1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package dsa implements the Digital Signature Algorithm, as defined in FIPS 186-3. 6 package dsa 7 8 import ( 9 "errors" 10 "io" 11 "math/big" 12 ) 13 14 // Parameters represents the domain parameters for a key. These parameters can 15 // be shared across many keys. The bit length of Q must be a multiple of 8. 16 type Parameters struct { 17 P, Q, G *big.Int 18 } 19 20 // PublicKey represents a DSA public key. 21 type PublicKey struct { 22 Parameters 23 Y *big.Int 24 } 25 26 // PrivateKey represents a DSA private key. 27 type PrivateKey struct { 28 PublicKey 29 X *big.Int 30 } 31 32 // ErrInvalidPublicKey results when a public key is not usable by this code. 33 // FIPS is quite strict about the format of DSA keys, but other code may be 34 // less so. Thus, when using keys which may have been generated by other code, 35 // this error must be handled. 36 var ErrInvalidPublicKey = errors.New("crypto/dsa: invalid public key") 37 38 // ParameterSizes is a enumeration of the acceptable bit lengths of the primes 39 // in a set of DSA parameters. See FIPS 186-3, section 4.2. 40 type ParameterSizes int 41 42 const ( 43 L1024N160 ParameterSizes = iota 44 L2048N224 45 L2048N256 46 L3072N256 47 ) 48 49 // numMRTests is the number of Miller-Rabin primality tests that we perform. We 50 // pick the largest recommended number from table C.1 of FIPS 186-3. 51 const numMRTests = 64 52 53 // GenerateParameters puts a random, valid set of DSA parameters into params. 54 // This function takes many seconds, even on fast machines. 55 func GenerateParameters(params *Parameters, rand io.Reader, sizes ParameterSizes) (err error) { 56 // This function doesn't follow FIPS 186-3 exactly in that it doesn't 57 // use a verification seed to generate the primes. The verification 58 // seed doesn't appear to be exported or used by other code and 59 // omitting it makes the code cleaner. 60 61 var L, N int 62 switch sizes { 63 case L1024N160: 64 L = 1024 65 N = 160 66 case L2048N224: 67 L = 2048 68 N = 224 69 case L2048N256: 70 L = 2048 71 N = 256 72 case L3072N256: 73 L = 3072 74 N = 256 75 default: 76 return errors.New("crypto/dsa: invalid ParameterSizes") 77 } 78 79 qBytes := make([]byte, N/8) 80 pBytes := make([]byte, L/8) 81 82 q := new(big.Int) 83 p := new(big.Int) 84 rem := new(big.Int) 85 one := new(big.Int) 86 one.SetInt64(1) 87 88 GeneratePrimes: 89 for { 90 _, err = io.ReadFull(rand, qBytes) 91 if err != nil { 92 return 93 } 94 95 qBytes[len(qBytes)-1] |= 1 96 qBytes[0] |= 0x80 97 q.SetBytes(qBytes) 98 99 if !q.ProbablyPrime(numMRTests) { 100 continue 101 } 102 103 for i := 0; i < 4*L; i++ { 104 _, err = io.ReadFull(rand, pBytes) 105 if err != nil { 106 return 107 } 108 109 pBytes[len(pBytes)-1] |= 1 110 pBytes[0] |= 0x80 111 112 p.SetBytes(pBytes) 113 rem.Mod(p, q) 114 rem.Sub(rem, one) 115 p.Sub(p, rem) 116 if p.BitLen() < L { 117 continue 118 } 119 120 if !p.ProbablyPrime(numMRTests) { 121 continue 122 } 123 124 params.P = p 125 params.Q = q 126 break GeneratePrimes 127 } 128 } 129 130 h := new(big.Int) 131 h.SetInt64(2) 132 g := new(big.Int) 133 134 pm1 := new(big.Int).Sub(p, one) 135 e := new(big.Int).Div(pm1, q) 136 137 for { 138 g.Exp(h, e, p) 139 if g.Cmp(one) == 0 { 140 h.Add(h, one) 141 continue 142 } 143 144 params.G = g 145 return 146 } 147 } 148 149 // GenerateKey generates a public&private key pair. The Parameters of the 150 // PrivateKey must already be valid (see GenerateParameters). 151 func GenerateKey(priv *PrivateKey, rand io.Reader) error { 152 if priv.P == nil || priv.Q == nil || priv.G == nil { 153 return errors.New("crypto/dsa: parameters not set up before generating key") 154 } 155 156 x := new(big.Int) 157 xBytes := make([]byte, priv.Q.BitLen()/8) 158 159 for { 160 _, err := io.ReadFull(rand, xBytes) 161 if err != nil { 162 return err 163 } 164 x.SetBytes(xBytes) 165 if x.Sign() != 0 && x.Cmp(priv.Q) < 0 { 166 break 167 } 168 } 169 170 priv.X = x 171 priv.Y = new(big.Int) 172 priv.Y.Exp(priv.G, x, priv.P) 173 return nil 174 } 175 176 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. 177 // This has better constant-time properties than Euclid's method (implemented 178 // in math/big.Int.ModInverse) although math/big itself isn't strictly 179 // constant-time so it's not perfect. 180 func fermatInverse(k, P *big.Int) *big.Int { 181 two := big.NewInt(2) 182 pMinus2 := new(big.Int).Sub(P, two) 183 return new(big.Int).Exp(k, pMinus2, P) 184 } 185 186 // Sign signs an arbitrary length hash (which should be the result of hashing a 187 // larger message) using the private key, priv. It returns the signature as a 188 // pair of integers. The security of the private key depends on the entropy of 189 // rand. 190 // 191 // Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated 192 // to the byte-length of the subgroup. This function does not perform that 193 // truncation itself. 194 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 195 // FIPS 186-3, section 4.6 196 197 n := priv.Q.BitLen() 198 if n&7 != 0 { 199 err = ErrInvalidPublicKey 200 return 201 } 202 n >>= 3 203 204 for { 205 k := new(big.Int) 206 buf := make([]byte, n) 207 for { 208 _, err = io.ReadFull(rand, buf) 209 if err != nil { 210 return 211 } 212 k.SetBytes(buf) 213 if k.Sign() > 0 && k.Cmp(priv.Q) < 0 { 214 break 215 } 216 } 217 218 kInv := fermatInverse(k, priv.Q) 219 220 r = new(big.Int).Exp(priv.G, k, priv.P) 221 r.Mod(r, priv.Q) 222 223 if r.Sign() == 0 { 224 continue 225 } 226 227 z := k.SetBytes(hash) 228 229 s = new(big.Int).Mul(priv.X, r) 230 s.Add(s, z) 231 s.Mod(s, priv.Q) 232 s.Mul(s, kInv) 233 s.Mod(s, priv.Q) 234 235 if s.Sign() != 0 { 236 break 237 } 238 } 239 240 return 241 } 242 243 // Verify verifies the signature in r, s of hash using the public key, pub. It 244 // reports whether the signature is valid. 245 // 246 // Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated 247 // to the byte-length of the subgroup. This function does not perform that 248 // truncation itself. 249 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 250 // FIPS 186-3, section 4.7 251 252 if r.Sign() < 1 || r.Cmp(pub.Q) >= 0 { 253 return false 254 } 255 if s.Sign() < 1 || s.Cmp(pub.Q) >= 0 { 256 return false 257 } 258 259 w := new(big.Int).ModInverse(s, pub.Q) 260 261 n := pub.Q.BitLen() 262 if n&7 != 0 { 263 return false 264 } 265 z := new(big.Int).SetBytes(hash) 266 267 u1 := new(big.Int).Mul(z, w) 268 u1.Mod(u1, pub.Q) 269 u2 := w.Mul(r, w) 270 u2.Mod(u2, pub.Q) 271 v := u1.Exp(pub.G, u1, pub.P) 272 u2.Exp(pub.Y, u2, pub.P) 273 v.Mul(v, u2) 274 v.Mod(v, pub.P) 275 v.Mod(v, pub.Q) 276 277 return v.Cmp(r) == 0 278 } 279