   1891 // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
   1892 // but the method set of PtrMutex is empty.
   1893 type PtrMutex *Mutex
   1894 
   1895 // The method set of *PrintableMutex contains the methods
   1896 // Lock and Unlock bound to its anonymous field Mutex.
   1897 type PrintableMutex struct {
   1898 	Mutex
   1899 }
   1900 
   1901 // MyBlock is an interface type that has the same method set as Block.
   1902 type MyBlock Block
   1903 </pre>
   1904 
   1905 <p>
   1906 A type declaration may be used to define a different boolean, numeric, or string
   1907 type and attach methods to it:
   1908 </p>
   1909 
   1910 <pre>
   1911 type TimeZone int
   1912 
   1913 const (
   1914 	EST TimeZone = -(5 + iota)
   1915 	CST
   1916 	MST
   1917 	PST
   1918 )
   1919 
   1920 func (tz TimeZone) String() string {
   1921 	return fmt.Sprintf("GMT%+dh", tz)
   1922 }
   1923 </pre>
   1924 
   1925 
   1926 <h3 id="Variable_declarations">Variable declarations</h3>
   1927 
   1928 <p>
   1929 A variable declaration creates one or more variables, binds corresponding
   1930 identifiers to them, and gives each a type and an initial value.
   1931 </p>
   1932 
   1933 <pre class="ebnf">
   1934 VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
   1935 VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
   1936 </pre>
   1937 
   1938 <pre>
   1939 var i int
   1940 var U, V, W float64
   1941 var k = 0
   1942 var x, y float32 = -1, -2
   1943 var (
   1944 	i       int
   1945 	u, v, s = 2.0, 3.0, "bar"
   1946 )
   1947 var re, im = complexSqrt(-1)
   1948 var _, found = entries[name]  // map lookup; only interested in "found"
   1949 </pre>
   1950 
   1951 <p>
   1952 If a list of expressions is given, the variables are initialized
   1953 with the expressions following the rules for <a href="#Assignments">assignments</a>.
   1954 Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
   1955 </p>
   1956 
   1957 <p>
   1958 If a type is present, each variable is given that type.
   1959 Otherwise, each variable is given the type of the corresponding
   1960 initialization value in the assignment.
   1961 If that value is an untyped constant, it is first
   1962 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
   1963 if it is an untyped boolean value, it is first converted to type <code>bool</code>.
   1964 The predeclared value <code>nil</code> cannot be used to initialize a variable
   1965 with no explicit type.
   1966 </p>
   1967 
   1968 <pre>
   1969 var d = math.Sin(0.5)  // d is float64
   1970 var i = 42             // i is int
   1971 var t, ok = x.(T)      // t is T, ok is bool
   1972 var n = nil            // illegal
   1973 </pre>
   1974 
   1975 <p>
   1976 Implementation restriction: A compiler may make it illegal to declare a variable
   1977 inside a <a href="#Function_declarations">function body</a> if the variable is
   1978 never used.
   1979 </p>
   1980 
   1981 <h3 id="Short_variable_declarations">Short variable declarations</h3>
   1982 
   1983 <p>
   1984 A <i>short variable declaration</i> uses the syntax:
   1985 </p>
   1986 
   1987 <pre class="ebnf">
   1988 ShortVarDecl = IdentifierList ":=" ExpressionList .
   1989 </pre>
   1990 
   1991 <p>
   1992 It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
   1993 with initializer expressions but no types:
   1994 </p>
   1995 
   1996 <pre class="grammar">
   1997 "var" IdentifierList = ExpressionList .
   1998 </pre>
   1999 
   2000 <pre>
   2001 i, j := 0, 10
   2002 f := func() int { return 7 }
   2003 ch := make(chan int)
   2004 r, w := os.Pipe(fd)  // os.Pipe() returns two values
   2005 _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
   2006 </pre>
   2007 
   2008 <p>
   2009 Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
   2010 variables provided they were originally declared earlier in the same block
   2011 (or the parameter lists if the block is the function body) with the same type, 
   2012 and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
   2013 As a consequence, redeclaration can only appear in a multi-variable short declaration.
   2014 Redeclaration does not introduce a new variable; it just assigns a new value to the original.
   2015 </p>
   2016 
   2017 <pre>
   2018 field1, offset := nextField(str, 0)
   2019 field2, offset := nextField(str, offset)  // redeclares offset
   2020 a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
   2021 </pre>
   2022 
   2023 <p>
   2024 Short variable declarations may appear only inside functions.
   2025 In some contexts such as the initializers for
   2026 <a href="#If_statements">"if"</a>,
   2027 <a href="#For_statements">"for"</a>, or
   2028 <a href="#Switch_statements">"switch"</a> statements,
   2029 they can be used to declare local temporary variables.
   2030 </p>
   2031 
   2032 <h3 id="Function_declarations">Function declarations</h3>
   2033 
   2034 <p>
   2035 A function declaration binds an identifier, the <i>function name</i>,
   2036 to a function.
   2037 </p>
   2038 
   2039 <pre class="ebnf">
   2040 FunctionDecl = "func" FunctionName ( Function | Signature ) .
   2041 FunctionName = identifier .
   2042 Function     = Signature FunctionBody .
   2043 FunctionBody = Block .
   2044 </pre>
   2045 
   2046 <p>
   2047 If the function's <a href="#Function_types">signature</a> declares
   2048 result parameters, the function body's statement list must end in
   2049 a <a href="#Terminating_statements">terminating statement</a>.
   2050 </p>
   2051 
   2052 <pre>
   2053 func IndexRune(s string, r rune) int {
   2054 	for i, c := range s {
   2055 		if c == r {
   2056 			return i
   2057 		}
   2058 	}
   2059 	// invalid: missing return statement
   2060 }
   2061 </pre>
   2062 
   2063 <p>
   2064 A function declaration may omit the body. Such a declaration provides the
   2065 signature for a function implemented outside Go, such as an assembly routine.
   2066 </p>
   2067 
   2068 <pre>
   2069 func min(x int, y int) int {
   2070 	if x &lt; y {
   2071 		return x
   2072 	}
   2073 	return y
   2074 }
   2075 
   2076 func flushICache(begin, end uintptr)  // implemented externally
   2077 </pre>
   2078 
   2079 <h3 id="Method_declarations">Method declarations</h3>
   2080 
   2081 <p>
   2082 A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
   2083 A method declaration binds an identifier, the <i>method name</i>, to a method,
   2084 and associates the method with the receiver's <i>base type</i>.
   2085 </p>
   2086 
   2087 <pre class="ebnf">
   2088 MethodDecl   = "func" Receiver MethodName ( Function | Signature ) .
   2089 Receiver     = Parameters .
   2090 </pre>
   2091 
   2092 <p>
   2093 The receiver is specified via an extra parameter section preceding the method
   2094 name. That parameter section must declare a single parameter, the receiver.
   2095 Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
   2096 parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
   2097 the receiver <i>base type</i>; it must not be a pointer or interface type and
   2098 it must be declared in the same package as the method.
   2099 The method is said to be <i>bound</i> to the base type and the method name
   2100 is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
   2101 or <code>*T</code>.
   2102 </p>
   2103 
   2104 <p>
   2105 A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
   2106 <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
   2107 If the receiver's value is not referenced inside the body of the method,
   2108 its identifier may be omitted in the declaration. The same applies in
   2109 general to parameters of functions and methods.
   2110 </p>
   2111 
   2112 <p>
   2113 For a base type, the non-blank names of methods bound to it must be unique.
   2114 If the base type is a <a href="#Struct_types">struct type</a>,
   2115 the non-blank method and field names must be distinct.
   2116 </p>
   2117 
   2118 <p>
   2119 Given type <code>Point</code>, the declarations
   2120 </p>
   2121 
   2122 <pre>
   2123 func (p *Point) Length() float64 {
   2124 	return math.Sqrt(p.x * p.x + p.y * p.y)
   2125 }
   2126 
   2127 func (p *Point) Scale(factor float64) {
   2128 	p.x *= factor
   2129 	p.y *= factor
   2130 }
   2131 </pre>
   2132 
   2133 <p>
   2134 bind the methods <code>Length</code> and <code>Scale</code>,
   2135 with receiver type <code>*Point</code>,
   2136 to the base type <code>Point</code>.
   2137 </p>
   2138 
   2139 <p>
   2140 The type of a method is the type of a function with the receiver as first
   2141 argument.  For instance, the method <code>Scale</code> has type
   2142 </p>
   2143 
   2144 <pre>
   2145 func(p *Point, factor float64)
   2146 </pre>
   2147 
   2148 <p>
   2149 However, a function declared this way is not a method.
   2150 </p>
   2151 
   2152 
   2153 <h2 id="Expressions">Expressions</h2>
   2154 
   2155 <p>
   2156 An expression specifies the computation of a value by applying
   2157 operators and functions to operands.
   2158 </p>
   2159 
   2160 <h3 id="Operands">Operands</h3>
   2161 
   2162 <p>
   2163 Operands denote the elementary values in an expression. An operand may be a
   2164 literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
   2165 non-<a href="#Blank_identifier">blank</a> identifier denoting a
   2166 <a href="#Constant_declarations">constant</a>,
   2167 <a href="#Variable_declarations">variable</a>, or
   2168 <a href="#Function_declarations">function</a>,
   2169 a <a href="#Method_expressions">method expression</a> yielding a function,
   2170 or a parenthesized expression.
   2171 </p>
   2172 
   2173 <p>
   2174 The <a href="#Blank_identifier">blank identifier</a> may appear as an
   2175 operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
   2176 </p>
   2177 
   2178 <pre class="ebnf">
   2179 Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
   2180 Literal     = BasicLit | CompositeLit | FunctionLit .
   2181 BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
   2182 OperandName = identifier | QualifiedIdent.
   2183 </pre>
   2184 
   2185 <h3 id="Qualified_identifiers">Qualified identifiers</h3>
   2186 
   2187 <p>
   2188 A qualified identifier is an identifier qualified with a package name prefix.
   2189 Both the package name and the identifier must not be
   2190 <a href="#Blank_identifier">blank</a>.
   2191 </p>
   2192 
   2193 <pre class="ebnf">
   2194 QualifiedIdent = PackageName "." identifier .
   2195 </pre>
   2196 
   2197 <p>
   2198 A qualified identifier accesses an identifier in a different package, which
   2199 must be <a href="#Import_declarations">imported</a>.
   2200 The identifier must be <a href="#Exported_identifiers">exported</a> and
   2201 declared in the <a href="#Blocks">package block</a> of that package.
   2202 </p>
   2203 
   2204 <pre>
   2205 math.Sin	// denotes the Sin function in package math
   2206 </pre>
   2207 
   2208 <h3 id="Composite_literals">Composite literals</h3>
   2209 
   2210 <p>
   2211 Composite literals construct values for structs, arrays, slices, and maps
   2212 and create a new value each time they are evaluated.
   2213 They consist of the type of the value
   2214 followed by a brace-bound list of composite elements. An element may be
   2215 a single expression or a key-value pair.
   2216 </p>
   2217 
   2218 <pre class="ebnf">
   2219 CompositeLit  = LiteralType LiteralValue .
   2220 LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
   2221                 SliceType | MapType | TypeName .
   2222 LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
   2223 ElementList   = Element { "," Element } .
   2224 Element       = [ Key ":" ] Value .
   2225 Key           = FieldName | Expression | LiteralValue .
   2226 FieldName     = identifier .
   2227 Value         = Expression | LiteralValue .
   2228 </pre>
   2229 
   2230 <p>
   2231 The LiteralType must be a struct, array, slice, or map type
   2232 (the grammar enforces this constraint except when the type is given
   2233 as a TypeName).
   2234 The types of the expressions must be <a href="#Assignability">assignable</a>
   2235 to the respective field, element, and key types of the LiteralType;
   2236 there is no additional conversion.
   2237 The key is interpreted as a field name for struct literals,
   2238 an index for array and slice literals, and a key for map literals.
   2239 For map literals, all elements must have a key. It is an error
   2240 to specify multiple elements with the same field name or
   2241 constant key value.
   2242 </p>
   2243 
   2244 <p>
   2245 For struct literals the following rules apply:
   2246 </p>
   2247 <ul>
   2248 	<li>A key must be a field name declared in the LiteralType.
   2249 	</li>
   2250 	<li>An element list that does not contain any keys must
   2251 	    list an element for each struct field in the
   2252 	    order in which the fields are declared.
   2253 	</li>
   2254 	<li>If any element has a key, every element must have a key.
   2255 	</li>
   2256 	<li>An element list that contains keys does not need to
   2257 	    have an element for each struct field. Omitted fields
   2258 	    get the zero value for that field.
   2259 	</li>
   2260 	<li>A literal may omit the element list; such a literal evaluates
   2261 	    to the zero value for its type.
   2262 	</li>
   2263 	<li>It is an error to specify an element for a non-exported
   2264 	    field of a struct belonging to a different package.
   2265 	</li>
   2266 </ul>
   2267 
   2268 <p>
   2269 Given the declarations
   2270 </p>
   2271 <pre>
   2272 type Point3D struct { x, y, z float64 }
   2273 type Line struct { p, q Point3D }
   2274 </pre>
   2275 
   2276 <p>
   2277 one may write
   2278 </p>
   2279 
   2280 <pre>
   2281 origin := Point3D{}                            // zero value for Point3D
   2282 line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
   2283 </pre>
   2284 
   2285 <p>
   2286 For array and slice literals the following rules apply:
   2287 </p>
   2288 <ul>
   2289 	<li>Each element has an associated integer index marking
   2290 	    its position in the array.
   2291 	</li>
   2292 	<li>An element with a key uses the key as its index; the
   2293 	    key must be a constant integer expression.
   2294 	</li>
   2295 	<li>An element without a key uses the previous element's index plus one.
   2296 	    If the first element has no key, its index is zero.
   2297 	</li>
   2298 </ul>
   2299 
   2300 <p>
   2301 <a href="#Address_operators">Taking the address</a> of a composite literal
   2302 generates a pointer to a unique <a href="#Variables">variable</a> initialized
   2303 with the literal's value.
   2304 </p>
   2305 <pre>
   2306 var pointer *Point3D = &amp;Point3D{y: 1000}
   2307 </pre>
   2308 
   2309 <p>
   2310 The length of an array literal is the length specified in the LiteralType.
   2311 If fewer elements than the length are provided in the literal, the missing
   2312 elements are set to the zero value for the array element type.
   2313 It is an error to provide elements with index values outside the index range
   2314 of the array. The notation <code>...</code> specifies an array length equal
   2315 to the maximum element index plus one.
   2316 </p>
   2317 
   2318 <pre>
   2319 buffer := [10]string{}             // len(buffer) == 10
   2320 intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
   2321 days := [...]string{"Sat", "Sun"}  // len(days) == 2
   2322 </pre>
   2323 
   2324 <p>
   2325 A slice literal describes the entire underlying array literal.
   2326 Thus, the length and capacity of a slice literal are the maximum
   2327 element index plus one. A slice literal has the form
   2328 </p>
   2329 
   2330 <pre>
   2331 []T{x1, x2,  xn}
   2332 </pre>
   2333 
   2334 <p>
   2335 and is shorthand for a slice operation applied to an array:
   2336 </p>
   2337 
   2338 <pre>
   2339 tmp := [n]T{x1, x2,  xn}
   2340 tmp[0 : n]
   2341 </pre>
   2342 
   2343 <p>
   2344 Within a composite literal of array, slice, or map type <code>T</code>,
   2345 elements or map keys that are themselves composite literals may elide the respective
   2346 literal type if it is identical to the element or key type of <code>T</code>.
   2347 Similarly, elements or keys that are addresses of composite literals may elide
   2348 the <code>&amp;T</code> when the element or key type is <code>*T</code>.
   2349 </p>
   2350 
   2351 <pre>
   2352 [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
   2353 [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
   2354 [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
   2355 map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
   2356 
   2357 [...]*Point{{1.5, -3.5}, {0, 0}}    // same as [...]*Point{&amp;Point{1.5, -3.5}, &amp;Point{0, 0}}
   2358 
   2359 map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
   2360 </pre>
   2361 
   2362 <p>
   2363 A parsing ambiguity arises when a composite literal using the
   2364 TypeName form of the LiteralType appears as an operand between the
   2365 <a href="#Keywords">keyword</a> and the opening brace of the block
   2366 of an "if", "for", or "switch" statement, and the composite literal
   2367 is not enclosed in parentheses, square brackets, or curly braces.
   2368 In this rare case, the opening brace of the literal is erroneously parsed
   2369 as the one introducing the block of statements. To resolve the ambiguity,
   2370 the composite literal must appear within parentheses.
   2371 </p>
   2372 
   2373 <pre>
   2374 if x == (T{a,b,c}[i]) {  }
   2375 if (x == T{a,b,c}[i]) {  }
   2376 </pre>
   2377 
   2378 <p>
   2379 Examples of valid array, slice, and map literals:
   2380 </p>
   2381 
   2382 <pre>
   2383 // list of prime numbers
   2384 primes := []int{2, 3, 5, 7, 9, 2147483647}
   2385 
   2386 // vowels[ch] is true if ch is a vowel
   2387 vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
   2388 
   2389 // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
   2390 filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
   2391 
   2392 // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
   2393 noteFrequency := map[string]float32{
   2394 	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
   2395 	"G0": 24.50, "A0": 27.50, "B0": 30.87,
   2396 }
   2397 </pre>
   2398 
   2399 
   2400 <h3 id="Function_literals">Function literals</h3>
   2401 
   2402 <p>
   2403 A function literal represents an anonymous <a href="#Function_declarations">function</a>.
   2404 </p>
   2405 
   2406 <pre class="ebnf">
   2407 FunctionLit = "func" Function .
   2408 </pre>
   2409 
   2410 <pre>
   2411 func(a, b int, z float64) bool { return a*b &lt; int(z) }
   2412 </pre>
   2413 
   2414 <p>
   2415 A function literal can be assigned to a variable or invoked directly.
   2416 </p>
   2417 
   2418 <pre>
   2419 f := func(x, y int) int { return x + y }
   2420 func(ch chan int) { ch &lt;- ACK }(replyChan)
   2421 </pre>
   2422 
   2423 <p>
   2424 Function literals are <i>closures</i>: they may refer to variables
   2425 defined in a surrounding function. Those variables are then shared between
   2426 the surrounding function and the function literal, and they survive as long
   2427 as they are accessible.
   2428 </p>
   2429 
   2430 
   2431 <h3 id="Primary_expressions">Primary expressions</h3>
   2432 
   2433 <p>
   2434 Primary expressions are the operands for unary and binary expressions.
   2435 </p>
   2436 
   2437 <pre class="ebnf">
   2438 PrimaryExpr =
   2439 	Operand |
   2440 	Conversion |
   2441 	PrimaryExpr Selector |
   2442 	PrimaryExpr Index |
   2443 	PrimaryExpr Slice |
   2444 	PrimaryExpr TypeAssertion |
   2445 	PrimaryExpr Arguments .
   2446 
   2447 Selector       = "." identifier .
   2448 Index          = "[" Expression "]" .
   2449 Slice          = "[" ( [ Expression ] ":" [ Expression ] ) |
   2450                      ( [ Expression ] ":" Expression ":" Expression )
   2451                  "]" .
   2452 TypeAssertion  = "." "(" Type ")" .
   2453 Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
   2454 </pre>
   2455 
   2456 
   2457 <pre>
   2458 x
   2459 2
   2460 (s + ".txt")
   2461 f(3.1415, true)
   2462 Point{1, 2}
   2463 m["foo"]
   2464 s[i : j + 1]
   2465 obj.color
   2466 f.p[i].x()
   2467 </pre>
   2468 
   2469 
   2470 <h3 id="Selectors">Selectors</h3>
   2471 
   2472 <p>
   2473 For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
   2474 that is not a <a href="#Package_clause">package name</a>, the
   2475 <i>selector expression</i>
   2476 </p>
   2477 
   2478 <pre>
   2479 x.f
   2480 </pre>
   2481 
   2482 <p>
   2483 denotes the field or method <code>f</code> of the value <code>x</code>
   2484 (or sometimes <code>*x</code>; see below).
   2485 The identifier <code>f</code> is called the (field or method) <i>selector</i>;
   2486 it must not be the <a href="#Blank_identifier">blank identifier</a>.
   2487 The type of the selector expression is the type of <code>f</code>.
   2488 If <code>x</code> is a package name, see the section on
   2489 <a href="#Qualified_identifiers">qualified identifiers</a>.
   2490 </p>
   2491 
   2492 <p>
   2493 A selector <code>f</code> may denote a field or method <code>f</code> of
   2494 a type <code>T</code>, or it may refer
   2495 to a field or method <code>f</code> of a nested
   2496 <a href="#Struct_types">anonymous field</a> of <code>T</code>.
   2497 The number of anonymous fields traversed
   2498 to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
   2499 The depth of a field or method <code>f</code>
   2500 declared in <code>T</code> is zero.
   2501 The depth of a field or method <code>f</code> declared in
   2502 an anonymous field <code>A</code> in <code>T</code> is the
   2503 depth of <code>f</code> in <code>A</code> plus one.
   2504 </p>
   2505 
   2506 <p>
   2507 The following rules apply to selectors:
   2508 </p>
   2509 
   2510 <ol>
   2511 <li>
   2512 For a value <code>x</code> of type <code>T</code> or <code>*T</code>
   2513 where <code>T</code> is not a pointer or interface type,
   2514 <code>x.f</code> denotes the field or method at the shallowest depth
   2515 in <code>T</code> where there
   2516 is such an <code>f</code>.
   2517 If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
   2518 with shallowest depth, the selector expression is illegal.
   2519 </li>
   2520 
   2521 <li>
   2522 For a value <code>x</code> of type <code>I</code> where <code>I</code>
   2523 is an interface type, <code>x.f</code> denotes the actual method with name
   2524 <code>f</code> of the dynamic value of <code>x</code>.
   2525 If there is no method with name <code>f</code> in the
   2526 <a href="#Method_sets">method set</a> of <code>I</code>, the selector
   2527 expression is illegal.
   2528 </li>
   2529 
   2530 <li>
   2531 As an exception, if the type of <code>x</code> is a named pointer type
   2532 and <code>(*x).f</code> is a valid selector expression denoting a field
   2533 (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
   2534 </li>
   2535 
   2536 <li>
   2537 In all other cases, <code>x.f</code> is illegal.
   2538 </li>
   2539 
   2540 <li>
   2541 If <code>x</code> is of pointer type and has the value
   2542 <code>nil</code> and <code>x.f</code> denotes a struct field,
   2543 assigning to or evaluating <code>x.f</code>
   2544 causes a <a href="#Run_time_panics">run-time panic</a>.
   2545 </li>
   2546 
   2547 <li>
   2548 If <code>x</code> is of interface type and has the value
   2549 <code>nil</code>, <a href="#Calls">calling</a> or
   2550 <a href="#Method_values">evaluating</a> the method <code>x.f</code>
   2551 causes a <a href="#Run_time_panics">run-time panic</a>.
   2552 </li>
   2553 </ol>
   2554 
   2555 <p>
   2556 For example, given the declarations:
   2557 </p>
   2558 
   2559 <pre>
   2560 type T0 struct {
   2561 	x int
   2562 }
   2563 
   2564 func (*T0) M0()
   2565 
   2566 type T1 struct {
   2567 	y int
   2568 }
   2569 
   2570 func (T1) M1()
   2571 
   2572 type T2 struct {
   2573 	z int
   2574 	T1
   2575 	*T0
   2576 }
   2577 
   2578 func (*T2) M2()
   2579 
   2580 type Q *T2
   2581 
   2582 var t T2     // with t.T0 != nil
   2583 var p *T2    // with p != nil and (*p).T0 != nil
   2584 var q Q = p
   2585 </pre>
   2586 
   2587 <p>
   2588 one may write:
   2589 </p>
   2590 
   2591 <pre>
   2592 t.z          // t.z
   2593 t.y          // t.T1.y
   2594 t.x          // (*t.T0).x
   2595 
   2596 p.z          // (*p).z
   2597 p.y          // (*p).T1.y
   2598 p.x          // (*(*p).T0).x
   2599 
   2600 q.x          // (*(*q).T0).x        (*q).x is a valid field selector
   2601 
   2602 p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
   2603 p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
   2604 p.M2()       // p.M2()              M2 expects *T2 receiver
   2605 t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
   2606 </pre>
   2607 
   2608 <p>
   2609 but the following is invalid:
   2610 </p>
   2611 
   2612 <pre>
   2613 q.M0()       // (*q).M0 is valid but not a field selector
   2614 </pre>
   2615 
   2616 
   2617 <h3 id="Method_expressions">Method expressions</h3>
   2618 
   2619 <p>
   2620 If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
   2621 <code>T.M</code> is a function that is callable as a regular function
   2622 with the same arguments as <code>M</code> prefixed by an additional
   2623 argument that is the receiver of the method.
   2624 </p>
   2625 
   2626 <pre class="ebnf">
   2627 MethodExpr    = ReceiverType "." MethodName .
   2628 ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
   2629 </pre>
   2630 
   2631 <p>
   2632 Consider a struct type <code>T</code> with two methods,
   2633 <code>Mv</code>, whose receiver is of type <code>T</code>, and
   2634 <code>Mp</code>, whose receiver is of type <code>*T</code>.
   2635 </p>
   2636 
   2637 <pre>
   2638 type T struct {
   2639 	a int
   2640 }
   2641 func (tv  T) Mv(a int) int         { return 0 }  // value receiver
   2642 func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
   2643 
   2644 var t T
   2645 </pre>
   2646 
   2647 <p>
   2648 The expression
   2649 </p>
   2650 
   2651 <pre>
   2652 T.Mv
   2653 </pre>
   2654 
   2655 <p>
   2656 yields a function equivalent to <code>Mv</code> but
   2657 with an explicit receiver as its first argument; it has signature
   2658 </p>
   2659 
   2660 <pre>
   2661 func(tv T, a int) int
   2662 </pre>
   2663 
   2664 <p>
   2665 That function may be called normally with an explicit receiver, so
   2666 these five invocations are equivalent:
   2667 </p>
   2668 
   2669 <pre>
   2670 t.Mv(7)
   2671 T.Mv(t, 7)
   2672 (T).Mv(t, 7)
   2673 f1 := T.Mv; f1(t, 7)
   2674 f2 := (T).Mv; f2(t, 7)
   2675 </pre>
   2676 
   2677 <p>
   2678 Similarly, the expression
   2679 </p>
   2680 
   2681 <pre>
   2682 (*T).Mp
   2683 </pre>
   2684 
   2685 <p>
   2686 yields a function value representing <code>Mp</code> with signature
   2687 </p>
   2688 
   2689 <pre>
   2690 func(tp *T, f float32) float32
   2691 </pre>
   2692 
   2693 <p>
   2694 For a method with a value receiver, one can derive a function
   2695 with an explicit pointer receiver, so
   2696 </p>
   2697 
   2698 <pre>
   2699 (*T).Mv
   2700 </pre>
   2701 
   2702 <p>
   2703 yields a function value representing <code>Mv</code> with signature
   2704 </p>
   2705 
   2706 <pre>
   2707 func(tv *T, a int) int
   2708 </pre>
   2709 
   2710 <p>
   2711 Such a function indirects through the receiver to create a value
   2712 to pass as the receiver to the underlying method;
   2713 the method does not overwrite the value whose address is passed in
   2714 the function call.
   2715 </p>
   2716 
   2717 <p>
   2718 The final case, a value-receiver function for a pointer-receiver method,
   2719 is illegal because pointer-receiver methods are not in the method set
   2720 of the value type.
   2721 </p>
   2722 
   2723 <p>
   2724 Function values derived from methods are called with function call syntax;
   2725 the receiver is provided as the first argument to the call.
   2726 That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
   2727 as <code>f(t, 7)</code> not <code>t.f(7)</code>.
   2728 To construct a function that binds the receiver, use a
   2729 <a href="#Function_literals">function literal</a> or
   2730 <a href="#Method_values">method value</a>.
   2731 </p>
   2732 
   2733 <p>
   2734 It is legal to derive a function value from a method of an interface type.
   2735 The resulting function takes an explicit receiver of that interface type.
   2736 </p>
   2737 
   2738 <h3 id="Method_values">Method values</h3>
   2739 
   2740 <p>
   2741 If the expression <code>x</code> has static type <code>T</code> and
   2742 <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
   2743 <code>x.M</code> is called a <i>method value</i>.
   2744 The method value <code>x.M</code> is a function value that is callable
   2745 with the same arguments as a method call of <code>x.M</code>.
   2746 The expression <code>x</code> is evaluated and saved during the evaluation of the
   2747 method value; the saved copy is then used as the receiver in any calls,
   2748 which may be executed later.
   2749 </p>
   2750 
   2751 <p>
   2752 The type <code>T</code> may be an interface or non-interface type.
   2753 </p>
   2754 
   2755 <p>
   2756 As in the discussion of <a href="#Method_expressions">method expressions</a> above,
   2757 consider a struct type <code>T</code> with two methods,
   2758 <code>Mv</code>, whose receiver is of type <code>T</code>, and
   2759 <code>Mp</code>, whose receiver is of type <code>*T</code>.
   2760 </p>
   2761 
   2762 <pre>
   2763 type T struct {
   2764 	a int
   2765 }
   2766 func (tv  T) Mv(a int) int         { return 0 }  // value receiver
   2767 func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
   2768 
   2769 var t T
   2770 var pt *T
   2771 func makeT() T
   2772 </pre>
   2773 
   2774 <p>
   2775 The expression
   2776 </p>
   2777 
   2778 <pre>
   2779 t.Mv
   2780 </pre>
   2781 
   2782 <p>
   2783 yields a function value of type
   2784 </p>
   2785 
   2786 <pre>
   2787 func(int) int
   2788 </pre>
   2789 
   2790 <p>
   2791 These two invocations are equivalent:
   2792 </p>
   2793 
   2794 <pre>
   2795 t.Mv(7)
   2796 f := t.Mv; f(7)
   2797 </pre>
   2798 
   2799 <p>
   2800 Similarly, the expression
   2801 </p>
   2802 
   2803 <pre>
   2804 pt.Mp
   2805 </pre>
   2806 
   2807 <p>
   2808 yields a function value of type
   2809 </p>
   2810 
   2811 <pre>
   2812 func(float32) float32
   2813 </pre>
   2814 
   2815 <p>
   2816 As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
   2817 using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
   2818 </p>
   2819 
   2820 <p>
   2821 As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
   2822 using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
   2823 </p>
   2824 
   2825 <pre>
   2826 f := t.Mv; f(7)   // like t.Mv(7)
   2827 f := pt.Mp; f(7)  // like pt.Mp(7)
   2828 f := pt.Mv; f(7)  // like (*pt).Mv(7)
   2829 f := t.Mp; f(7)   // like (&amp;t).Mp(7)
   2830 f := makeT().Mp   // invalid: result of makeT() is not addressable
   2831 </pre>
   2832 
   2833 <p>
   2834 Although the examples above use non-interface types, it is also legal to create a method value
   2835 from a value of interface type.
   2836 </p>
   2837 
   2838 <pre>
   2839 var i interface { M(int) } = myVal
   2840 f := i.M; f(7)  // like i.M(7)
   2841 </pre>
   2842 
   2843 
   2844 <h3 id="Index_expressions">Index expressions</h3>
   2845 
   2846 <p>
   2847 A primary expression of the form
   2848 </p>
   2849 
   2850 <pre>
   2851 a[x]
   2852 </pre>
   2853 
   2854 <p>
   2855 denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
   2856 The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
   2857 The following rules apply:
   2858 </p>
   2859 
   2860 <p>
   2861 If <code>a</code> is not a map:
   2862 </p>
   2863 <ul>
   2864 	<li>the index <code>x</code> must be of integer type or untyped;
   2865 	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
   2866 	    otherwise it is <i>out of range</i></li>
   2867 	<li>a <a href="#Constants">constant</a> index must be non-negative
   2868 	    and representable by a value of type <code>int</code>
   2869 </ul>
   2870 
   2871 <p>
   2872 For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
   2873 </p>
   2874 <ul>
   2875 	<li>a <a href="#Constants">constant</a> index must be in range</li>
   2876 	<li>if <code>x</code> is out of range at run time,
   2877 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   2878 	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
   2879 	    <code>a[x]</code> is the element type of <code>A</code></li>
   2880 </ul>
   2881 
   2882 <p>
   2883 For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
   2884 </p>
   2885 <ul>
   2886 	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
   2887 </ul>
   2888 
   2889 <p>
   2890 For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
   2891 </p>
   2892 <ul>
   2893 	<li>if <code>x</code> is out of range at run time,
   2894 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   2895 	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
   2896 	    <code>a[x]</code> is the element type of <code>S</code></li>
   2897 </ul>
   2898 
   2899 <p>
   2900 For <code>a</code> of <a href="#String_types">string type</a>:
   2901 </p>
   2902 <ul>
   2903 	<li>a <a href="#Constants">constant</a> index must be in range
   2904 	    if the string <code>a</code> is also constant</li>
   2905 	<li>if <code>x</code> is out of range at run time,
   2906 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   2907 	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
   2908 	    <code>a[x]</code> is <code>byte</code></li>
   2909 	<li><code>a[x]</code> may not be assigned to</li>
   2910 </ul>
   2911 
   2912 <p>
   2913 For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
   2914 </p>
   2915 <ul>
   2916 	<li><code>x</code>'s type must be
   2917 	    <a href="#Assignability">assignable</a>
   2918 	    to the key type of <code>M</code></li>
   2919 	<li>if the map contains an entry with key <code>x</code>,
   2920 	    <code>a[x]</code> is the map value with key <code>x</code>
   2921 	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
   2922 	<li>if the map is <code>nil</code> or does not contain such an entry,
   2923 	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
   2924 	    for the value type of <code>M</code></li>
   2925 </ul>
   2926 
   2927 <p>
   2928 Otherwise <code>a[x]</code> is illegal.
   2929 </p>
   2930 
   2931 <p>
   2932 An index expression on a map <code>a</code> of type <code>map[K]V</code>
   2933 used in an <a href="#Assignments">assignment</a> or initialization of the special form
   2934 </p>
   2935 
   2936 <pre>
   2937 v, ok = a[x]
   2938 v, ok := a[x]
   2939 var v, ok = a[x]
   2940 </pre>
   2941 
   2942 <p>
   2943 yields an additional untyped boolean value. The value of <code>ok</code> is
   2944 <code>true</code> if the key <code>x</code> is present in the map, and
   2945 <code>false</code> otherwise.
   2946 </p>
   2947 
   2948 <p>
   2949 Assigning to an element of a <code>nil</code> map causes a
   2950 <a href="#Run_time_panics">run-time panic</a>.
   2951 </p>
   2952 
   2953 
   2954 <h3 id="Slice_expressions">Slice expressions</h3>
   2955 
   2956 <p>
   2957 Slice expressions construct a substring or slice from a string, array, pointer
   2958 to array, or slice. There are two variants: a simple form that specifies a low
   2959 and high bound, and a full form that also specifies a bound on the capacity.
   2960 </p>
   2961 
   2962 <h4>Simple slice expressions</h4>
   2963 
   2964 <p>
   2965 For a string, array, pointer to array, or slice <code>a</code>, the primary expression
   2966 </p>
   2967 
   2968 <pre>
   2969 a[low : high]
   2970 </pre>
   2971 
   2972 <p>
   2973 constructs a substring or slice. The <i>indices</i> <code>low</code> and
   2974 <code>high</code> select which elements of operand <code>a</code> appear
   2975 in the result. The result has indices starting at 0 and length equal to
   2976 <code>high</code>&nbsp;-&nbsp;<code>low</code>.
   2977 After slicing the array <code>a</code>
   2978 </p>
   2979 
   2980 <pre>
   2981 a := [5]int{1, 2, 3, 4, 5}
   2982 s := a[1:4]
   2983 </pre>
   2984 
   2985 <p>
   2986 the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
   2987 </p>
   2988 
   2989 <pre>
   2990 s[0] == 2
   2991 s[1] == 3
   2992 s[2] == 4
   2993 </pre>
   2994 
   2995 <p>
   2996 For convenience, any of the indices may be omitted. A missing <code>low</code>
   2997 index defaults to zero; a missing <code>high</code> index defaults to the length of the
   2998 sliced operand:
   2999 </p>
   3000 
   3001 <pre>
   3002 a[2:]  // same as a[2 : len(a)]
   3003 a[:3]  // same as a[0 : 3]
   3004 a[:]   // same as a[0 : len(a)]
   3005 </pre>
   3006 
   3007 <p>
   3008 If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
   3009 <code>(*a)[low : high]</code>.
   3010 </p>
   3011 
   3012 <p>
   3013 For arrays or strings, the indices are <i>in range</i> if
   3014 <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
   3015 otherwise they are <i>out of range</i>.
   3016 For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
   3017 A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
   3018 <code>int</code>; for arrays or constant strings, constant indices must also be in range.
   3019 If both indices are constant, they must satisfy <code>low &lt;= high</code>.
   3020 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3021 </p>
   3022 
   3023 <p>
   3024 Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
   3025 the result of the slice operation is a non-constant value of the same type as the operand.
   3026 For untyped string operands the result is a non-constant value of type <code>string</code>.
   3027 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
   3028 and the result of the slice operation is a slice with the same element type as the array.
   3029 </p>
   3030 
   3031 <p>
   3032 If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
   3033 is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
   3034 operand.
   3035 </p>
   3036 
   3037 <h4>Full slice expressions</h4>
   3038 
   3039 <p>
   3040 For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
   3041 </p>
   3042 
   3043 <pre>
   3044 a[low : high : max]
   3045 </pre>
   3046 
   3047 <p>
   3048 constructs a slice of the same type, and with the same length and elements as the simple slice
   3049 expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
   3050 by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
   3051 After slicing the array <code>a</code>
   3052 </p>
   3053 
   3054 <pre>
   3055 a := [5]int{1, 2, 3, 4, 5}
   3056 t := a[1:3:5]
   3057 </pre>
   3058 
   3059 <p>
   3060 the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
   3061 </p>
   3062 
   3063 <pre>
   3064 t[0] == 2
   3065 t[1] == 3
   3066 </pre>
   3067 
   3068 <p>
   3069 As for simple slice expressions, if <code>a</code> is a pointer to an array,
   3070 <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
   3071 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
   3072 </p>
   3073 
   3074 <p>
   3075 The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
   3076 otherwise they are <i>out of range</i>.
   3077 A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
   3078 <code>int</code>; for arrays, constant indices must also be in range.
   3079 If multiple indices are constant, the constants that are present must be in range relative to each
   3080 other.
   3081 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3082 </p>
   3083 
   3084 <h3 id="Type_assertions">Type assertions</h3>
   3085 
   3086 <p>
   3087 For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
   3088 and a type <code>T</code>, the primary expression
   3089 </p>
   3090 
   3091 <pre>
   3092 x.(T)
   3093 </pre>
   3094 
   3095 <p>
   3096 asserts that <code>x</code> is not <code>nil</code>
   3097 and that the value stored in <code>x</code> is of type <code>T</code>.
   3098 The notation <code>x.(T)</code> is called a <i>type assertion</i>.
   3099 </p>
   3100 <p>
   3101 More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
   3102 that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
   3103 to the type <code>T</code>.
   3104 In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
   3105 otherwise the type assertion is invalid since it is not possible for <code>x</code>
   3106 to store a value of type <code>T</code>.
   3107 If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
   3108 of <code>x</code> implements the interface <code>T</code>.
   3109 </p>
   3110 <p>
   3111 If the type assertion holds, the value of the expression is the value
   3112 stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
   3113 a <a href="#Run_time_panics">run-time panic</a> occurs.
   3114 In other words, even though the dynamic type of <code>x</code>
   3115 is known only at run time, the type of <code>x.(T)</code> is
   3116 known to be <code>T</code> in a correct program.
   3117 </p>
   3118 
   3119 <pre>
   3120 var x interface{} = 7  // x has dynamic type int and value 7
   3121 i := x.(int)           // i has type int and value 7
   3122 
   3123 type I interface { m() }
   3124 var y I
   3125 s := y.(string)        // illegal: string does not implement I (missing method m)
   3126 r := y.(io.Reader)     // r has type io.Reader and y must implement both I and io.Reader
   3127 </pre>
   3128 
   3129 <p>
   3130 A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
   3131 </p>
   3132 
   3133 <pre>
   3134 v, ok = x.(T)
   3135 v, ok := x.(T)
   3136 var v, ok = x.(T)
   3137 </pre>
   3138 
   3139 <p>
   3140 yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
   3141 if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
   3142 the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
   3143 No run-time panic occurs in this case.
   3144 </p>
   3145 
   3146 
   3147 <h3 id="Calls">Calls</h3>
   3148 
   3149 <p>
   3150 Given an expression <code>f</code> of function type
   3151 <code>F</code>,
   3152 </p>
   3153 
   3154 <pre>
   3155 f(a1, a2,  an)
   3156 </pre>
   3157 
   3158 <p>
   3159 calls <code>f</code> with arguments <code>a1, a2,  an</code>.
   3160 Except for one special case, arguments must be single-valued expressions
   3161 <a href="#Assignability">assignable</a> to the parameter types of
   3162 <code>F</code> and are evaluated before the function is called.
   3163 The type of the expression is the result type
   3164 of <code>F</code>.
   3165 A method invocation is similar but the method itself
   3166 is specified as a selector upon a value of the receiver type for
   3167 the method.
   3168 </p>
   3169 
   3170 <pre>
   3171 math.Atan2(x, y)  // function call
   3172 var pt *Point
   3173 pt.Scale(3.5)     // method call with receiver pt
   3174 </pre>
   3175 
   3176 <p>
   3177 In a function call, the function value and arguments are evaluated in
   3178 <a href="#Order_of_evaluation">the usual order</a>.
   3179 After they are evaluated, the parameters of the call are passed by value to the function
   3180 and the called function begins execution.
   3181 The return parameters of the function are passed by value
   3182 back to the calling function when the function returns.
   3183 </p>
   3184 
   3185 <p>
   3186 Calling a <code>nil</code> function value
   3187 causes a <a href="#Run_time_panics">run-time panic</a>.
   3188 </p>
   3189 
   3190 <p>
   3191 As a special case, if the return values of a function or method
   3192 <code>g</code> are equal in number and individually
   3193 assignable to the parameters of another function or method
   3194 <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
   3195 will invoke <code>f</code> after binding the return values of
   3196 <code>g</code> to the parameters of <code>f</code> in order.  The call
   3197 of <code>f</code> must contain no parameters other than the call of <code>g</code>,
   3198 and <code>g</code> must have at least one return value.
   3199 If <code>f</code> has a final <code>...</code> parameter, it is
   3200 assigned the return values of <code>g</code> that remain after
   3201 assignment of regular parameters.
   3202 </p>
   3203 
   3204 <pre>
   3205 func Split(s string, pos int) (string, string) {
   3206 	return s[0:pos], s[pos:]
   3207 }
   3208 
   3209 func Join(s, t string) string {
   3210 	return s + t
   3211 }
   3212 
   3213 if Join(Split(value, len(value)/2)) != value {
   3214 	log.Panic("test fails")
   3215 }
   3216 </pre>
   3217 
   3218 <p>
   3219 A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
   3220 of (the type of) <code>x</code> contains <code>m</code> and the
   3221 argument list can be assigned to the parameter list of <code>m</code>.
   3222 If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
   3223 set contains <code>m</code>, <code>x.m()</code> is shorthand
   3224 for <code>(&amp;x).m()</code>:
   3225 </p>
   3226 
   3227 <pre>
   3228 var p Point
   3229 p.Scale(3.5)
   3230 </pre>
   3231 
   3232 <p>
   3233 There is no distinct method type and there are no method literals.
   3234 </p>
   3235 
   3236 <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
   3237 
   3238 <p>
   3239 If <code>f</code> is <a href="#Function_types">variadic</a> with a final
   3240 parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
   3241 the type of <code>p</code> is equivalent to type <code>[]T</code>.
   3242 If <code>f</code> is invoked with no actual arguments for <code>p</code>,
   3243 the value passed to <code>p</code> is <code>nil</code>.
   3244 Otherwise, the value passed is a new slice
   3245 of type <code>[]T</code> with a new underlying array whose successive elements
   3246 are the actual arguments, which all must be <a href="#Assignability">assignable</a>
   3247 to <code>T</code>. The length and capacity of the slice is therefore
   3248 the number of arguments bound to <code>p</code> and may differ for each
   3249 call site.
   3250 </p>
   3251 
   3252 <p>
   3253 Given the function and calls
   3254 </p>
   3255 <pre>
   3256 func Greeting(prefix string, who ...string)
   3257 Greeting("nobody")
   3258 Greeting("hello:", "Joe", "Anna", "Eileen")
   3259 </pre>
   3260 
   3261 <p>
   3262 within <code>Greeting</code>, <code>who</code> will have the value
   3263 <code>nil</code> in the first call, and
   3264 <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
   3265 </p>
   3266 
   3267 <p>
   3268 If the final argument is assignable to a slice type <code>[]T</code>, it may be
   3269 passed unchanged as the value for a <code>...T</code> parameter if the argument
   3270 is followed by <code>...</code>. In this case no new slice is created.
   3271 </p>
   3272 
   3273 <p>
   3274 Given the slice <code>s</code> and call
   3275 </p>
   3276 
   3277 <pre>
   3278 s := []string{"James", "Jasmine"}
   3279 Greeting("goodbye:", s...)
   3280 </pre>
   3281 
   3282 <p>
   3283 within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
   3284 with the same underlying array.
   3285 </p>
   3286 
   3287 
   3288 <h3 id="Operators">Operators</h3>
   3289 
   3290 <p>
   3291 Operators combine operands into expressions.
   3292 </p>
   3293 
   3294 <pre class="ebnf">
   3295 Expression = UnaryExpr | Expression binary_op Expression .
   3296 UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
   3297 
   3298 binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
   3299 rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
   3300 add_op     = "+" | "-" | "|" | "^" .
   3301 mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
   3302 
   3303 unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
   3304 </pre>
   3305 
   3306 <p>
   3307 Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
   3308 For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
   3309 unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
   3310 For operations involving constants only, see the section on
   3311 <a href="#Constant_expressions">constant expressions</a>.
   3312 </p>
   3313 
   3314 <p>
   3315 Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
   3316 and the other operand is not, the constant is <a href="#Conversions">converted</a>
   3317 to the type of the other operand.
   3318 </p>
   3319 
   3320 <p>
   3321 The right operand in a shift expression must have unsigned integer type
   3322 or be an untyped constant that can be converted to unsigned integer type.
   3323 If the left operand of a non-constant shift expression is an untyped constant,
   3324 it is first converted to the type it would assume if the shift expression were
   3325 replaced by its left operand alone.
   3326 </p>
   3327 
   3328 <pre>
   3329 var s uint = 33
   3330 var i = 1&lt;&lt;s           // 1 has type int
   3331 var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
   3332 var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
   3333 var m int = 1.0&lt;&lt;s     // 1.0 has type int
   3334 var n = 1.0&lt;&lt;s != i    // 1.0 has type int; n == false if ints are 32bits in size
   3335 var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
   3336 var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
   3337 var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
   3338 var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
   3339 var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
   3340 var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
   3341 var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
   3342 </pre>
   3343 
   3344 
   3345 <h4 id="Operator_precedence">Operator precedence</h4>
   3346 <p>
   3347 Unary operators have the highest precedence.
   3348 As the  <code>++</code> and <code>--</code> operators form
   3349 statements, not expressions, they fall
   3350 outside the operator hierarchy.
   3351 As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
   3352 <p>
   3353 There are five precedence levels for binary operators.
   3354 Multiplication operators bind strongest, followed by addition
   3355 operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
   3356 and finally <code>||</code> (logical OR):
   3357 </p>
   3358 
   3359 <pre class="grammar">
   3360 Precedence    Operator
   3361     5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
   3362     4             +  -  |  ^
   3363     3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
   3364     2             &amp;&amp;
   3365     1             ||
   3366 </pre>
   3367 
   3368 <p>
   3369 Binary operators of the same precedence associate from left to right.
   3370 For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
   3371 </p>
   3372 
   3373 <pre>
   3374 +x
   3375 23 + 3*x[i]
   3376 x &lt;= f()
   3377 ^a &gt;&gt; b
   3378 f() || g()
   3379 x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
   3380 </pre>
   3381 
   3382 
   3383 <h3 id="Arithmetic_operators">Arithmetic operators</h3>
   3384 <p>
   3385 Arithmetic operators apply to numeric values and yield a result of the same
   3386 type as the first operand. The four standard arithmetic operators (<code>+</code>,
   3387 <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
   3388 floating-point, and complex types; <code>+</code> also applies to strings.
   3389 The bitwise logical and shift operators apply to integers only.
   3390 </p>
   3391 
   3392 <pre class="grammar">
   3393 +    sum                    integers, floats, complex values, strings
   3394 -    difference             integers, floats, complex values
   3395 *    product                integers, floats, complex values
   3396 /    quotient               integers, floats, complex values
   3397 %    remainder              integers
   3398 
   3399 &amp;    bitwise AND            integers
   3400 |    bitwise OR             integers
   3401 ^    bitwise XOR            integers
   3402 &amp;^   bit clear (AND NOT)    integers
   3403 
   3404 &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
   3405 &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
   3406 </pre>
   3407 
   3408 
   3409 <h4 id="Integer_operators">Integer operators</h4>
   3410 
   3411 <p>
   3412 For two integer values <code>x</code> and <code>y</code>, the integer quotient
   3413 <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
   3414 relationships:
   3415 </p>
   3416 
   3417 <pre>
   3418 x = q*y + r  and  |r| &lt; |y|
   3419 </pre>
   3420 
   3421 <p>
   3422 with <code>x / y</code> truncated towards zero
   3423 (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
   3424 </p>
   3425 
   3426 <pre>
   3427  x     y     x / y     x % y
   3428  5     3       1         2
   3429 -5     3      -1        -2
   3430  5    -3      -1         2
   3431 -5    -3       1        -2
   3432 </pre>
   3433 
   3434 <p>
   3435 As an exception to this rule, if the dividend <code>x</code> is the most
   3436 negative value for the int type of <code>x</code>, the quotient
   3437 <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
   3438 </p>
   3439 
   3440 <pre>
   3441 			 x, q
   3442 int8                     -128
   3443 int16                  -32768
   3444 int32             -2147483648
   3445 int64    -9223372036854775808
   3446 </pre>
   3447 
   3448 <p>
   3449 If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
   3450 If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3451 If the dividend is non-negative and the divisor is a constant power of 2,
   3452 the division may be replaced by a right shift, and computing the remainder may
   3453 be replaced by a bitwise AND operation:
   3454 </p>
   3455 
   3456 <pre>
   3457  x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
   3458  11      2         3         2          3
   3459 -11     -2        -3        -3          1
   3460 </pre>
   3461 
   3462 <p>
   3463 The shift operators shift the left operand by the shift count specified by the
   3464 right operand. They implement arithmetic shifts if the left operand is a signed
   3465 integer and logical shifts if it is an unsigned integer.
   3466 There is no upper limit on the shift count. Shifts behave
   3467 as if the left operand is shifted <code>n</code> times by 1 for a shift
   3468 count of <code>n</code>.
   3469 As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
   3470 and <code>x &gt;&gt; 1</code> is the same as
   3471 <code>x/2</code> but truncated towards negative infinity.
   3472 </p>
   3473 
   3474 <p>
   3475 For integer operands, the unary operators
   3476 <code>+</code>, <code>-</code>, and <code>^</code> are defined as
   3477 follows:
   3478 </p>
   3479 
   3480 <pre class="grammar">
   3481 +x                          is 0 + x
   3482 -x    negation              is 0 - x
   3483 ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
   3484                                       and  m = -1 for signed x
   3485 </pre>
   3486 
   3487 
   3488 <h4 id="Integer_overflow">Integer overflow</h4>
   3489 
   3490 <p>
   3491 For unsigned integer values, the operations <code>+</code>,
   3492 <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
   3493 computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
   3494 the <a href="#Numeric_types">unsigned integer</a>'s type.
   3495 Loosely speaking, these unsigned integer operations
   3496 discard high bits upon overflow, and programs may rely on ``wrap around''.
   3497 </p>
   3498 <p>
   3499 For signed integers, the operations <code>+</code>,
   3500 <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
   3501 overflow and the resulting value exists and is deterministically defined
   3502 by the signed integer representation, the operation, and its operands.
   3503 No exception is raised as a result of overflow. A
   3504 compiler may not optimize code under the assumption that overflow does
   3505 not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
   3506 </p>
   3507 
   3508 
   3509 <h4 id="Floating_point_operators">Floating-point operators</h4>
   3510 
   3511 <p>
   3512 For floating-point and complex numbers,
   3513 <code>+x</code> is the same as <code>x</code>,
   3514 while <code>-x</code> is the negation of <code>x</code>.
   3515 The result of a floating-point or complex division by zero is not specified beyond the
   3516 IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
   3517 occurs is implementation-specific.
   3518 </p>
   3519 
   3520 
   3521 <h4 id="String_concatenation">String concatenation</h4>
   3522 
   3523 <p>
   3524 Strings can be concatenated using the <code>+</code> operator
   3525 or the <code>+=</code> assignment operator:
   3526 </p>
   3527 
   3528 <pre>
   3529 s := "hi" + string(c)
   3530 s += " and good bye"
   3531 </pre>
   3532 
   3533 <p>
   3534 String addition creates a new string by concatenating the operands.
   3535 </p>
   3536 
   3537 
   3538 <h3 id="Comparison_operators">Comparison operators</h3>
   3539 
   3540 <p>
   3541 Comparison operators compare two operands and yield an untyped boolean value.
   3542 </p>
   3543 
   3544 <pre class="grammar">
   3545 ==    equal
   3546 !=    not equal
   3547 &lt;     less
   3548 &lt;=    less or equal
   3549 &gt;     greater
   3550 &gt;=    greater or equal
   3551 </pre>
   3552 
   3553 <p>
   3554 In any comparison, the first operand
   3555 must be <a href="#Assignability">assignable</a>
   3556 to the type of the second operand, or vice versa.
   3557 </p>
   3558 <p>
   3559 The equality operators <code>==</code> and <code>!=</code> apply
   3560 to operands that are <i>comparable</i>.
   3561 The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
   3562 apply to operands that are <i>ordered</i>.
   3563 These terms and the result of the comparisons are defined as follows:
   3564 </p>
   3565 
   3566 <ul>
   3567 	<li>
   3568 	Boolean values are comparable.
   3569 	Two boolean values are equal if they are either both
   3570 	<code>true</code> or both <code>false</code>.
   3571 	</li>
   3572 
   3573 	<li>
   3574 	Integer values are comparable and ordered, in the usual way.
   3575 	</li>
   3576 
   3577 	<li>
   3578 	Floating point values are comparable and ordered,
   3579 	as defined by the IEEE-754 standard.
   3580 	</li>
   3581 
   3582 	<li>
   3583 	Complex values are comparable.
   3584 	Two complex values <code>u</code> and <code>v</code> are
   3585 	equal if both <code>real(u) == real(v)</code> and
   3586 	<code>imag(u) == imag(v)</code>.
   3587 	</li>
   3588 
   3589 	<li>
   3590 	String values are comparable and ordered, lexically byte-wise.
   3591 	</li>
   3592 
   3593 	<li>
   3594 	Pointer values are comparable.
   3595 	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
   3596 	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
   3597 	</li>
   3598 
   3599 	<li>
   3600 	Channel values are comparable.
   3601 	Two channel values are equal if they were created by the same call to
   3602 	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
   3603 	or if both have value <code>nil</code>.
   3604 	</li>
   3605 
   3606 	<li>
   3607 	Interface values are comparable.
   3608 	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
   3609 	and equal dynamic values or if both have value <code>nil</code>.
   3610 	</li>
   3611 
   3612 	<li>
   3613 	A value <code>x</code> of non-interface type <code>X</code> and
   3614 	a value <code>t</code> of interface type <code>T</code> are comparable when values
   3615 	of type <code>X</code> are comparable and
   3616 	<code>X</code> implements <code>T</code>.
   3617 	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
   3618 	and <code>t</code>'s dynamic value is equal to <code>x</code>.
   3619 	</li>
   3620 
   3621 	<li>
   3622 	Struct values are comparable if all their fields are comparable.
   3623 	Two struct values are equal if their corresponding
   3624 	non-<a href="#Blank_identifier">blank</a> fields are equal.
   3625 	</li>
   3626 
   3627 	<li>
   3628 	Array values are comparable if values of the array element type are comparable.
   3629 	Two array values are equal if their corresponding elements are equal.
   3630 	</li>
   3631 </ul>
   3632 
   3633 <p>
   3634 A comparison of two interface values with identical dynamic types
   3635 causes a <a href="#Run_time_panics">run-time panic</a> if values
   3636 of that type are not comparable.  This behavior applies not only to direct interface
   3637 value comparisons but also when comparing arrays of interface values
   3638 or structs with interface-valued fields.
   3639 </p>
   3640 
   3641 <p>
   3642 Slice, map, and function values are not comparable.
   3643 However, as a special case, a slice, map, or function value may
   3644 be compared to the predeclared identifier <code>nil</code>.
   3645 Comparison of pointer, channel, and interface values to <code>nil</code>
   3646 is also allowed and follows from the general rules above.
   3647 </p>
   3648 
   3649 <pre>
   3650 const c = 3 &lt; 4            // c is the untyped bool constant true
   3651 
   3652 type MyBool bool
   3653 var x, y int
   3654 var (
   3655 	// The result of a comparison is an untyped bool.
   3656 	// The usual assignment rules apply.
   3657 	b3        = x == y // b3 has type bool
   3658 	b4 bool   = x == y // b4 has type bool
   3659 	b5 MyBool = x == y // b5 has type MyBool
   3660 )
   3661 </pre>
   3662 
   3663 <h3 id="Logical_operators">Logical operators</h3>
   3664 
   3665 <p>
   3666 Logical operators apply to <a href="#Boolean_types">boolean</a> values
   3667 and yield a result of the same type as the operands.
   3668 The right operand is evaluated conditionally.
   3669 </p>
   3670 
   3671 <pre class="grammar">
   3672 &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
   3673 ||    conditional OR     p || q  is  "if p then true else q"
   3674 !     NOT                !p      is  "not p"
   3675 </pre>
   3676 
   3677 
   3678 <h3 id="Address_operators">Address operators</h3>
   3679 
   3680 <p>
   3681 For an operand <code>x</code> of type <code>T</code>, the address operation
   3682 <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
   3683 The operand must be <i>addressable</i>,
   3684 that is, either a variable, pointer indirection, or slice indexing
   3685 operation; or a field selector of an addressable struct operand;
   3686 or an array indexing operation of an addressable array.
   3687 As an exception to the addressability requirement, <code>x</code> may also be a
   3688 (possibly parenthesized)
   3689 <a href="#Composite_literals">composite literal</a>.
   3690 If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
   3691 then the evaluation of <code>&amp;x</code> does too.
   3692 </p>
   3693 
   3694 <p>
   3695 For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
   3696 indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
   3697 to by <code>x</code>.
   3698 If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
   3699 will cause a <a href="#Run_time_panics">run-time panic</a>.
   3700 </p>
   3701 
   3702 <pre>
   3703 &amp;x
   3704 &amp;a[f(2)]
   3705 &amp;Point{2, 3}
   3706 *p
   3707 *pf(x)
   3708 
   3709 var x *int = nil
   3710 *x   // causes a run-time panic
   3711 &amp;*x  // causes a run-time panic
   3712 </pre>
   3713 
   3714 
   3715 <h3 id="Receive_operator">Receive operator</h3>
   3716 
   3717 <p>
   3718 For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
   3719 the value of the receive operation <code>&lt;-ch</code> is the value received
   3720 from the channel <code>ch</code>. The channel direction must permit receive operations,
   3721 and the type of the receive operation is the element type of the channel.
   3722 The expression blocks until a value is available.
   3723 Receiving from a <code>nil</code> channel blocks forever.
   3724 A receive operation on a <a href="#Close">closed</a> channel can always proceed
   3725 immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
   3726 after any previously sent values have been received.
   3727 </p>
   3728 
   3729 <pre>
   3730 v1 := &lt;-ch
   3731 v2 = &lt;-ch
   3732 f(&lt;-ch)
   3733 &lt;-strobe  // wait until clock pulse and discard received value
   3734 </pre>
   3735 
   3736 <p>
   3737 A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
   3738 </p>
   3739 
   3740 <pre>
   3741 x, ok = &lt;-ch
   3742 x, ok := &lt;-ch
   3743 var x, ok = &lt;-ch
   3744 </pre>
   3745 
   3746 <p>
   3747 yields an additional untyped boolean result reporting whether the
   3748 communication succeeded. The value of <code>ok</code> is <code>true</code>
   3749 if the value received was delivered by a successful send operation to the
   3750 channel, or <code>false</code> if it is a zero value generated because the
   3751 channel is closed and empty.
   3752 </p>
   3753 
   3754 
   3755 <h3 id="Conversions">Conversions</h3>
   3756 
   3757 <p>
   3758 Conversions are expressions of the form <code>T(x)</code>
   3759 where <code>T</code> is a type and <code>x</code> is an expression
   3760 that can be converted to type <code>T</code>.
   3761 </p>
   3762 
   3763 <pre class="ebnf">
   3764 Conversion = Type "(" Expression [ "," ] ")" .
   3765 </pre>
   3766 
   3767 <p>
   3768 If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
   3769 or if the type starts with the keyword <code>func</code>
   3770 and has no result list, it must be parenthesized when
   3771 necessary to avoid ambiguity:
   3772 </p>
   3773 
   3774 <pre>
   3775 *Point(p)        // same as *(Point(p))
   3776 (*Point)(p)      // p is converted to *Point
   3777 &lt;-chan int(c)    // same as &lt;-(chan int(c))
   3778 (&lt;-chan int)(c)  // c is converted to &lt;-chan int
   3779 func()(x)        // function signature func() x
   3780 (func())(x)      // x is converted to func()
   3781 (func() int)(x)  // x is converted to func() int
   3782 func() int(x)    // x is converted to func() int (unambiguous)
   3783 </pre>
   3784 
   3785 <p>
   3786 A <a href="#Constants">constant</a> value <code>x</code> can be converted to
   3787 type <code>T</code> in any of these cases:
   3788 </p>
   3789 
   3790 <ul>
   3791 	<li>
   3792 	<code>x</code> is representable by a value of type <code>T</code>.
   3793 	</li>
   3794 	<li>
   3795 	<code>x</code> is a floating-point constant,
   3796 	<code>T</code> is a floating-point type,
   3797 	and <code>x</code> is representable by a value
   3798 	of type <code>T</code> after rounding using
   3799 	IEEE 754 round-to-even rules.
   3800 	The constant <code>T(x)</code> is the rounded value.
   3801 	</li>
   3802 	<li>
   3803 	<code>x</code> is an integer constant and <code>T</code> is a
   3804 	<a href="#String_types">string type</a>.
   3805 	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
   3806 	as for non-constant <code>x</code> applies in this case.
   3807 	</li>
   3808 </ul>
   3809 
   3810 <p>
   3811 Converting a constant yields a typed constant as result.
   3812 </p>
   3813 
   3814 <pre>
   3815 uint(iota)               // iota value of type uint
   3816 float32(2.718281828)     // 2.718281828 of type float32
   3817 complex128(1)            // 1.0 + 0.0i of type complex128
   3818 float32(0.49999999)      // 0.5 of type float32
   3819 string('x')              // "x" of type string
   3820 string(0x266c)           // "" of type string
   3821 MyString("foo" + "bar")  // "foobar" of type MyString
   3822 string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
   3823 (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
   3824 int(1.2)                 // illegal: 1.2 cannot be represented as an int
   3825 string(65.0)             // illegal: 65.0 is not an integer constant
   3826 </pre>
   3827 
   3828 <p>
   3829 A non-constant value <code>x</code> can be converted to type <code>T</code>
   3830 in any of these cases:
   3831 </p>
   3832 
   3833 <ul>
   3834 	<li>
   3835 	<code>x</code> is <a href="#Assignability">assignable</a>
   3836 	to <code>T</code>.
   3837 	</li>
   3838 	<li>
   3839 	<code>x</code>'s type and <code>T</code> have identical
   3840 	<a href="#Types">underlying types</a>.
   3841 	</li>
   3842 	<li>
   3843 	<code>x</code>'s type and <code>T</code> are unnamed pointer types
   3844 	and their pointer base types have identical underlying types.
   3845 	</li>
   3846 	<li>
   3847 	<code>x</code>'s type and <code>T</code> are both integer or floating
   3848 	point types.
   3849 	</li>
   3850 	<li>
   3851 	<code>x</code>'s type and <code>T</code> are both complex types.
   3852 	</li>
   3853 	<li>
   3854 	<code>x</code> is an integer or a slice of bytes or runes
   3855 	and <code>T</code> is a string type.
   3856 	</li>
   3857 	<li>
   3858 	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
   3859 	</li>
   3860 </ul>
   3861 
   3862 <p>
   3863 Specific rules apply to (non-constant) conversions between numeric types or
   3864 to and from a string type.
   3865 These conversions may change the representation of <code>x</code>
   3866 and incur a run-time cost.
   3867 All other conversions only change the type but not the representation
   3868 of <code>x</code>.
   3869 </p>
   3870 
   3871 <p>
   3872 There is no linguistic mechanism to convert between pointers and integers.
   3873 The package <a href="#Package_unsafe"><code>unsafe</code></a>
   3874 implements this functionality under
   3875 restricted circumstances.
   3876 </p>
   3877 
   3878 <h4>Conversions between numeric types</h4>
   3879 
   3880 <p>
   3881 For the conversion of non-constant numeric values, the following rules apply:
   3882 </p>
   3883 
   3884 <ol>
   3885 <li>
   3886 When converting between integer types, if the value is a signed integer, it is
   3887 sign extended to implicit infinite precision; otherwise it is zero extended.
   3888 It is then truncated to fit in the result type's size.
   3889 For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
   3890 The conversion always yields a valid value; there is no indication of overflow.
   3891 </li>
   3892 <li>
   3893 When converting a floating-point number to an integer, the fraction is discarded
   3894 (truncation towards zero).
   3895 </li>
   3896 <li>
   3897 When converting an integer or floating-point number to a floating-point type,
   3898 or a complex number to another complex type, the result value is rounded
   3899 to the precision specified by the destination type.
   3900 For instance, the value of a variable <code>x</code> of type <code>float32</code>
   3901 may be stored using additional precision beyond that of an IEEE-754 32-bit number,
   3902 but float32(x) represents the result of rounding <code>x</code>'s value to
   3903 32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
   3904 of precision, but <code>float32(x + 0.1)</code> does not.
   3905 </li>
   3906 </ol>
   3907 
   3908 <p>
   3909 In all non-constant conversions involving floating-point or complex values,
   3910 if the result type cannot represent the value the conversion
   3911 succeeds but the result value is implementation-dependent.
   3912 </p>
   3913 
   3914 <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
   3915 
   3916 <ol>
   3917 <li>
   3918 Converting a signed or unsigned integer value to a string type yields a
   3919 string containing the UTF-8 representation of the integer. Values outside
   3920 the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
   3921 
   3922 <pre>
   3923 string('a')       // "a"
   3924 string(-1)        // "\ufffd" == "\xef\xbf\xbd"
   3925 string(0xf8)      // "\u00f8" == "" == "\xc3\xb8"
   3926 type MyString string
   3927 MyString(0x65e5)  // "\u65e5" == "" == "\xe6\x97\xa5"
   3928 </pre>
   3929 </li>
   3930 
   3931 <li>
   3932 Converting a slice of bytes to a string type yields
   3933 a string whose successive bytes are the elements of the slice.
   3934 
   3935 <pre>
   3936 string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hell"
   3937 string([]byte{})                                     // ""
   3938 string([]byte(nil))                                  // ""
   3939 
   3940 type MyBytes []byte
   3941 string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hell"
   3942 </pre>
   3943 </li>
   3944 
   3945 <li>
   3946 Converting a slice of runes to a string type yields
   3947 a string that is the concatenation of the individual rune values
   3948 converted to strings.
   3949 
   3950 <pre>
   3951 string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == ""
   3952 string([]rune{})                         // ""
   3953 string([]rune(nil))                      // ""
   3954 
   3955 type MyRunes []rune
   3956 string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == ""
   3957 </pre>
   3958 </li>
   3959 
   3960 <li>
   3961 Converting a value of a string type to a slice of bytes type
   3962 yields a slice whose successive elements are the bytes of the string.
   3963 
   3964 <pre>
   3965 []byte("hell")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
   3966 []byte("")        // []byte{}
   3967 
   3968 MyBytes("hell")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
   3969 </pre>
   3970 </li>
   3971 
   3972 <li>
   3973 Converting a value of a string type to a slice of runes type
   3974 yields a slice containing the individual Unicode code points of the string.
   3975 
   3976 <pre>
   3977 []rune(MyString(""))  // []rune{0x767d, 0x9d6c, 0x7fd4}
   3978 []rune("")                 // []rune{}
   3979 
   3980 MyRunes("")           // []rune{0x767d, 0x9d6c, 0x7fd4}
   3981 </pre>
   3982 </li>
   3983 </ol>
   3984 
   3985 
   3986 <h3 id="Constant_expressions">Constant expressions</h3>
   3987 
   3988 <p>
   3989 Constant expressions may contain only <a href="#Constants">constant</a>
   3990 operands and are evaluated at compile time.
   3991 </p>
   3992 
   3993 <p>
   3994 Untyped boolean, numeric, and string constants may be used as operands
   3995 wherever it is legal to use an operand of boolean, numeric, or string type,
   3996 respectively.
   3997 Except for shift operations, if the operands of a binary operation are
   3998 different kinds of untyped constants, the operation and, for non-boolean operations, the result use
   3999 the kind that appears later in this list: integer, rune, floating-point, complex.
   4000 For example, an untyped integer constant divided by an
   4001 untyped complex constant yields an untyped complex constant.
   4002 </p>
   4003 
   4004 <p>
   4005 A constant <a href="#Comparison_operators">comparison</a> always yields
   4006 an untyped boolean constant.  If the left operand of a constant
   4007 <a href="#Operators">shift expression</a> is an untyped constant, the
   4008 result is an integer constant; otherwise it is a constant of the same
   4009 type as the left operand, which must be of
   4010 <a href="#Numeric_types">integer type</a>.
   4011 Applying all other operators to untyped constants results in an untyped
   4012 constant of the same kind (that is, a boolean, integer, floating-point,
   4013 complex, or string constant).
   4014 </p>
   4015 
   4016 <pre>
   4017 const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
   4018 const b = 15 / 4           // b == 3     (untyped integer constant)
   4019 const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
   4020 const  float64 = 3/2      //  == 1.0   (type float64, 3/2 is integer division)
   4021 const  float64 = 3/2.     //  == 1.5   (type float64, 3/2. is float division)
   4022 const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
   4023 const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
   4024 const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
   4025 const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
   4026 const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
   4027 const j = true             // j == true  (untyped boolean constant)
   4028 const k = 'w' + 1          // k == 'x'   (untyped rune constant)
   4029 const l = "hi"             // l == "hi"  (untyped string constant)
   4030 const m = string(k)        // m == "x"   (type string)
   4031 const  = 1 - 0.707i       //            (untyped complex constant)
   4032 const  =  + 2.0e-4       //            (untyped complex constant)
   4033 const  = iota*1i - 1/1i   //            (untyped complex constant)
   4034 </pre>
   4035 
   4036 <p>
   4037 Applying the built-in function <code>complex</code> to untyped
   4038 integer, rune, or floating-point constants yields
   4039 an untyped complex constant.
   4040 </p>
   4041 
   4042 <pre>
   4043 const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
   4044 const i = complex(0, )   // i == 1i     (type complex128)
   4045 </pre>
   4046 
   4047 <p>
   4048 Constant expressions are always evaluated exactly; intermediate values and the
   4049 constants themselves may require precision significantly larger than supported
   4050 by any predeclared type in the language. The following are legal declarations:
   4051 </p>
   4052 
   4053 <pre>
   4054 const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
   4055 const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
   4056 </pre>
   4057 
   4058 <p>
   4059 The divisor of a constant division or remainder operation must not be zero:
   4060 </p>
   4061 
   4062 <pre>
   4063 3.14 / 0.0   // illegal: division by zero
   4064 </pre>
   4065 
   4066 <p>
   4067 The values of <i>typed</i> constants must always be accurately representable as values
   4068 of the constant type. The following constant expressions are illegal:
   4069 </p>
   4070 
   4071 <pre>
   4072 uint(-1)     // -1 cannot be represented as a uint
   4073 int(3.14)    // 3.14 cannot be represented as an int
   4074 int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
   4075 Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
   4076 Four * 100   // product 400 cannot be represented as an int8 (type of Four)
   4077 </pre>
   4078 
   4079 <p>
   4080 The mask used by the unary bitwise complement operator <code>^</code> matches
   4081 the rule for non-constants: the mask is all 1s for unsigned constants
   4082 and -1 for signed and untyped constants.
   4083 </p>
   4084 
   4085 <pre>
   4086 ^1         // untyped integer constant, equal to -2
   4087 uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
   4088 ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
   4089 int8(^1)   // same as int8(-2)
   4090 ^int8(1)   // same as -1 ^ int8(1) = -2
   4091 </pre>
   4092 
   4093 <p>
   4094 Implementation restriction: A compiler may use rounding while
   4095 computing untyped floating-point or complex constant expressions; see
   4096 the implementation restriction in the section
   4097 on <a href="#Constants">constants</a>.  This rounding may cause a
   4098 floating-point constant expression to be invalid in an integer
   4099 context, even if it would be integral when calculated using infinite
   4100 precision, and vice versa.
   4101 </p>
   4102 
   4103 
   4104 <h3 id="Order_of_evaluation">Order of evaluation</h3>
   4105 
   4106 <p>
   4107 At package level, <a href="#Package_initialization">initialization dependencies</a>
   4108 determine the evaluation order of individual initialization expressions in
   4109 <a href="#Variable_declarations">variable declarations</a>.
   4110 Otherwise, when evaluating the <a href="#Operands">operands</a> of an
   4111 expression, assignment, or
   4112 <a href="#Return_statements">return statement</a>,
   4113 all function calls, method calls, and
   4114 communication operations are evaluated in lexical left-to-right
   4115 order.
   4116 </p>
   4117 
   4118 <p>
   4119 For example, in the (function-local) assignment
   4120 </p>
   4121 <pre>
   4122 y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
   4123 </pre>
   4124 <p>
   4125 the function calls and communication happen in the order
   4126 <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
   4127 <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
   4128 However, the order of those events compared to the evaluation
   4129 and indexing of <code>x</code> and the evaluation
   4130 of <code>y</code> is not specified.
   4131 </p>
   4132 
   4133 <pre>
   4134 a := 1
   4135 f := func() int { a++; return a }
   4136 x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
   4137 m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
   4138 n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
   4139 </pre>
   4140 
   4141 <p>
   4142 At package level, initialization dependencies override the left-to-right rule
   4143 for individual initialization expressions, but not for operands within each
   4144 expression:
   4145 </p>
   4146 
   4147 <pre>
   4148 var a, b, c = f() + v(), g(), sqr(u()) + v()
   4149 
   4150 func f() int        { return c }
   4151 func g() int        { return a }
   4152 func sqr(x int) int { return x*x }
   4153 
   4154 // functions u and v are independent of all other variables and functions
   4155 </pre>
   4156 
   4157 <p>
   4158 The function calls happen in the order
   4159 <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
   4160 <code>f()</code>, <code>v()</code>, and <code>g()</code>.
   4161 </p>
   4162 
   4163 <p>
   4164 Floating-point operations within a single expression are evaluated according to
   4165 the associativity of the operators.  Explicit parentheses affect the evaluation
   4166 by overriding the default associativity.
   4167 In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
   4168 is performed before adding <code>x</code>.
   4169 </p>
   4170 
   4171 <h2 id="Statements">Statements</h2>
   4172 
   4173 <p>
   4174 Statements control execution.
   4175 </p>
   4176 
   4177 <pre class="ebnf">
   4178 Statement =
   4179 	Declaration | LabeledStmt | SimpleStmt |
   4180 	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
   4181 	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
   4182 	DeferStmt .
   4183 
   4184 SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
   4185 </pre>
   4186 
   4187 <h3 id="Terminating_statements">Terminating statements</h3>
   4188 
   4189 <p>
   4190 A terminating statement is one of the following:
   4191 </p>
   4192 
   4193 <ol>
   4194 <li>
   4195 	A <a href="#Return_statements">"return"</a> or
   4196     	<a href="#Goto_statements">"goto"</a> statement.
   4197 	<!-- ul below only for regular layout -->
   4198 	<ul> </ul>
   4199 </li>
   4200 
   4201 <li>
   4202 	A call to the built-in function
   4203 	<a href="#Handling_panics"><code>panic</code></a>.
   4204 	<!-- ul below only for regular layout -->
   4205 	<ul> </ul>
   4206 </li>
   4207 
   4208 <li>
   4209 	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
   4210 	<!-- ul below only for regular layout -->
   4211 	<ul> </ul>
   4212 </li>
   4213 
   4214 <li>
   4215 	An <a href="#If_statements">"if" statement</a> in which:
   4216 	<ul>
   4217 	<li>the "else" branch is present, and</li>
   4218 	<li>both branches are terminating statements.</li>
   4219 	</ul>
   4220 </li>
   4221 
   4222 <li>
   4223 	A <a href="#For_statements">"for" statement</a> in which:
   4224 	<ul>
   4225 	<li>there are no "break" statements referring to the "for" statement, and</li>
   4226 	<li>the loop condition is absent.</li>
   4227 	</ul>
   4228 </li>
   4229 
   4230 <li>
   4231 	A <a href="#Switch_statements">"switch" statement</a> in which:
   4232 	<ul>
   4233 	<li>there are no "break" statements referring to the "switch" statement,</li>
   4234 	<li>there is a default case, and</li>
   4235 	<li>the statement lists in each case, including the default, end in a terminating
   4236 	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
   4237 	    statement</a>.</li>
   4238 	</ul>
   4239 </li>
   4240 
   4241 <li>
   4242 	A <a href="#Select_statements">"select" statement</a> in which:
   4243 	<ul>
   4244 	<li>there are no "break" statements referring to the "select" statement, and</li>
   4245 	<li>the statement lists in each case, including the default if present,
   4246 	    end in a terminating statement.</li>
   4247 	</ul>
   4248 </li>
   4249 
   4250 <li>
   4251 	A <a href="#Labeled_statements">labeled statement</a> labeling
   4252 	a terminating statement.
   4253 </li>
   4254 </ol>
   4255 
   4256 <p>
   4257 All other statements are not terminating.
   4258 </p>
   4259 
   4260 <p>
   4261 A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
   4262 is not empty and its final statement is terminating.
   4263 </p>
   4264 
   4265 
   4266 <h3 id="Empty_statements">Empty statements</h3>
   4267 
   4268 <p>
   4269 The empty statement does nothing.
   4270 </p>
   4271 
   4272 <pre class="ebnf">
   4273 EmptyStmt = .
   4274 </pre>
   4275 
   4276 
   4277 <h3 id="Labeled_statements">Labeled statements</h3>
   4278 
   4279 <p>
   4280 A labeled statement may be the target of a <code>goto</code>,
   4281 <code>break</code> or <code>continue</code> statement.
   4282 </p>
   4283 
   4284 <pre class="ebnf">
   4285 LabeledStmt = Label ":" Statement .
   4286 Label       = identifier .
   4287 </pre>
   4288 
   4289 <pre>
   4290 Error: log.Panic("error encountered")
   4291 </pre>
   4292 
   4293 
   4294 <h3 id="Expression_statements">Expression statements</h3>
   4295 
   4296 <p>
   4297 With the exception of specific built-in functions,
   4298 function and method <a href="#Calls">calls</a> and
   4299 <a href="#Receive_operator">receive operations</a>
   4300 can appear in statement context. Such statements may be parenthesized.
   4301 </p>
   4302 
   4303 <pre class="ebnf">
   4304 ExpressionStmt = Expression .
   4305 </pre>
   4306 
   4307 <p>
   4308 The following built-in functions are not permitted in statement context:
   4309 </p>
   4310 
   4311 <pre>
   4312 append cap complex imag len make new real
   4313 unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
   4314 </pre>
   4315 
   4316 <pre>
   4317 h(x+y)
   4318 f.Close()
   4319 &lt;-ch
   4320 (&lt;-ch)
   4321 len("foo")  // illegal if len is the built-in function
   4322 </pre>
   4323 
   4324 
   4325 <h3 id="Send_statements">Send statements</h3>
   4326 
   4327 <p>
   4328 A send statement sends a value on a channel.
   4329 The channel expression must be of <a href="#Channel_types">channel type</a>,
   4330 the channel direction must permit send operations,
   4331 and the type of the value to be sent must be <a href="#Assignability">assignable</a>
   4332 to the channel's element type.
   4333 </p>
   4334 
   4335 <pre class="ebnf">
   4336 SendStmt = Channel "&lt;-" Expression .
   4337 Channel  = Expression .
   4338 </pre>
   4339 
   4340 <p>
   4341 Both the channel and the value expression are evaluated before communication
   4342 begins. Communication blocks until the send can proceed.
   4343 A send on an unbuffered channel can proceed if a receiver is ready.
   4344 A send on a buffered channel can proceed if there is room in the buffer.
   4345 A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
   4346 A send on a <code>nil</code> channel blocks forever.
   4347 </p>
   4348 
   4349 <pre>
   4350 ch &lt;- 3  // send value 3 to channel ch
   4351 </pre>
   4352 
   4353 
   4354 <h3 id="IncDec_statements">IncDec statements</h3>
   4355 
   4356 <p>
   4357 The "++" and "--" statements increment or decrement their operands
   4358 by the untyped <a href="#Constants">constant</a> <code>1</code>.
   4359 As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
   4360 or a map index expression.
   4361 </p>
   4362 
   4363 <pre class="ebnf">
   4364 IncDecStmt = Expression ( "++" | "--" ) .
   4365 </pre>
   4366 
   4367 <p>
   4368 The following <a href="#Assignments">assignment statements</a> are semantically
   4369 equivalent:
   4370 </p>
   4371 
   4372 <pre class="grammar">
   4373 IncDec statement    Assignment
   4374 x++                 x += 1
   4375 x--                 x -= 1
   4376 </pre>
   4377 
   4378 
   4379 <h3 id="Assignments">Assignments</h3>
   4380 
   4381 <pre class="ebnf">
   4382 Assignment = ExpressionList assign_op ExpressionList .
   4383 
   4384 assign_op = [ add_op | mul_op ] "=" .
   4385 </pre>
   4386 
   4387 <p>
   4388 Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
   4389 a map index expression, or (for <code>=</code> assignments only) the
   4390 <a href="#Blank_identifier">blank identifier</a>.
   4391 Operands may be parenthesized.
   4392 </p>
   4393 
   4394 <pre>
   4395 x = 1
   4396 *p = f()
   4397 a[i] = 23
   4398 (k) = &lt;-ch  // same as: k = &lt;-ch
   4399 </pre>
   4400 
   4401 <p>
   4402 An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
   4403 <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
   4404 to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
   4405 <code>(y)</code> but evaluates <code>x</code>
   4406 only once.  The <i>op</i><code>=</code> construct is a single token.
   4407 In assignment operations, both the left- and right-hand expression lists
   4408 must contain exactly one single-valued expression, and the left-hand
   4409 expression must not be the blank identifier.
   4410 </p>
   4411 
   4412 <pre>
   4413 a[i] &lt;&lt;= 2
   4414 i &amp;^= 1&lt;&lt;n
   4415 </pre>
   4416 
   4417 <p>
   4418 A tuple assignment assigns the individual elements of a multi-valued
   4419 operation to a list of variables.  There are two forms.  In the
   4420 first, the right hand operand is a single multi-valued expression
   4421 such as a function call, a <a href="#Channel_types">channel</a> or
   4422 <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
   4423 The number of operands on the left
   4424 hand side must match the number of values.  For instance, if
   4425 <code>f</code> is a function returning two values,
   4426 </p>
   4427 
   4428 <pre>
   4429 x, y = f()
   4430 </pre>
   4431 
   4432 <p>
   4433 assigns the first value to <code>x</code> and the second to <code>y</code>.
   4434 In the second form, the number of operands on the left must equal the number
   4435 of expressions on the right, each of which must be single-valued, and the
   4436 <i>n</i>th expression on the right is assigned to the <i>n</i>th
   4437 operand on the left:
   4438 </p>
   4439 
   4440 <pre>
   4441 one, two, three = '', '', ''
   4442 </pre>
   4443 
   4444 <p>
   4445 The <a href="#Blank_identifier">blank identifier</a> provides a way to
   4446 ignore right-hand side values in an assignment:
   4447 </p>
   4448 
   4449 <pre>
   4450 _ = x       // evaluate x but ignore it
   4451 x, _ = f()  // evaluate f() but ignore second result value
   4452 </pre>
   4453 
   4454 <p>
   4455 The assignment proceeds in two phases.
   4456 First, the operands of <a href="#Index_expressions">index expressions</a>
   4457 and <a href="#Address_operators">pointer indirections</a>
   4458 (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
   4459 on the left and the expressions on the right are all
   4460 <a href="#Order_of_evaluation">evaluated in the usual order</a>.
   4461 Second, the assignments are carried out in left-to-right order.
   4462 </p>
   4463 
   4464 <pre>
   4465 a, b = b, a  // exchange a and b
   4466 
   4467 x := []int{1, 2, 3}
   4468 i := 0
   4469 i, x[i] = 1, 2  // set i = 1, x[0] = 2
   4470 
   4471 i = 0
   4472 x[i], i = 2, 1  // set x[0] = 2, i = 1
   4473 
   4474 x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
   4475 
   4476 x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
   4477 
   4478 type Point struct { x, y int }
   4479 var p *Point
   4480 x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
   4481 
   4482 i = 2
   4483 x = []int{3, 5, 7}
   4484 for i, x[i] = range x {  // set i, x[2] = 0, x[0]
   4485 	break
   4486 }
   4487 // after this loop, i == 0 and x == []int{3, 5, 3}
   4488 </pre>
   4489 
   4490 <p>
   4491 In assignments, each value must be <a href="#Assignability">assignable</a>
   4492 to the type of the operand to which it is assigned, with the following special cases:
   4493 </p>
   4494 
   4495 <ol>
   4496 <li>
   4497 	Any typed value may be assigned to the blank identifier.
   4498 </li>
   4499 
   4500 <li>
   4501 	If an untyped constant
   4502 	is assigned to a variable of interface type or the blank identifier,
   4503 	the constant is first <a href="#Conversions">converted</a> to its
   4504 	 <a href="#Constants">default type</a>.
   4505 </li>
   4506 
   4507 <li>
   4508 	If an untyped boolean value is assigned to a variable of interface type or
   4509 	the blank identifier, it is first converted to type <code>bool</code>.
   4510 </li>
   4511 </ol>
   4512 
   4513 <h3 id="If_statements">If statements</h3>
   4514 
   4515 <p>
   4516 "If" statements specify the conditional execution of two branches
   4517 according to the value of a boolean expression.  If the expression
   4518 evaluates to true, the "if" branch is executed, otherwise, if
   4519 present, the "else" branch is executed.
   4520 </p>
   4521 
   4522 <pre class="ebnf">
   4523 IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
   4524 </pre>
   4525 
   4526 <pre>
   4527 if x &gt; max {
   4528 	x = max
   4529 }
   4530 </pre>
   4531 
   4532 <p>
   4533 The expression may be preceded by a simple statement, which
   4534 executes before the expression is evaluated.
   4535 </p>
   4536 
   4537 <pre>
   4538 if x := f(); x &lt; y {
   4539 	return x
   4540 } else if x &gt; z {
   4541 	return z
   4542 } else {
   4543 	return y
   4544 }
   4545 </pre>
   4546 
   4547 
   4548 <h3 id="Switch_statements">Switch statements</h3>
   4549 
   4550 <p>
   4551 "Switch" statements provide multi-way execution.
   4552 An expression or type specifier is compared to the "cases"
   4553 inside the "switch" to determine which branch
   4554 to execute.
   4555 </p>
   4556 
   4557 <pre class="ebnf">
   4558 SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
   4559 </pre>
   4560 
   4561 <p>
   4562 There are two forms: expression switches and type switches.
   4563 In an expression switch, the cases contain expressions that are compared
   4564 against the value of the switch expression.
   4565 In a type switch, the cases contain types that are compared against the
   4566 type of a specially annotated switch expression.
   4567 The switch expression is evaluated exactly once in a switch statement.
   4568 </p>
   4569 
   4570 <h4 id="Expression_switches">Expression switches</h4>
   4571 
   4572 <p>
   4573 In an expression switch,
   4574 the switch expression is evaluated and
   4575 the case expressions, which need not be constants,
   4576 are evaluated left-to-right and top-to-bottom; the first one that equals the
   4577 switch expression
   4578 triggers execution of the statements of the associated case;
   4579 the other cases are skipped.
   4580 If no case matches and there is a "default" case,
   4581 its statements are executed.
   4582 There can be at most one default case and it may appear anywhere in the
   4583 "switch" statement.
   4584 A missing switch expression is equivalent to the boolean value
   4585 <code>true</code>.
   4586 </p>
   4587 
   4588 <pre class="ebnf">
   4589 ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
   4590 ExprCaseClause = ExprSwitchCase ":" StatementList .
   4591 ExprSwitchCase = "case" ExpressionList | "default" .
   4592 </pre>
   4593 
   4594 <p>
   4595 If the switch expression evaluates to an untyped constant, it is first
   4596 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
   4597 if it is an untyped boolean value, it is first converted to type <code>bool</code>.
   4598 The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
   4599 </p>
   4600 
   4601 <p>
   4602 If a case expression is untyped, it is first <a href="#Conversions">converted</a>
   4603 to the type of the switch expression.
   4604 For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
   4605 of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
   4606 </p>
   4607 
   4608 <p>
   4609 In other words, the switch expression is treated as if it were used to declare and
   4610 initialize a temporary variable <code>t</code> without explicit type; it is that
   4611 value of <code>t</code> against which each case expression <code>x</code> is tested
   4612 for equality.
   4613 </p>
   4614 
   4615 <p>
   4616 In a case or default clause, the last non-empty statement
   4617 may be a (possibly <a href="#Labeled_statements">labeled</a>)
   4618 <a href="#Fallthrough_statements">"fallthrough" statement</a> to
   4619 indicate that control should flow from the end of this clause to
   4620 the first statement of the next clause.
   4621 Otherwise control flows to the end of the "switch" statement.
   4622 A "fallthrough" statement may appear as the last statement of all
   4623 but the last clause of an expression switch.
   4624 </p>
   4625 
   4626 <p>
   4627 The switch expression may be preceded by a simple statement, which
   4628 executes before the expression is evaluated.
   4629 </p>
   4630 
   4631 <pre>
   4632 switch tag {
   4633 default: s3()
   4634 case 0, 1, 2, 3: s1()
   4635 case 4, 5, 6, 7: s2()
   4636 }
   4637 
   4638 switch x := f(); {  // missing switch expression means "true"
   4639 case x &lt; 0: return -x
   4640 default: return x
   4641 }
   4642 
   4643 switch {
   4644 case x &lt; y: f1()
   4645 case x &lt; z: f2()
   4646 case x == 4: f3()
   4647 }
   4648 </pre>
   4649 
   4650 <p>
   4651 Implementation restriction: A compiler may disallow multiple case
   4652 expressions evaluating to the same constant.
   4653 For instance, the current compilers disallow duplicate integer,
   4654 floating point, or string constants in case expressions.
   4655 </p>
   4656 
   4657 <h4 id="Type_switches">Type switches</h4>
   4658 
   4659 <p>
   4660 A type switch compares types rather than values. It is otherwise similar
   4661 to an expression switch. It is marked by a special switch expression that
   4662 has the form of a <a href="#Type_assertions">type assertion</a>
   4663 using the reserved word <code>type</code> rather than an actual type:
   4664 </p>
   4665 
   4666 <pre>
   4667 switch x.(type) {
   4668 // cases
   4669 }
   4670 </pre>
   4671 
   4672 <p>
   4673 Cases then match actual types <code>T</code> against the dynamic type of the
   4674 expression <code>x</code>. As with type assertions, <code>x</code> must be of
   4675 <a href="#Interface_types">interface type</a>, and each non-interface type
   4676 <code>T</code> listed in a case must implement the type of <code>x</code>.
   4677 </p>
   4678 
   4679 <pre class="ebnf">
   4680 TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
   4681 TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
   4682 TypeCaseClause  = TypeSwitchCase ":" StatementList .
   4683 TypeSwitchCase  = "case" TypeList | "default" .
   4684 TypeList        = Type { "," Type } .
   4685 </pre>
   4686 
   4687 <p>
   4688 The TypeSwitchGuard may include a
   4689 <a href="#Short_variable_declarations">short variable declaration</a>.
   4690 When that form is used, the variable is declared at the beginning of
   4691 the <a href="#Blocks">implicit block</a> in each clause.
   4692 In clauses with a case listing exactly one type, the variable
   4693 has that type; otherwise, the variable has the type of the expression
   4694 in the TypeSwitchGuard.
   4695 </p>
   4696 
   4697 <p>
   4698 The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
   4699 that case is used when the expression in the TypeSwitchGuard
   4700 is a <code>nil</code> interface value.
   4701 </p>
   4702 
   4703 <p>
   4704 Given an expression <code>x</code> of type <code>interface{}</code>,
   4705 the following type switch:
   4706 </p>
   4707 
   4708 <pre>
   4709 switch i := x.(type) {
   4710 case nil:
   4711 	printString("x is nil")                // type of i is type of x (interface{})
   4712 case int:
   4713 	printInt(i)                            // type of i is int
   4714 case float64:
   4715 	printFloat64(i)                        // type of i is float64
   4716 case func(int) float64:
   4717 	printFunction(i)                       // type of i is func(int) float64
   4718 case bool, string:
   4719 	printString("type is bool or string")  // type of i is type of x (interface{})
   4720 default:
   4721 	printString("don't know the type")     // type of i is type of x (interface{})
   4722 }
   4723 </pre>
   4724 
   4725 <p>
   4726 could be rewritten:
   4727 </p>
   4728 
   4729 <pre>
   4730 v := x  // x is evaluated exactly once
   4731 if v == nil {
   4732 	i := v                                 // type of i is type of x (interface{})
   4733 	printString("x is nil")
   4734 } else if i, isInt := v.(int); isInt {
   4735 	printInt(i)                            // type of i is int
   4736 } else if i, isFloat64 := v.(float64); isFloat64 {
   4737 	printFloat64(i)                        // type of i is float64
   4738 } else if i, isFunc := v.(func(int) float64); isFunc {
   4739 	printFunction(i)                       // type of i is func(int) float64
   4740 } else {
   4741 	_, isBool := v.(bool)
   4742 	_, isString := v.(string)
   4743 	if isBool || isString {
   4744 		i := v                         // type of i is type of x (interface{})
   4745 		printString("type is bool or string")
   4746 	} else {
   4747 		i := v                         // type of i is type of x (interface{})
   4748 		printString("don't know the type")
   4749 	}
   4750 }
   4751 </pre>
   4752 
   4753 <p>
   4754 The type switch guard may be preceded by a simple statement, which
   4755 executes before the guard is evaluated.
   4756 </p>
   4757 
   4758 <p>
   4759 The "fallthrough" statement is not permitted in a type switch.
   4760 </p>
   4761 
   4762 <h3 id="For_statements">For statements</h3>
   4763 
   4764 <p>
   4765 A "for" statement specifies repeated execution of a block. The iteration is
   4766 controlled by a condition, a "for" clause, or a "range" clause.
   4767 </p>
   4768 
   4769 <pre class="ebnf">
   4770 ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
   4771 Condition = Expression .
   4772 </pre>
   4773 
   4774 <p>
   4775 In its simplest form, a "for" statement specifies the repeated execution of
   4776 a block as long as a boolean condition evaluates to true.
   4777 The condition is evaluated before each iteration.
   4778 If the condition is absent, it is equivalent to the boolean value
   4779 <code>true</code>.
   4780 </p>
   4781 
   4782 <pre>
   4783 for a &lt; b {
   4784 	a *= 2
   4785 }
   4786 </pre>
   4787 
   4788 <p>
   4789 A "for" statement with a ForClause is also controlled by its condition, but
   4790 additionally it may specify an <i>init</i>
   4791 and a <i>post</i> statement, such as an assignment,
   4792 an increment or decrement statement. The init statement may be a
   4793 <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
   4794 Variables declared by the init statement are re-used in each iteration.
   4795 </p>
   4796 
   4797 <pre class="ebnf">
   4798 ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
   4799 InitStmt = SimpleStmt .
   4800 PostStmt = SimpleStmt .
   4801 </pre>
   4802 
   4803 <pre>
   4804 for i := 0; i &lt; 10; i++ {
   4805 	f(i)
   4806 }
   4807 </pre>
   4808 
   4809 <p>
   4810 If non-empty, the init statement is executed once before evaluating the
   4811 condition for the first iteration;
   4812 the post statement is executed after each execution of the block (and
   4813 only if the block was executed).
   4814 Any element of the ForClause may be empty but the
   4815 <a href="#Semicolons">semicolons</a> are
   4816 required unless there is only a condition.
   4817 If the condition is absent, it is equivalent to the boolean value
   4818 <code>true</code>.
   4819 </p>
   4820 
   4821 <pre>
   4822 for cond { S() }    is the same as    for ; cond ; { S() }
   4823 for      { S() }    is the same as    for true     { S() }
   4824 </pre>
   4825 
   4826 <p>
   4827 A "for" statement with a "range" clause
   4828 iterates through all entries of an array, slice, string or map,
   4829 or values received on a channel. For each entry it assigns <i>iteration values</i>
   4830 to corresponding <i>iteration variables</i> if present and then executes the block.
   4831 </p>
   4832 
   4833 <pre class="ebnf">
   4834 RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
   4835 </pre>
   4836 
   4837 <p>
   4838 The expression on the right in the "range" clause is called the <i>range expression</i>,
   4839 which may be an array, pointer to an array, slice, string, map, or channel permitting
   4840 <a href="#Receive_operator">receive operations</a>.
   4841 As with an assignment, if present the operands on the left must be
   4842 <a href="#Address_operators">addressable</a> or map index expressions; they
   4843 denote the iteration variables. If the range expression is a channel, at most
   4844 one iteration variable is permitted, otherwise there may be up to two.
   4845 If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
   4846 the range clause is equivalent to the same clause without that identifier.
   4847 </p>
   4848 
   4849 <p>
   4850 The range expression is evaluated once before beginning the loop,
   4851 with one exception: if the range expression is an array or a pointer to an array
   4852 and at most one iteration variable is present, only the range expression's
   4853 length is evaluated; if that length is constant,
   4854 <a href="#Length_and_capacity">by definition</a>
   4855 the range expression itself will not be evaluated.
   4856 </p>
   4857 
   4858 <p>
   4859 Function calls on the left are evaluated once per iteration.
   4860 For each iteration, iteration values are produced as follows
   4861 if the respective iteration variables are present:
   4862 </p>
   4863 
   4864 <pre class="grammar">
   4865 Range expression                          1st value          2nd value
   4866 
   4867 array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
   4868 string          s  string type            index    i  int    see below  rune
   4869 map             m  map[K]V                key      k  K      m[k]       V
   4870 channel         c  chan E, &lt;-chan E       element  e  E
   4871 </pre>
   4872 
   4873 <ol>
   4874 <li>
   4875 For an array, pointer to array, or slice value <code>a</code>, the index iteration
   4876 values are produced in increasing order, starting at element index 0.
   4877 If at most one iteration variable is present, the range loop produces
   4878 iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
   4879 or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
   4880 </li>
   4881 
   4882 <li>
   4883 For a string value, the "range" clause iterates over the Unicode code points
   4884 in the string starting at byte index 0.  On successive iterations, the index value will be the
   4885 index of the first byte of successive UTF-8-encoded code points in the string,
   4886 and the second value, of type <code>rune</code>, will be the value of
   4887 the corresponding code point.  If the iteration encounters an invalid
   4888 UTF-8 sequence, the second value will be <code>0xFFFD</code>,
   4889 the Unicode replacement character, and the next iteration will advance
   4890 a single byte in the string.
   4891 </li>
   4892 
   4893 <li>
   4894 The iteration order over maps is not specified
   4895 and is not guaranteed to be the same from one iteration to the next.
   4896 If map entries that have not yet been reached are removed during iteration,
   4897 the corresponding iteration values will not be produced. If map entries are
   4898 created during iteration, that entry may be produced during the iteration or
   4899 may be skipped. The choice may vary for each entry created and from one
   4900 iteration to the next.
   4901 If the map is <code>nil</code>, the number of iterations is 0.
   4902 </li>
   4903 
   4904 <li>
   4905 For channels, the iteration values produced are the successive values sent on
   4906 the channel until the channel is <a href="#Close">closed</a>. If the channel
   4907 is <code>nil</code>, the range expression blocks forever.
   4908 </li>
   4909 </ol>
   4910 
   4911 <p>
   4912 The iteration values are assigned to the respective
   4913 iteration variables as in an <a href="#Assignments">assignment statement</a>.
   4914 </p>
   4915 
   4916 <p>
   4917 The iteration variables may be declared by the "range" clause using a form of
   4918 <a href="#Short_variable_declarations">short variable declaration</a>
   4919 (<code>:=</code>).
   4920 In this case their types are set to the types of the respective iteration values
   4921 and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
   4922 statement; they are re-used in each iteration.
   4923 If the iteration variables are declared outside the "for" statement,
   4924 after execution their values will be those of the last iteration.
   4925 </p>
   4926 
   4927 <pre>
   4928 var testdata *struct {
   4929 	a *[7]int
   4930 }
   4931 for i, _ := range testdata.a {
   4932 	// testdata.a is never evaluated; len(testdata.a) is constant
   4933 	// i ranges from 0 to 6
   4934 	f(i)
   4935 }
   4936 
   4937 var a [10]string
   4938 for i, s := range a {
   4939 	// type of i is int
   4940 	// type of s is string
   4941 	// s == a[i]
   4942 	g(i, s)
   4943 }
   4944 
   4945 var key string
   4946 var val interface {}  // value type of m is assignable to val
   4947 m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
   4948 for key, val = range m {
   4949 	h(key, val)
   4950 }
   4951 // key == last map key encountered in iteration
   4952 // val == map[key]
   4953 
   4954 var ch chan Work = producer()
   4955 for w := range ch {
   4956 	doWork(w)
   4957 }
   4958 
   4959 // empty a channel
   4960 for range ch {}
   4961 </pre>
   4962 
   4963 
   4964 <h3 id="Go_statements">Go statements</h3>
   4965 
   4966 <p>
   4967 A "go" statement starts the execution of a function call
   4968 as an independent concurrent thread of control, or <i>goroutine</i>,
   4969 within the same address space.
   4970 </p>
   4971 
   4972 <pre class="ebnf">
   4973 GoStmt = "go" Expression .
   4974 </pre>
   4975 
   4976 <p>
   4977 The expression must be a function or method call; it cannot be parenthesized.
   4978 Calls of built-in functions are restricted as for
   4979 <a href="#Expression_statements">expression statements</a>.
   4980 </p>
   4981 
   4982 <p>
   4983 The function value and parameters are
   4984 <a href="#Calls">evaluated as usual</a>
   4985 in the calling goroutine, but
   4986 unlike with a regular call, program execution does not wait
   4987 for the invoked function to complete.
   4988 Instead, the function begins executing independently
   4989 in a new goroutine.
   4990 When the function terminates, its goroutine also terminates.
   4991 If the function has any return values, they are discarded when the
   4992 function completes.
   4993 </p>
   4994 
   4995 <pre>
   4996 go Server()
   4997 go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
   4998 </pre>
   4999 
   5000 
   5001 <h3 id="Select_statements">Select statements</h3>
   5002 
   5003 <p>
   5004 A "select" statement chooses which of a set of possible
   5005 <a href="#Send_statements">send</a> or
   5006 <a href="#Receive_operator">receive</a>
   5007 operations will proceed.
   5008 It looks similar to a
   5009 <a href="#Switch_statements">"switch"</a> statement but with the
   5010 cases all referring to communication operations.
   5011 </p>
   5012 
   5013 <pre class="ebnf">
   5014 SelectStmt = "select" "{" { CommClause } "}" .
   5015 CommClause = CommCase ":" StatementList .
   5016 CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
   5017 RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
   5018 RecvExpr   = Expression .
   5019 </pre>
   5020 
   5021 <p>
   5022 A case with a RecvStmt may assign the result of a RecvExpr to one or
   5023 two variables, which may be declared using a
   5024 <a href="#Short_variable_declarations">short variable declaration</a>.
   5025 The RecvExpr must be a (possibly parenthesized) receive operation.
   5026 There can be at most one default case and it may appear anywhere
   5027 in the list of cases.
   5028 </p>
   5029 
   5030 <p>
   5031 Execution of a "select" statement proceeds in several steps:
   5032 </p>
   5033 
   5034 <ol>
   5035 <li>
   5036 For all the cases in the statement, the channel operands of receive operations
   5037 and the channel and right-hand-side expressions of send statements are
   5038 evaluated exactly once, in source order, upon entering the "select" statement.
   5039 The result is a set of channels to receive from or send to,
   5040 and the corresponding values to send.
   5041 Any side effects in that evaluation will occur irrespective of which (if any)
   5042 communication operation is selected to proceed.
   5043 Expressions on the left-hand side of a RecvStmt with a short variable declaration
   5044 or assignment are not yet evaluated.
   5045 </li>
   5046 
   5047 <li>
   5048 If one or more of the communications can proceed,
   5049 a single one that can proceed is chosen via a uniform pseudo-random selection.
   5050 Otherwise, if there is a default case, that case is chosen.
   5051 If there is no default case, the "select" statement blocks until
   5052 at least one of the communications can proceed.
   5053 </li>
   5054 
   5055 <li>
   5056 Unless the selected case is the default case, the respective communication
   5057 operation is executed.
   5058 </li>
   5059 
   5060 <li>
   5061 If the selected case is a RecvStmt with a short variable declaration or
   5062 an assignment, the left-hand side expressions are evaluated and the
   5063 received value (or values) are assigned.
   5064 </li>
   5065 
   5066 <li>
   5067 The statement list of the selected case is executed.
   5068 </li>
   5069 </ol>
   5070 
   5071 <p>
   5072 Since communication on <code>nil</code> channels can never proceed,
   5073 a select with only <code>nil</code> channels and no default case blocks forever.
   5074 </p>
   5075 
   5076 <pre>
   5077 var a []int
   5078 var c, c1, c2, c3, c4 chan int
   5079 var i1, i2 int
   5080 select {
   5081 case i1 = &lt;-c1:
   5082 	print("received ", i1, " from c1\n")
   5083 case c2 &lt;- i2:
   5084 	print("sent ", i2, " to c2\n")
   5085 case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
   5086 	if ok {
   5087 		print("received ", i3, " from c3\n")
   5088 	} else {
   5089 		print("c3 is closed\n")
   5090 	}
   5091 case a[f()] = &lt;-c4:
   5092 	// same as:
   5093 	// case t := &lt;-c4
   5094 	//	a[f()] = t
   5095 default:
   5096 	print("no communication\n")
   5097 }
   5098 
   5099 for {  // send random sequence of bits to c
   5100 	select {
   5101 	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
   5102 	case c &lt;- 1:
   5103 	}
   5104 }
   5105 
   5106 select {}  // block forever
   5107 </pre>
   5108 
   5109 
   5110 <h3 id="Return_statements">Return statements</h3>
   5111 
   5112 <p>
   5113 A "return" statement in a function <code>F</code> terminates the execution
   5114 of <code>F</code>, and optionally provides one or more result values.
   5115 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
   5116 are executed before <code>F</code> returns to its caller.
   5117 </p>
   5118 
   5119 <pre class="ebnf">
   5120 ReturnStmt = "return" [ ExpressionList ] .
   5121 </pre>
   5122 
   5123 <p>
   5124 In a function without a result type, a "return" statement must not
   5125 specify any result values.
   5126 </p>
   5127 <pre>
   5128 func noResult() {
   5129 	return
   5130 }
   5131 </pre>
   5132 
   5133 <p>
   5134 There are three ways to return values from a function with a result
   5135 type:
   5136 </p>
   5137 
   5138 <ol>
   5139 	<li>The return value or values may be explicitly listed
   5140 		in the "return" statement. Each expression must be single-valued
   5141 		and <a href="#Assignability">assignable</a>
   5142 		to the corresponding element of the function's result type.
   5143 <pre>
   5144 func simpleF() int {
   5145 	return 2
   5146 }
   5147 
   5148 func complexF1() (re float64, im float64) {
   5149 	return -7.0, -4.0
   5150 }
   5151 </pre>
   5152 	</li>
   5153 	<li>The expression list in the "return" statement may be a single
   5154 		call to a multi-valued function. The effect is as if each value
   5155 		returned from that function were assigned to a temporary
   5156 		variable with the type of the respective value, followed by a
   5157 		"return" statement listing these variables, at which point the
   5158 		rules of the previous case apply.
   5159 <pre>
   5160 func complexF2() (re float64, im float64) {
   5161 	return complexF1()
   5162 }
   5163 </pre>
   5164 	</li>
   5165 	<li>The expression list may be empty if the function's result
   5166 		type specifies names for its <a href="#Function_types">result parameters</a>.
   5167 		The result parameters act as ordinary local variables
   5168 		and the function may assign values to them as necessary.
   5169 		The "return" statement returns the values of these variables.
   5170 <pre>
   5171 func complexF3() (re float64, im float64) {
   5172 	re = 7.0
   5173 	im = 4.0
   5174 	return
   5175 }
   5176 
   5177 func (devnull) Write(p []byte) (n int, _ error) {
   5178 	n = len(p)
   5179 	return
   5180 }
   5181 </pre>
   5182 	</li>
   5183 </ol>
   5184 
   5185 <p>
   5186 Regardless of how they are declared, all the result values are initialized to
   5187 the <a href="#The_zero_value">zero values</a> for their type upon entry to the
   5188 function. A "return" statement that specifies results sets the result parameters before
   5189 any deferred functions are executed.
   5190 </p>
   5191 
   5192 <p>
   5193 Implementation restriction: A compiler may disallow an empty expression list
   5194 in a "return" statement if a different entity (constant, type, or variable)
   5195 with the same name as a result parameter is in
   5196 <a href="#Declarations_and_scope">scope</a> at the place of the return.
   5197 </p>
   5198 
   5199 <pre>
   5200 func f(n int) (res int, err error) {
   5201 	if _, err := f(n-1); err != nil {
   5202 		return  // invalid return statement: err is shadowed
   5203 	}
   5204 	return
   5205 }
   5206 </pre>
   5207 
   5208 <h3 id="Break_statements">Break statements</h3>
   5209 
   5210 <p>
   5211 A "break" statement terminates execution of the innermost
   5212 <a href="#For_statements">"for"</a>,
   5213 <a href="#Switch_statements">"switch"</a>, or
   5214 <a href="#Select_statements">"select"</a> statement
   5215 within the same function.
   5216 </p>
   5217 
   5218 <pre class="ebnf">
   5219 BreakStmt = "break" [ Label ] .
   5220 </pre>
   5221 
   5222 <p>
   5223 If there is a label, it must be that of an enclosing
   5224 "for", "switch", or "select" statement,
   5225 and that is the one whose execution terminates.
   5226 </p>
   5227 
   5228 <pre>
   5229 OuterLoop:
   5230 	for i = 0; i &lt; n; i++ {
   5231 		for j = 0; j &lt; m; j++ {
   5232 			switch a[i][j] {
   5233 			case nil:
   5234 				state = Error
   5235 				break OuterLoop
   5236 			case item:
   5237 				state = Found
   5238 				break OuterLoop
   5239 			}
   5240 		}
   5241 	}
   5242 </pre>
   5243 
   5244 <h3 id="Continue_statements">Continue statements</h3>
   5245 
   5246 <p>
   5247 A "continue" statement begins the next iteration of the
   5248 innermost <a href="#For_statements">"for" loop</a> at its post statement.
   5249 The "for" loop must be within the same function.
   5250 </p>
   5251 
   5252 <pre class="ebnf">
   5253 ContinueStmt = "continue" [ Label ] .
   5254 </pre>
   5255 
   5256 <p>
   5257 If there is a label, it must be that of an enclosing
   5258 "for" statement, and that is the one whose execution
   5259 advances.
   5260 </p>
   5261 
   5262 <pre>
   5263 RowLoop:
   5264 	for y, row := range rows {
   5265 		for x, data := range row {
   5266 			if data == endOfRow {
   5267 				continue RowLoop
   5268 			}
   5269 			row[x] = data + bias(x, y)
   5270 		}
   5271 	}
   5272 </pre>
   5273 
   5274 <h3 id="Goto_statements">Goto statements</h3>
   5275 
   5276 <p>
   5277 A "goto" statement transfers control to the statement with the corresponding label
   5278 within the same function.
   5279 </p>
   5280 
   5281 <pre class="ebnf">
   5282 GotoStmt = "goto" Label .
   5283 </pre>
   5284 
   5285 <pre>
   5286 goto Error
   5287 </pre>
   5288 
   5289 <p>
   5290 Executing the "goto" statement must not cause any variables to come into
   5291 <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
   5292 For instance, this example:
   5293 </p>
   5294 
   5295 <pre>
   5296 	goto L  // BAD
   5297 	v := 3
   5298 L:
   5299 </pre>
   5300 
   5301 <p>
   5302 is erroneous because the jump to label <code>L</code> skips
   5303 the creation of <code>v</code>.
   5304 </p>
   5305 
   5306 <p>
   5307 A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
   5308 For instance, this example:
   5309 </p>
   5310 
   5311 <pre>
   5312 if n%2 == 1 {
   5313 	goto L1
   5314 }
   5315 for n &gt; 0 {
   5316 	f()
   5317 	n--
   5318 L1:
   5319 	f()
   5320 	n--
   5321 }
   5322 </pre>
   5323 
   5324 <p>
   5325 is erroneous because the label <code>L1</code> is inside
   5326 the "for" statement's block but the <code>goto</code> is not.
   5327 </p>
   5328 
   5329 <h3 id="Fallthrough_statements">Fallthrough statements</h3>
   5330 
   5331 <p>
   5332 A "fallthrough" statement transfers control to the first statement of the
   5333 next case clause in a <a href="#Expression_switches">expression "switch" statement</a>.
   5334 It may be used only as the final non-empty statement in such a clause.
   5335 </p>
   5336 
   5337 <pre class="ebnf">
   5338 FallthroughStmt = "fallthrough" .
   5339 </pre>
   5340 
   5341 
   5342 <h3 id="Defer_statements">Defer statements</h3>
   5343 
   5344 <p>
   5345 A "defer" statement invokes a function whose execution is deferred
   5346 to the moment the surrounding function returns, either because the
   5347 surrounding function executed a <a href="#Return_statements">return statement</a>,
   5348 reached the end of its <a href="#Function_declarations">function body</a>,
   5349 or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
   5350 </p>
   5351 
   5352 <pre class="ebnf">
   5353 DeferStmt = "defer" Expression .
   5354 </pre>
   5355 
   5356 <p>
   5357 The expression must be a function or method call; it cannot be parenthesized.
   5358 Calls of built-in functions are restricted as for
   5359 <a href="#Expression_statements">expression statements</a>.
   5360 </p>
   5361 
   5362 <p>
   5363 Each time a "defer" statement
   5364 executes, the function value and parameters to the call are
   5365 <a href="#Calls">evaluated as usual</a>
   5366 and saved anew but the actual function is not invoked.
   5367 Instead, deferred functions are invoked immediately before
   5368 the surrounding function returns, in the reverse order
   5369 they were deferred.
   5370 If a deferred function value evaluates
   5371 to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
   5372 when the function is invoked, not when the "defer" statement is executed.
   5373 </p>
   5374 
   5375 <p>
   5376 For instance, if the deferred function is
   5377 a <a href="#Function_literals">function literal</a> and the surrounding
   5378 function has <a href="#Function_types">named result parameters</a> that
   5379 are in scope within the literal, the deferred function may access and modify
   5380 the result parameters before they are returned.
   5381 If the deferred function has any return values, they are discarded when
   5382 the function completes.
   5383 (See also the section on <a href="#Handling_panics">handling panics</a>.)
   5384 </p>
   5385 
   5386 <pre>
   5387 lock(l)
   5388 defer unlock(l)  // unlocking happens before surrounding function returns
   5389 
   5390 // prints 3 2 1 0 before surrounding function returns
   5391 for i := 0; i &lt;= 3; i++ {
   5392 	defer fmt.Print(i)
   5393 }
   5394 
   5395 // f returns 1
   5396 func f() (result int) {
   5397 	defer func() {
   5398 		result++
   5399 	}()
   5400 	return 0
   5401 }
   5402 </pre>
   5403 
   5404 <h2 id="Built-in_functions">Built-in functions</h2>
   5405 
   5406 <p>
   5407 Built-in functions are
   5408 <a href="#Predeclared_identifiers">predeclared</a>.
   5409 They are called like any other function but some of them
   5410 accept a type instead of an expression as the first argument.
   5411 </p>
   5412 
   5413 <p>
   5414 The built-in functions do not have standard Go types,
   5415 so they can only appear in <a href="#Calls">call expressions</a>;
   5416 they cannot be used as function values.
   5417 </p>
   5418 
   5419 <h3 id="Close">Close</h3>
   5420 
   5421 <p>
   5422 For a channel <code>c</code>, the built-in function <code>close(c)</code>
   5423 records that no more values will be sent on the channel.
   5424 It is an error if <code>c</code> is a receive-only channel.
   5425 Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
   5426 Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
   5427 After calling <code>close</code>, and after any previously
   5428 sent values have been received, receive operations will return
   5429 the zero value for the channel's type without blocking.
   5430 The multi-valued <a href="#Receive_operator">receive operation</a>
   5431 returns a received value along with an indication of whether the channel is closed.
   5432 </p>
   5433 
   5434 
   5435 <h3 id="Length_and_capacity">Length and capacity</h3>
   5436 
   5437 <p>
   5438 The built-in functions <code>len</code> and <code>cap</code> take arguments
   5439 of various types and return a result of type <code>int</code>.
   5440 The implementation guarantees that the result always fits into an <code>int</code>.
   5441 </p>
   5442 
   5443 <pre class="grammar">
   5444 Call      Argument type    Result
   5445 
   5446 len(s)    string type      string length in bytes
   5447           [n]T, *[n]T      array length (== n)
   5448           []T              slice length
   5449           map[K]T          map length (number of defined keys)
   5450           chan T           number of elements queued in channel buffer
   5451 
   5452 cap(s)    [n]T, *[n]T      array length (== n)
   5453           []T              slice capacity
   5454           chan T           channel buffer capacity
   5455 </pre>
   5456 
   5457 <p>
   5458 The capacity of a slice is the number of elements for which there is
   5459 space allocated in the underlying array.
   5460 At any time the following relationship holds:
   5461 </p>
   5462 
   5463 <pre>
   5464 0 &lt;= len(s) &lt;= cap(s)
   5465 </pre>
   5466 
   5467 <p>
   5468 The length of a <code>nil</code> slice, map or channel is 0.
   5469 The capacity of a <code>nil</code> slice or channel is 0.
   5470 </p>
   5471 
   5472 <p>
   5473 The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
   5474 <code>s</code> is a string constant. The expressions <code>len(s)</code> and
   5475 <code>cap(s)</code> are constants if the type of <code>s</code> is an array
   5476 or pointer to an array and the expression <code>s</code> does not contain
   5477 <a href="#Receive_operator">channel receives</a> or (non-constant)
   5478 <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
   5479 Otherwise, invocations of <code>len</code> and <code>cap</code> are not
   5480 constant and <code>s</code> is evaluated.
   5481 </p>
   5482 
   5483 <pre>
   5484 const (
   5485 	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
   5486 	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
   5487 	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
   5488 	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
   5489 	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
   5490 )
   5491 var z complex128
   5492 </pre>
   5493 
   5494 <h3 id="Allocation">Allocation</h3>
   5495 
   5496 <p>
   5497 The built-in function <code>new</code> takes a type <code>T</code>,
   5498 allocates storage for a <a href="#Variables">variable</a> of that type
   5499 at run time, and returns a value of type <code>*T</code>
   5500 <a href="#Pointer_types">pointing</a> to it.
   5501 The variable is initialized as described in the section on
   5502 <a href="#The_zero_value">initial values</a>.
   5503 </p>
   5504 
   5505 <pre class="grammar">
   5506 new(T)
   5507 </pre>
   5508 
   5509 <p>
   5510 For instance
   5511 </p>
   5512 
   5513 <pre>
   5514 type S struct { a int; b float64 }
   5515 new(S)
   5516 </pre>
   5517 
   5518 <p>
   5519 allocates storage for a variable of type <code>S</code>,
   5520 initializes it (<code>a=0</code>, <code>b=0.0</code>),
   5521 and returns a value of type <code>*S</code> containing the address
   5522 of the location.
   5523 </p>
   5524 
   5525 <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
   5526 
   5527 <p>
   5528 The built-in function <code>make</code> takes a type <code>T</code>,
   5529 which must be a slice, map or channel type,
   5530 optionally followed by a type-specific list of expressions.
   5531 It returns a value of type <code>T</code> (not <code>*T</code>).
   5532 The memory is initialized as described in the section on
   5533 <a href="#The_zero_value">initial values</a>.
   5534 </p>
   5535 
   5536 <pre class="grammar">
   5537 Call             Type T     Result
   5538 
   5539 make(T, n)       slice      slice of type T with length n and capacity n
   5540 make(T, n, m)    slice      slice of type T with length n and capacity m
   5541 
   5542 make(T)          map        map of type T
   5543 make(T, n)       map        map of type T with initial space for n elements
   5544 
   5545 make(T)          channel    unbuffered channel of type T
   5546 make(T, n)       channel    buffered channel of type T, buffer size n
   5547 </pre>
   5548 
   5549 
   5550 <p>
   5551 The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
   5552 A <a href="#Constants">constant</a> size argument must be non-negative and
   5553 representable by a value of type <code>int</code>.
   5554 If both <code>n</code> and <code>m</code> are provided and are constant, then
   5555 <code>n</code> must be no larger than <code>m</code>.
   5556 If <code>n</code> is negative or larger than <code>m</code> at run time,
   5557 a <a href="#Run_time_panics">run-time panic</a> occurs.
   5558 </p>
   5559 
   5560 <pre>
   5561 s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
   5562 s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
   5563 s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
   5564 s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
   5565 c := make(chan int, 10)         // channel with a buffer size of 10
   5566 m := make(map[string]int, 100)  // map with initial space for 100 elements
   5567 </pre>
   5568 
   5569 
   5570 <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
   5571 
   5572 <p>
   5573 The built-in functions <code>append</code> and <code>copy</code> assist in
   5574 common slice operations.
   5575 For both functions, the result is independent of whether the memory referenced
   5576 by the arguments overlaps.
   5577 </p>
   5578 
   5579 <p>
   5580 The <a href="#Function_types">variadic</a> function <code>append</code>
   5581 appends zero or more values <code>x</code>
   5582 to <code>s</code> of type <code>S</code>, which must be a slice type, and
   5583 returns the resulting slice, also of type <code>S</code>.
   5584 The values <code>x</code> are passed to a parameter of type <code>...T</code>
   5585 where <code>T</code> is the <a href="#Slice_types">element type</a> of
   5586 <code>S</code> and the respective
   5587 <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
   5588 As a special case, <code>append</code> also accepts a first argument
   5589 assignable to type <code>[]byte</code> with a second argument of
   5590 string type followed by <code>...</code>. This form appends the
   5591 bytes of the string.
   5592 </p>
   5593 
   5594 <pre class="grammar">
   5595 append(s S, x ...T) S  // T is the element type of S
   5596 </pre>
   5597 
   5598 <p>
   5599 If the capacity of <code>s</code> is not large enough to fit the additional
   5600 values, <code>append</code> allocates a new, sufficiently large underlying
   5601 array that fits both the existing slice elements and the additional values.
   5602 Otherwise, <code>append</code> re-uses the underlying array.
   5603 </p>
   5604 
   5605 <pre>
   5606 s0 := []int{0, 0}
   5607 s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
   5608 s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
   5609 s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
   5610 s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
   5611 
   5612 var t []interface{}
   5613 t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
   5614 
   5615 var b []byte
   5616 b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
   5617 </pre>
   5618 
   5619 <p>
   5620 The function <code>copy</code> copies slice elements from
   5621 a source <code>src</code> to a destination <code>dst</code> and returns the
   5622 number of elements copied.
   5623 Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
   5624 <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
   5625 The number of elements copied is the minimum of
   5626 <code>len(src)</code> and <code>len(dst)</code>.
   5627 As a special case, <code>copy</code> also accepts a destination argument assignable
   5628 to type <code>[]byte</code> with a source argument of a string type.
   5629 This form copies the bytes from the string into the byte slice.
   5630 </p>
   5631 
   5632 <pre class="grammar">
   5633 copy(dst, src []T) int
   5634 copy(dst []byte, src string) int
   5635 </pre>
   5636 
   5637 <p>
   5638 Examples:
   5639 </p>
   5640 
   5641 <pre>
   5642 var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
   5643 var s = make([]int, 6)
   5644 var b = make([]byte, 5)
   5645 n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
   5646 n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
   5647 n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
   5648 </pre>
   5649 
   5650 
   5651 <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
   5652 
   5653 <p>
   5654 The built-in function <code>delete</code> removes the element with key
   5655 <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
   5656 type of <code>k</code> must be <a href="#Assignability">assignable</a>
   5657 to the key type of <code>m</code>.
   5658 </p>
   5659 
   5660 <pre class="grammar">
   5661 delete(m, k)  // remove element m[k] from map m
   5662 </pre>
   5663 
   5664 <p>
   5665 If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
   5666 does not exist, <code>delete</code> is a no-op.
   5667 </p>
   5668 
   5669 
   5670 <h3 id="Complex_numbers">Manipulating complex numbers</h3>
   5671 
   5672 <p>
   5673 Three functions assemble and disassemble complex numbers.
   5674 The built-in function <code>complex</code> constructs a complex
   5675 value from a floating-point real and imaginary part, while
   5676 <code>real</code> and <code>imag</code>
   5677 extract the real and imaginary parts of a complex value.
   5678 </p>
   5679 
   5680 <pre class="grammar">
   5681 complex(realPart, imaginaryPart floatT) complexT
   5682 real(complexT) floatT
   5683 imag(complexT) floatT
   5684 </pre>
   5685 
   5686 <p>
   5687 The type of the arguments and return value correspond.
   5688 For <code>complex</code>, the two arguments must be of the same
   5689 floating-point type and the return type is the complex type
   5690 with the corresponding floating-point constituents:
   5691 <code>complex64</code> for <code>float32</code> arguments, and
   5692 <code>complex128</code> for <code>float64</code> arguments.
   5693 If one of the arguments evaluates to an untyped constant, it is first
   5694 <a href="#Conversions">converted</a> to the type of the other argument.
   5695 If both arguments evaluate to untyped constants, they must be non-complex
   5696 numbers or their imaginary parts must be zero, and the return value of
   5697 the function is an untyped complex constant.
   5698 </p>
   5699 
   5700 <p>
   5701 For <code>real</code> and <code>imag</code>, the argument must be
   5702 of complex type, and the return type is the corresponding floating-point
   5703 type: <code>float32</code> for a <code>complex64</code> argument, and
   5704 <code>float64</code> for a <code>complex128</code> argument.
   5705 If the argument evaluates to an untyped constant, it must be a number,
   5706 and the return value of the function is an untyped floating-point constant.
   5707 </p>
   5708 
   5709 <p>
   5710 The <code>real</code> and <code>imag</code> functions together form the inverse of
   5711 <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
   5712 <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
   5713 </p>
   5714 
   5715 <p>
   5716 If the operands of these functions are all constants, the return
   5717 value is a constant.
   5718 </p>
   5719 
   5720 <pre>
   5721 var a = complex(2, -2)             // complex128
   5722 const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
   5723 x := float32(math.Cos(math.Pi/2))  // float32
   5724 var c64 = complex(5, -x)           // complex64
   5725 const s uint = complex(1, 0)       // untyped complex constant 1 + 0i can be converted to uint
   5726 _ = complex(1, 2&lt;&lt;s)               // illegal: 2 has floating-point type, cannot shift
   5727 var rl = real(c64)                 // float32
   5728 var im = imag(a)                   // float64
   5729 const c = imag(b)                  // untyped constant -1.4
   5730 _ = imag(3 &lt;&lt; s)                   // illegal: 3 has complex type, cannot shift
   5731 </pre>
   5732 
   5733 <h3 id="Handling_panics">Handling panics</h3>
   5734 
   5735 <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
   5736 assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
   5737 and program-defined error conditions.
   5738 </p>
   5739 
   5740 <pre class="grammar">
   5741 func panic(interface{})
   5742 func recover() interface{}
   5743 </pre>
   5744 
   5745 <p>
   5746 While executing a function <code>F</code>,
   5747 an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
   5748 terminates the execution of <code>F</code>.
   5749 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
   5750 are then executed as usual.
   5751 Next, any deferred functions run by <code>F's</code> caller are run,
   5752 and so on up to any deferred by the top-level function in the executing goroutine.
   5753 At that point, the program is terminated and the error
   5754 condition is reported, including the value of the argument to <code>panic</code>.
   5755 This termination sequence is called <i>panicking</i>.
   5756 </p>
   5757 
   5758 <pre>
   5759 panic(42)
   5760 panic("unreachable")
   5761 panic(Error("cannot parse"))
   5762 </pre>
   5763 
   5764 <p>
   5765 The <code>recover</code> function allows a program to manage behavior
   5766 of a panicking goroutine.
   5767 Suppose a function <code>G</code> defers a function <code>D</code> that calls
   5768 <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
   5769 is executing.
   5770 When the running of deferred functions reaches <code>D</code>,
   5771 the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
   5772 If <code>D</code> returns normally, without starting a new
   5773 <code>panic</code>, the panicking sequence stops. In that case,
   5774 the state of functions called between <code>G</code> and the call to <code>panic</code>
   5775 is discarded, and normal execution resumes.
   5776 Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
   5777 execution terminates by returning to its caller.
   5778 </p>
   5779 
   5780 <p>
   5781 The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
   5782 </p>
   5783 <ul>
   5784 <li>
   5785 <code>panic</code>'s argument was <code>nil</code>;
   5786 </li>
   5787 <li>
   5788 the goroutine is not panicking;
   5789 </li>
   5790 <li>
   5791 <code>recover</code> was not called directly by a deferred function.
   5792 </li>
   5793 </ul>
   5794 
   5795 <p>
   5796 The <code>protect</code> function in the example below invokes
   5797 the function argument <code>g</code> and protects callers from
   5798 run-time panics raised by <code>g</code>.
   5799 </p>
   5800 
   5801 <pre>
   5802 func protect(g func()) {
   5803 	defer func() {
   5804 		log.Println("done")  // Println executes normally even if there is a panic
   5805 		if x := recover(); x != nil {
   5806 			log.Printf("run time panic: %v", x)
   5807 		}
   5808 	}()
   5809 	log.Println("start")
   5810 	g()
   5811 }
   5812 </pre>
   5813 
   5814 
   5815 <h3 id="Bootstrapping">Bootstrapping</h3>
   5816 
   5817 <p>
   5818 Current implementations provide several built-in functions useful during
   5819 bootstrapping. These functions are documented for completeness but are not
   5820 guaranteed to stay in the language. They do not return a result.
   5821 </p>
   5822 
   5823 <pre class="grammar">
   5824 Function   Behavior
   5825 
   5826 print      prints all arguments; formatting of arguments is implementation-specific
   5827 println    like print but prints spaces between arguments and a newline at the end
   5828 </pre>
   5829 
   5830 
   5831 <h2 id="Packages">Packages</h2>
   5832 
   5833 <p>
   5834 Go programs are constructed by linking together <i>packages</i>.
   5835 A package in turn is constructed from one or more source files
   5836 that together declare constants, types, variables and functions
   5837 belonging to the package and which are accessible in all files
   5838 of the same package. Those elements may be
   5839 <a href="#Exported_identifiers">exported</a> and used in another package.
   5840 </p>
   5841 
   5842 <h3 id="Source_file_organization">Source file organization</h3>
   5843 
   5844 <p>
   5845 Each source file consists of a package clause defining the package
   5846 to which it belongs, followed by a possibly empty set of import
   5847 declarations that declare packages whose contents it wishes to use,
   5848 followed by a possibly empty set of declarations of functions,
   5849 types, variables, and constants.
   5850 </p>
   5851 
   5852 <pre class="ebnf">
   5853 SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
   5854 </pre>
   5855 
   5856 <h3 id="Package_clause">Package clause</h3>
   5857 
   5858 <p>
   5859 A package clause begins each source file and defines the package
   5860 to which the file belongs.
   5861 </p>
   5862 
   5863 <pre class="ebnf">
   5864 PackageClause  = "package" PackageName .
   5865 PackageName    = identifier .
   5866 </pre>
   5867 
   5868 <p>
   5869 The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
   5870 </p>
   5871 
   5872 <pre>
   5873 package math
   5874 </pre>
   5875 
   5876 <p>
   5877 A set of files sharing the same PackageName form the implementation of a package.
   5878 An implementation may require that all source files for a package inhabit the same directory.
   5879 </p>
   5880 
   5881 <h3 id="Import_declarations">Import declarations</h3>
   5882 
   5883 <p>
   5884 An import declaration states that the source file containing the declaration
   5885 depends on functionality of the <i>imported</i> package
   5886 (<a href="#Program_initialization_and_execution">Program initialization and execution</a>)
   5887 and enables access to <a href="#Exported_identifiers">exported</a> identifiers
   5888 of that package.
   5889 The import names an identifier (PackageName) to be used for access and an ImportPath
   5890 that specifies the package to be imported.
   5891 </p>
   5892 
   5893 <pre class="ebnf">
   5894 ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
   5895 ImportSpec       = [ "." | PackageName ] ImportPath .
   5896 ImportPath       = string_lit .
   5897 </pre>
   5898 
   5899 <p>
   5900 The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
   5901 to access exported identifiers of the package within the importing source file.
   5902 It is declared in the <a href="#Blocks">file block</a>.
   5903 If the PackageName is omitted, it defaults to the identifier specified in the
   5904 <a href="#Package_clause">package clause</a> of the imported package.
   5905 If an explicit period (<code>.</code>) appears instead of a name, all the
   5906 package's exported identifiers declared in that package's
   5907 <a href="#Blocks">package block</a> will be declared in the importing source
   5908 file's file block and must be accessed without a qualifier.
   5909 </p>
   5910 
   5911 <p>
   5912 The interpretation of the ImportPath is implementation-dependent but
   5913 it is typically a substring of the full file name of the compiled
   5914 package and may be relative to a repository of installed packages.
   5915 </p>
   5916 
   5917 <p>
   5918 Implementation restriction: A compiler may restrict ImportPaths to
   5919 non-empty strings using only characters belonging to
   5920 <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
   5921 L, M, N, P, and S general categories (the Graphic characters without
   5922 spaces) and may also exclude the characters
   5923 <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
   5924 and the Unicode replacement character U+FFFD.
   5925 </p>
   5926 
   5927 <p>
   5928 Assume we have compiled a package containing the package clause
   5929 <code>package math</code>, which exports function <code>Sin</code>, and
   5930 installed the compiled package in the file identified by
   5931 <code>"lib/math"</code>.
   5932 This table illustrates how <code>Sin</code> is accessed in files
   5933 that import the package after the
   5934 various types of import declaration.
   5935 </p>
   5936 
   5937 <pre class="grammar">
   5938 Import declaration          Local name of Sin
   5939 
   5940 import   "lib/math"         math.Sin
   5941 import m "lib/math"         m.Sin
   5942 import . "lib/math"         Sin
   5943 </pre>
   5944 
   5945 <p>
   5946 An import declaration declares a dependency relation between
   5947 the importing and imported package.
   5948 It is illegal for a package to import itself, directly or indirectly,
   5949 or to directly import a package without
   5950 referring to any of its exported identifiers. To import a package solely for
   5951 its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
   5952 identifier as explicit package name:
   5953 </p>
   5954 
   5955 <pre>
   5956 import _ "lib/math"
   5957 </pre>
   5958 
   5959 
   5960 <h3 id="An_example_package">An example package</h3>
   5961 
   5962 <p>
   5963 Here is a complete Go package that implements a concurrent prime sieve.
   5964 </p>
   5965 
   5966 <pre>
   5967 package main
   5968 
   5969 import "fmt"
   5970 
   5971 // Send the sequence 2, 3, 4,  to channel 'ch'.
   5972 func generate(ch chan&lt;- int) {
   5973 	for i := 2; ; i++ {
   5974 		ch &lt;- i  // Send 'i' to channel 'ch'.
   5975 	}
   5976 }
   5977 
   5978 // Copy the values from channel 'src' to channel 'dst',
   5979 // removing those divisible by 'prime'.
   5980 func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
   5981 	for i := range src {  // Loop over values received from 'src'.
   5982 		if i%prime != 0 {
   5983 			dst &lt;- i  // Send 'i' to channel 'dst'.
   5984 		}
   5985 	}
   5986 }
   5987 
   5988 // The prime sieve: Daisy-chain filter processes together.
   5989 func sieve() {
   5990 	ch := make(chan int)  // Create a new channel.
   5991 	go generate(ch)       // Start generate() as a subprocess.
   5992 	for {
   5993 		prime := &lt;-ch
   5994 		fmt.Print(prime, "\n")
   5995 		ch1 := make(chan int)
   5996 		go filter(ch, ch1, prime)
   5997 		ch = ch1
   5998 	}
   5999 }
   6000 
   6001 func main() {
   6002 	sieve()
   6003 }
   6004 </pre>
   6005 
   6006 <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
   6007 
   6008 <h3 id="The_zero_value">The zero value</h3>
   6009 <p>
   6010 When storage is allocated for a <a href="#Variables">variable</a>,
   6011 either through a declaration or a call of <code>new</code>, or when
   6012 a new value is created, either through a composite literal or a call
   6013 of <code>make</code>,
   6014 and no explicit initialization is provided, the variable or value is
   6015 given a default value.  Each element of such a variable or value is
   6016 set to the <i>zero value</i> for its type: <code>false</code> for booleans,
   6017 <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
   6018 for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
   6019 This initialization is done recursively, so for instance each element of an
   6020 array of structs will have its fields zeroed if no value is specified.
   6021 </p>
   6022 <p>
   6023 These two simple declarations are equivalent:
   6024 </p>
   6025 
   6026 <pre>
   6027 var i int
   6028 var i int = 0
   6029 </pre>
   6030 
   6031 <p>
   6032 After
   6033 </p>
   6034 
   6035 <pre>
   6036 type T struct { i int; f float64; next *T }
   6037 t := new(T)
   6038 </pre>
   6039 
   6040 <p>
   6041 the following holds:
   6042 </p>
   6043 
   6044 <pre>
   6045 t.i == 0
   6046 t.f == 0.0
   6047 t.next == nil
   6048 </pre>
   6049 
   6050 <p>
   6051 The same would also be true after
   6052 </p>
   6053 
   6054 <pre>
   6055 var t T
   6056 </pre>
   6057 
   6058 <h3 id="Package_initialization">Package initialization</h3>
   6059 
   6060 <p>
   6061 Within a package, package-level variables are initialized in
   6062 <i>declaration order</i> but after any of the variables
   6063 they <i>depend</i> on.
   6064 </p>
   6065 
   6066 <p>
   6067 More precisely, a package-level variable is considered <i>ready for
   6068 initialization</i> if it is not yet initialized and either has
   6069 no <a href="#Variable_declarations">initialization expression</a> or
   6070 its initialization expression has no dependencies on uninitialized variables.
   6071 Initialization proceeds by repeatedly initializing the next package-level
   6072 variable that is earliest in declaration order and ready for initialization,
   6073 until there are no variables ready for initialization.
   6074 </p>
   6075 
   6076 <p>
   6077 If any variables are still uninitialized when this
   6078 process ends, those variables are part of one or more initialization cycles,
   6079 and the program is not valid.
   6080 </p>
   6081 
   6082 <p>
   6083 The declaration order of variables declared in multiple files is determined
   6084 by the order in which the files are presented to the compiler: Variables
   6085 declared in the first file are declared before any of the variables declared
   6086 in the second file, and so on.
   6087 </p>
   6088 
   6089 <p>
   6090 Dependency analysis does not rely on the actual values of the
   6091 variables, only on lexical <i>references</i> to them in the source,
   6092 analyzed transitively. For instance, if a variable <code>x</code>'s
   6093 initialization expression refers to a function whose body refers to
   6094 variable <code>y</code> then <code>x</code> depends on <code>y</code>.
   6095 Specifically:
   6096 </p>
   6097 
   6098 <ul>
   6099 <li>
   6100 A reference to a variable or function is an identifier denoting that
   6101 variable or function.
   6102 </li>
   6103 
   6104 <li>
   6105 A reference to a method <code>m</code> is a
   6106 <a href="#Method_values">method value</a> or
   6107 <a href="#Method_expressions">method expression</a> of the form
   6108 <code>t.m</code>, where the (static) type of <code>t</code> is
   6109 not an interface type, and the method <code>m</code> is in the
   6110 <a href="#Method_sets">method set</a> of <code>t</code>.
   6111 It is immaterial whether the resulting function value
   6112 <code>t.m</code> is invoked.
   6113 </li>
   6114 
   6115 <li>
   6116 A variable, function, or method <code>x</code> depends on a variable
   6117 <code>y</code> if <code>x</code>'s initialization expression or body
   6118 (for functions and methods) contains a reference to <code>y</code>
   6119 or to a function or method that depends on <code>y</code>.
   6120 </li>
   6121 </ul>
   6122 
   6123 <p>
   6124 Dependency analysis is performed per package; only references referring
   6125 to variables, functions, and methods declared in the current package
   6126 are considered.
   6127 </p>
   6128 
   6129 <p>
   6130 For example, given the declarations
   6131 </p>
   6132 
   6133 <pre>
   6134 var (
   6135 	a = c + b
   6136 	b = f()
   6137 	c = f()
   6138 	d = 3
   6139 )
   6140 
   6141 func f() int {
   6142 	d++
   6143 	return d
   6144 }
   6145 </pre>
   6146 
   6147 <p>
   6148 the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
   6149 </p>
   6150 
   6151 <p>
   6152 Variables may also be initialized using functions named <code>init</code>
   6153 declared in the package block, with no arguments and no result parameters.
   6154 </p>
   6155 
   6156 <pre>
   6157 func init() {  }
   6158 </pre>
   6159 
   6160 <p>
   6161 Multiple such functions may be defined, even within a single
   6162 source file. The <code>init</code> identifier is not
   6163 <a href="#Declarations_and_scope">declared</a> and thus
   6164 <code>init</code> functions cannot be referred to from anywhere
   6165 in a program.
   6166 </p>
   6167 
   6168 <p>
   6169 A package with no imports is initialized by assigning initial values
   6170 to all its package-level variables followed by calling all <code>init</code>
   6171 functions in the order they appear in the source, possibly in multiple files,
   6172 as presented to the compiler.
   6173 If a package has imports, the imported packages are initialized
   6174 before initializing the package itself. If multiple packages import
   6175 a package, the imported package will be initialized only once.
   6176 The importing of packages, by construction, guarantees that there
   6177 can be no cyclic initialization dependencies.
   6178 </p>
   6179 
   6180 <p>
   6181 Package initialization&mdash;variable initialization and the invocation of
   6182 <code>init</code> functions&mdash;happens in a single goroutine,
   6183 sequentially, one package at a time.
   6184 An <code>init</code> function may launch other goroutines, which can run
   6185 concurrently with the initialization code. However, initialization
   6186 always sequences
   6187 the <code>init</code> functions: it will not invoke the next one
   6188 until the previous one has returned.
   6189 </p>
   6190 
   6191 <p>
   6192 To ensure reproducible initialization behavior, build systems are encouraged
   6193 to present multiple files belonging to the same package in lexical file name
   6194 order to a compiler.
   6195 </p>
   6196 
   6197 
   6198 <h3 id="Program_execution">Program execution</h3>
   6199 <p>
   6200 A complete program is created by linking a single, unimported package
   6201 called the <i>main package</i> with all the packages it imports, transitively.
   6202 The main package must
   6203 have package name <code>main</code> and
   6204 declare a function <code>main</code> that takes no
   6205 arguments and returns no value.
   6206 </p>
   6207 
   6208 <pre>
   6209 func main() {  }
   6210 </pre>
   6211 
   6212 <p>
   6213 Program execution begins by initializing the main package and then
   6214 invoking the function <code>main</code>.
   6215 When that function invocation returns, the program exits.
   6216 It does not wait for other (non-<code>main</code>) goroutines to complete.
   6217 </p>
   6218 
   6219 <h2 id="Errors">Errors</h2>
   6220 
   6221 <p>
   6222 The predeclared type <code>error</code> is defined as
   6223 </p>
   6224 
   6225 <pre>
   6226 type error interface {
   6227 	Error() string
   6228 }
   6229 </pre>
   6230 
   6231 <p>
   6232 It is the conventional interface for representing an error condition,
   6233 with the nil value representing no error.
   6234 For instance, a function to read data from a file might be defined:
   6235 </p>
   6236 
   6237 <pre>
   6238 func Read(f *File, b []byte) (n int, err error)
   6239 </pre>
   6240 
   6241 <h2 id="Run_time_panics">Run-time panics</h2>
   6242 
   6243 <p>
   6244 Execution errors such as attempting to index an array out
   6245 of bounds trigger a <i>run-time panic</i> equivalent to a call of
   6246 the built-in function <a href="#Handling_panics"><code>panic</code></a>
   6247 with a value of the implementation-defined interface type <code>runtime.Error</code>.
   6248 That type satisfies the predeclared interface type
   6249 <a href="#Errors"><code>error</code></a>.
   6250 The exact error values that
   6251 represent distinct run-time error conditions are unspecified.
   6252 </p>
   6253 
   6254 <pre>
   6255 package runtime
   6256 
   6257 type Error interface {
   6258 	error
   6259 	// and perhaps other methods
   6260 }
   6261 </pre>
   6262 
   6263 <h2 id="System_considerations">System considerations</h2>
   6264 
   6265 <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
   6266 
   6267 <p>
   6268 The built-in package <code>unsafe</code>, known to the compiler,
   6269 provides facilities for low-level programming including operations
   6270 that violate the type system. A package using <code>unsafe</code>
   6271 must be vetted manually for type safety and may not be portable.
   6272 The package provides the following interface:
   6273 </p>
   6274 
   6275 <pre class="grammar">
   6276 package unsafe
   6277 
   6278 type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
   6279 type Pointer *ArbitraryType
   6280 
   6281 func Alignof(variable ArbitraryType) uintptr
   6282 func Offsetof(selector ArbitraryType) uintptr
   6283 func Sizeof(variable ArbitraryType) uintptr
   6284 </pre>
   6285 
   6286 <p>
   6287 A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
   6288 value may not be <a href="#Address_operators">dereferenced</a>.
   6289 Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
   6290 a <code>Pointer</code> type and vice versa.
   6291 The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
   6292 </p>
   6293 
   6294 <pre>
   6295 var f float64
   6296 bits = *(*uint64)(unsafe.Pointer(&amp;f))
   6297 
   6298 type ptr unsafe.Pointer
   6299 bits = *(*uint64)(ptr(&amp;f))
   6300 
   6301 var p ptr = nil
   6302 </pre>
   6303 
   6304 <p>
   6305 The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
   6306 of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
   6307 as if <code>v</code> was declared via <code>var v = x</code>.
   6308 </p>
   6309 <p>
   6310 The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
   6311 <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
   6312 or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
   6313 If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
   6314 without pointer indirections through fields of the struct.
   6315 For a struct <code>s</code> with field <code>f</code>:
   6316 </p>
   6317 
   6318 <pre>
   6319 uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
   6320 </pre>
   6321 
   6322 <p>
   6323 Computer architectures may require memory addresses to be <i>aligned</i>;
   6324 that is, for addresses of a variable to be a multiple of a factor,
   6325 the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
   6326 takes an expression denoting a variable of any type and returns the
   6327 alignment of the (type of the) variable in bytes.  For a variable
   6328 <code>x</code>:
   6329 </p>
   6330 
   6331 <pre>
   6332 uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
   6333 </pre>
   6334 
   6335 <p>
   6336 Calls to <code>Alignof</code>, <code>Offsetof</code>, and
   6337 <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
   6338 </p>
   6339 
   6340 <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
   6341 
   6342 <p>
   6343 For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
   6344 </p>
   6345 
   6346 <pre class="grammar">
   6347 type                                 size in bytes
   6348 
   6349 byte, uint8, int8                     1
   6350 uint16, int16                         2
   6351 uint32, int32, float32                4
   6352 uint64, int64, float64, complex64     8
   6353 complex128                           16
   6354 </pre>
   6355 
   6356 <p>
   6357 The following minimal alignment properties are guaranteed:
   6358 </p>
   6359 <ol>
   6360 <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
   6361 </li>
   6362 
   6363 <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
   6364    all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
   6365 </li>
   6366 
   6367 <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
   6368    <code>unsafe.Alignof(x[0])</code>, but at least 1.
   6369 </li>
   6370 </ol>
   6371 
   6372 <p>
   6373 A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
   6374 </p>
   6375