1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package jpeg implements a JPEG image decoder and encoder. 6 // 7 // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf. 8 package jpeg 9 10 import ( 11 "image" 12 "image/color" 13 "image/internal/imageutil" 14 "io" 15 ) 16 17 // TODO(nigeltao): fix up the doc comment style so that sentences start with 18 // the name of the type or function that they annotate. 19 20 // A FormatError reports that the input is not a valid JPEG. 21 type FormatError string 22 23 func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } 24 25 // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. 26 type UnsupportedError string 27 28 func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } 29 30 var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio") 31 32 // Component specification, specified in section B.2.2. 33 type component struct { 34 h int // Horizontal sampling factor. 35 v int // Vertical sampling factor. 36 c uint8 // Component identifier. 37 tq uint8 // Quantization table destination selector. 38 } 39 40 const ( 41 dcTable = 0 42 acTable = 1 43 maxTc = 1 44 maxTh = 3 45 maxTq = 3 46 47 maxComponents = 4 48 ) 49 50 const ( 51 sof0Marker = 0xc0 // Start Of Frame (Baseline). 52 sof1Marker = 0xc1 // Start Of Frame (Extended Sequential). 53 sof2Marker = 0xc2 // Start Of Frame (Progressive). 54 dhtMarker = 0xc4 // Define Huffman Table. 55 rst0Marker = 0xd0 // ReSTart (0). 56 rst7Marker = 0xd7 // ReSTart (7). 57 soiMarker = 0xd8 // Start Of Image. 58 eoiMarker = 0xd9 // End Of Image. 59 sosMarker = 0xda // Start Of Scan. 60 dqtMarker = 0xdb // Define Quantization Table. 61 driMarker = 0xdd // Define Restart Interval. 62 comMarker = 0xfe // COMment. 63 // "APPlication specific" markers aren't part of the JPEG spec per se, 64 // but in practice, their use is described at 65 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html 66 app0Marker = 0xe0 67 app14Marker = 0xee 68 app15Marker = 0xef 69 ) 70 71 // See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 72 const ( 73 adobeTransformUnknown = 0 74 adobeTransformYCbCr = 1 75 adobeTransformYCbCrK = 2 76 ) 77 78 // unzig maps from the zig-zag ordering to the natural ordering. For example, 79 // unzig[3] is the column and row of the fourth element in zig-zag order. The 80 // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). 81 var unzig = [blockSize]int{ 82 0, 1, 8, 16, 9, 2, 3, 10, 83 17, 24, 32, 25, 18, 11, 4, 5, 84 12, 19, 26, 33, 40, 48, 41, 34, 85 27, 20, 13, 6, 7, 14, 21, 28, 86 35, 42, 49, 56, 57, 50, 43, 36, 87 29, 22, 15, 23, 30, 37, 44, 51, 88 58, 59, 52, 45, 38, 31, 39, 46, 89 53, 60, 61, 54, 47, 55, 62, 63, 90 } 91 92 // Deprecated: Reader is deprecated. 93 type Reader interface { 94 io.ByteReader 95 io.Reader 96 } 97 98 // bits holds the unprocessed bits that have been taken from the byte-stream. 99 // The n least significant bits of a form the unread bits, to be read in MSB to 100 // LSB order. 101 type bits struct { 102 a uint32 // accumulator. 103 m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0. 104 n int32 // the number of unread bits in a. 105 } 106 107 type decoder struct { 108 r io.Reader 109 bits bits 110 // bytes is a byte buffer, similar to a bufio.Reader, except that it 111 // has to be able to unread more than 1 byte, due to byte stuffing. 112 // Byte stuffing is specified in section F.1.2.3. 113 bytes struct { 114 // buf[i:j] are the buffered bytes read from the underlying 115 // io.Reader that haven't yet been passed further on. 116 buf [4096]byte 117 i, j int 118 // nUnreadable is the number of bytes to back up i after 119 // overshooting. It can be 0, 1 or 2. 120 nUnreadable int 121 } 122 width, height int 123 124 img1 *image.Gray 125 img3 *image.YCbCr 126 blackPix []byte 127 blackStride int 128 129 ri int // Restart Interval. 130 nComp int 131 progressive bool 132 jfif bool 133 adobeTransformValid bool 134 adobeTransform uint8 135 eobRun uint16 // End-of-Band run, specified in section G.1.2.2. 136 137 comp [maxComponents]component 138 progCoeffs [maxComponents][]block // Saved state between progressive-mode scans. 139 huff [maxTc + 1][maxTh + 1]huffman 140 quant [maxTq + 1]block // Quantization tables, in zig-zag order. 141 tmp [2 * blockSize]byte 142 } 143 144 // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It 145 // should only be called when there are no unread bytes in d.bytes. 146 func (d *decoder) fill() error { 147 if d.bytes.i != d.bytes.j { 148 panic("jpeg: fill called when unread bytes exist") 149 } 150 // Move the last 2 bytes to the start of the buffer, in case we need 151 // to call unreadByteStuffedByte. 152 if d.bytes.j > 2 { 153 d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2] 154 d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1] 155 d.bytes.i, d.bytes.j = 2, 2 156 } 157 // Fill in the rest of the buffer. 158 n, err := d.r.Read(d.bytes.buf[d.bytes.j:]) 159 d.bytes.j += n 160 if n > 0 { 161 err = nil 162 } 163 return err 164 } 165 166 // unreadByteStuffedByte undoes the most recent readByteStuffedByte call, 167 // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table 168 // requires at least 8 bits for look-up, which means that Huffman decoding can 169 // sometimes overshoot and read one or two too many bytes. Two-byte overshoot 170 // can happen when expecting to read a 0xff 0x00 byte-stuffed byte. 171 func (d *decoder) unreadByteStuffedByte() { 172 d.bytes.i -= d.bytes.nUnreadable 173 d.bytes.nUnreadable = 0 174 if d.bits.n >= 8 { 175 d.bits.a >>= 8 176 d.bits.n -= 8 177 d.bits.m >>= 8 178 } 179 } 180 181 // readByte returns the next byte, whether buffered or not buffered. It does 182 // not care about byte stuffing. 183 func (d *decoder) readByte() (x byte, err error) { 184 for d.bytes.i == d.bytes.j { 185 if err = d.fill(); err != nil { 186 return 0, err 187 } 188 } 189 x = d.bytes.buf[d.bytes.i] 190 d.bytes.i++ 191 d.bytes.nUnreadable = 0 192 return x, nil 193 } 194 195 // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a 196 // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00. 197 var errMissingFF00 = FormatError("missing 0xff00 sequence") 198 199 // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data. 200 func (d *decoder) readByteStuffedByte() (x byte, err error) { 201 // Take the fast path if d.bytes.buf contains at least two bytes. 202 if d.bytes.i+2 <= d.bytes.j { 203 x = d.bytes.buf[d.bytes.i] 204 d.bytes.i++ 205 d.bytes.nUnreadable = 1 206 if x != 0xff { 207 return x, err 208 } 209 if d.bytes.buf[d.bytes.i] != 0x00 { 210 return 0, errMissingFF00 211 } 212 d.bytes.i++ 213 d.bytes.nUnreadable = 2 214 return 0xff, nil 215 } 216 217 d.bytes.nUnreadable = 0 218 219 x, err = d.readByte() 220 if err != nil { 221 return 0, err 222 } 223 d.bytes.nUnreadable = 1 224 if x != 0xff { 225 return x, nil 226 } 227 228 x, err = d.readByte() 229 if err != nil { 230 return 0, err 231 } 232 d.bytes.nUnreadable = 2 233 if x != 0x00 { 234 return 0, errMissingFF00 235 } 236 return 0xff, nil 237 } 238 239 // readFull reads exactly len(p) bytes into p. It does not care about byte 240 // stuffing. 241 func (d *decoder) readFull(p []byte) error { 242 // Unread the overshot bytes, if any. 243 if d.bytes.nUnreadable != 0 { 244 if d.bits.n >= 8 { 245 d.unreadByteStuffedByte() 246 } 247 d.bytes.nUnreadable = 0 248 } 249 250 for { 251 n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j]) 252 p = p[n:] 253 d.bytes.i += n 254 if len(p) == 0 { 255 break 256 } 257 if err := d.fill(); err != nil { 258 if err == io.EOF { 259 err = io.ErrUnexpectedEOF 260 } 261 return err 262 } 263 } 264 return nil 265 } 266 267 // ignore ignores the next n bytes. 268 func (d *decoder) ignore(n int) error { 269 // Unread the overshot bytes, if any. 270 if d.bytes.nUnreadable != 0 { 271 if d.bits.n >= 8 { 272 d.unreadByteStuffedByte() 273 } 274 d.bytes.nUnreadable = 0 275 } 276 277 for { 278 m := d.bytes.j - d.bytes.i 279 if m > n { 280 m = n 281 } 282 d.bytes.i += m 283 n -= m 284 if n == 0 { 285 break 286 } 287 if err := d.fill(); err != nil { 288 if err == io.EOF { 289 err = io.ErrUnexpectedEOF 290 } 291 return err 292 } 293 } 294 return nil 295 } 296 297 // Specified in section B.2.2. 298 func (d *decoder) processSOF(n int) error { 299 if d.nComp != 0 { 300 return FormatError("multiple SOF markers") 301 } 302 switch n { 303 case 6 + 3*1: // Grayscale image. 304 d.nComp = 1 305 case 6 + 3*3: // YCbCr or RGB image. 306 d.nComp = 3 307 case 6 + 3*4: // YCbCrK or CMYK image. 308 d.nComp = 4 309 default: 310 return UnsupportedError("number of components") 311 } 312 if err := d.readFull(d.tmp[:n]); err != nil { 313 return err 314 } 315 // We only support 8-bit precision. 316 if d.tmp[0] != 8 { 317 return UnsupportedError("precision") 318 } 319 d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) 320 d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) 321 if int(d.tmp[5]) != d.nComp { 322 return FormatError("SOF has wrong length") 323 } 324 325 for i := 0; i < d.nComp; i++ { 326 d.comp[i].c = d.tmp[6+3*i] 327 // Section B.2.2 states that "the value of C_i shall be different from 328 // the values of C_1 through C_(i-1)". 329 for j := 0; j < i; j++ { 330 if d.comp[i].c == d.comp[j].c { 331 return FormatError("repeated component identifier") 332 } 333 } 334 335 d.comp[i].tq = d.tmp[8+3*i] 336 if d.comp[i].tq > maxTq { 337 return FormatError("bad Tq value") 338 } 339 340 hv := d.tmp[7+3*i] 341 h, v := int(hv>>4), int(hv&0x0f) 342 if h < 1 || 4 < h || v < 1 || 4 < v { 343 return FormatError("luma/chroma subsampling ratio") 344 } 345 if h == 3 || v == 3 { 346 return errUnsupportedSubsamplingRatio 347 } 348 switch d.nComp { 349 case 1: 350 // If a JPEG image has only one component, section A.2 says "this data 351 // is non-interleaved by definition" and section A.2.2 says "[in this 352 // case...] the order of data units within a scan shall be left-to-right 353 // and top-to-bottom... regardless of the values of H_1 and V_1". Section 354 // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be 355 // one data unit". Similarly, section A.1.1 explains that it is the ratio 356 // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale 357 // images, H_1 is the maximum H_j for all components j, so that ratio is 358 // always 1. The component's (h, v) is effectively always (1, 1): even if 359 // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 360 // MCUs, not two 16x8 MCUs. 361 h, v = 1, 1 362 363 case 3: 364 // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0, 365 // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the 366 // (h, v) values for the Y component are either (1, 1), (1, 2), 367 // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values 368 // must be a multiple of the Cb and Cr component's values. We also 369 // assume that the two chroma components have the same subsampling 370 // ratio. 371 switch i { 372 case 0: // Y. 373 // We have already verified, above, that h and v are both 374 // either 1, 2 or 4, so invalid (h, v) combinations are those 375 // with v == 4. 376 if v == 4 { 377 return errUnsupportedSubsamplingRatio 378 } 379 case 1: // Cb. 380 if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 { 381 return errUnsupportedSubsamplingRatio 382 } 383 case 2: // Cr. 384 if d.comp[1].h != h || d.comp[1].v != v { 385 return errUnsupportedSubsamplingRatio 386 } 387 } 388 389 case 4: 390 // For 4-component images (either CMYK or YCbCrK), we only support two 391 // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22]. 392 // Theoretically, 4-component JPEG images could mix and match hv values 393 // but in practice, those two combinations are the only ones in use, 394 // and it simplifies the applyBlack code below if we can assume that: 395 // - for CMYK, the C and K channels have full samples, and if the M 396 // and Y channels subsample, they subsample both horizontally and 397 // vertically. 398 // - for YCbCrK, the Y and K channels have full samples. 399 switch i { 400 case 0: 401 if hv != 0x11 && hv != 0x22 { 402 return errUnsupportedSubsamplingRatio 403 } 404 case 1, 2: 405 if hv != 0x11 { 406 return errUnsupportedSubsamplingRatio 407 } 408 case 3: 409 if d.comp[0].h != h || d.comp[0].v != v { 410 return errUnsupportedSubsamplingRatio 411 } 412 } 413 } 414 415 d.comp[i].h = h 416 d.comp[i].v = v 417 } 418 return nil 419 } 420 421 // Specified in section B.2.4.1. 422 func (d *decoder) processDQT(n int) error { 423 loop: 424 for n > 0 { 425 n-- 426 x, err := d.readByte() 427 if err != nil { 428 return err 429 } 430 tq := x & 0x0f 431 if tq > maxTq { 432 return FormatError("bad Tq value") 433 } 434 switch x >> 4 { 435 default: 436 return FormatError("bad Pq value") 437 case 0: 438 if n < blockSize { 439 break loop 440 } 441 n -= blockSize 442 if err := d.readFull(d.tmp[:blockSize]); err != nil { 443 return err 444 } 445 for i := range d.quant[tq] { 446 d.quant[tq][i] = int32(d.tmp[i]) 447 } 448 case 1: 449 if n < 2*blockSize { 450 break loop 451 } 452 n -= 2 * blockSize 453 if err := d.readFull(d.tmp[:2*blockSize]); err != nil { 454 return err 455 } 456 for i := range d.quant[tq] { 457 d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1]) 458 } 459 } 460 } 461 if n != 0 { 462 return FormatError("DQT has wrong length") 463 } 464 return nil 465 } 466 467 // Specified in section B.2.4.4. 468 func (d *decoder) processDRI(n int) error { 469 if n != 2 { 470 return FormatError("DRI has wrong length") 471 } 472 if err := d.readFull(d.tmp[:2]); err != nil { 473 return err 474 } 475 d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) 476 return nil 477 } 478 479 func (d *decoder) processApp0Marker(n int) error { 480 if n < 5 { 481 return d.ignore(n) 482 } 483 if err := d.readFull(d.tmp[:5]); err != nil { 484 return err 485 } 486 n -= 5 487 488 d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00' 489 490 if n > 0 { 491 return d.ignore(n) 492 } 493 return nil 494 } 495 496 func (d *decoder) processApp14Marker(n int) error { 497 if n < 12 { 498 return d.ignore(n) 499 } 500 if err := d.readFull(d.tmp[:12]); err != nil { 501 return err 502 } 503 n -= 12 504 505 if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' { 506 d.adobeTransformValid = true 507 d.adobeTransform = d.tmp[11] 508 } 509 510 if n > 0 { 511 return d.ignore(n) 512 } 513 return nil 514 } 515 516 // decode reads a JPEG image from r and returns it as an image.Image. 517 func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { 518 d.r = r 519 520 // Check for the Start Of Image marker. 521 if err := d.readFull(d.tmp[:2]); err != nil { 522 return nil, err 523 } 524 if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { 525 return nil, FormatError("missing SOI marker") 526 } 527 528 // Process the remaining segments until the End Of Image marker. 529 for { 530 err := d.readFull(d.tmp[:2]) 531 if err != nil { 532 return nil, err 533 } 534 for d.tmp[0] != 0xff { 535 // Strictly speaking, this is a format error. However, libjpeg is 536 // liberal in what it accepts. As of version 9, next_marker in 537 // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and 538 // continues to decode the stream. Even before next_marker sees 539 // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many 540 // bytes as it can, possibly past the end of a scan's data. It 541 // effectively puts back any markers that it overscanned (e.g. an 542 // "\xff\xd9" EOI marker), but it does not put back non-marker data, 543 // and thus it can silently ignore a small number of extraneous 544 // non-marker bytes before next_marker has a chance to see them (and 545 // print a warning). 546 // 547 // We are therefore also liberal in what we accept. Extraneous data 548 // is silently ignored. 549 // 550 // This is similar to, but not exactly the same as, the restart 551 // mechanism within a scan (the RST[0-7] markers). 552 // 553 // Note that extraneous 0xff bytes in e.g. SOS data are escaped as 554 // "\xff\x00", and so are detected a little further down below. 555 d.tmp[0] = d.tmp[1] 556 d.tmp[1], err = d.readByte() 557 if err != nil { 558 return nil, err 559 } 560 } 561 marker := d.tmp[1] 562 if marker == 0 { 563 // Treat "\xff\x00" as extraneous data. 564 continue 565 } 566 for marker == 0xff { 567 // Section B.1.1.2 says, "Any marker may optionally be preceded by any 568 // number of fill bytes, which are bytes assigned code X'FF'". 569 marker, err = d.readByte() 570 if err != nil { 571 return nil, err 572 } 573 } 574 if marker == eoiMarker { // End Of Image. 575 break 576 } 577 if rst0Marker <= marker && marker <= rst7Marker { 578 // Figures B.2 and B.16 of the specification suggest that restart markers should 579 // only occur between Entropy Coded Segments and not after the final ECS. 580 // However, some encoders may generate incorrect JPEGs with a final restart 581 // marker. That restart marker will be seen here instead of inside the processSOS 582 // method, and is ignored as a harmless error. Restart markers have no extra data, 583 // so we check for this before we read the 16-bit length of the segment. 584 continue 585 } 586 587 // Read the 16-bit length of the segment. The value includes the 2 bytes for the 588 // length itself, so we subtract 2 to get the number of remaining bytes. 589 if err = d.readFull(d.tmp[:2]); err != nil { 590 return nil, err 591 } 592 n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 593 if n < 0 { 594 return nil, FormatError("short segment length") 595 } 596 597 switch marker { 598 case sof0Marker, sof1Marker, sof2Marker: 599 d.progressive = marker == sof2Marker 600 err = d.processSOF(n) 601 if configOnly && d.jfif { 602 return nil, err 603 } 604 case dhtMarker: 605 if configOnly { 606 err = d.ignore(n) 607 } else { 608 err = d.processDHT(n) 609 } 610 case dqtMarker: 611 if configOnly { 612 err = d.ignore(n) 613 } else { 614 err = d.processDQT(n) 615 } 616 case sosMarker: 617 if configOnly { 618 return nil, nil 619 } 620 err = d.processSOS(n) 621 case driMarker: 622 if configOnly { 623 err = d.ignore(n) 624 } else { 625 err = d.processDRI(n) 626 } 627 case app0Marker: 628 err = d.processApp0Marker(n) 629 case app14Marker: 630 err = d.processApp14Marker(n) 631 default: 632 if app0Marker <= marker && marker <= app15Marker || marker == comMarker { 633 err = d.ignore(n) 634 } else if marker < 0xc0 { // See Table B.1 "Marker code assignments". 635 err = FormatError("unknown marker") 636 } else { 637 err = UnsupportedError("unknown marker") 638 } 639 } 640 if err != nil { 641 return nil, err 642 } 643 } 644 if d.img1 != nil { 645 return d.img1, nil 646 } 647 if d.img3 != nil { 648 if d.blackPix != nil { 649 return d.applyBlack() 650 } else if d.isRGB() { 651 return d.convertToRGB() 652 } 653 return d.img3, nil 654 } 655 return nil, FormatError("missing SOS marker") 656 } 657 658 // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula 659 // used depends on whether the JPEG image is stored as CMYK or YCbCrK, 660 // indicated by the APP14 (Adobe) metadata. 661 // 662 // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full 663 // ink, so we apply "v = 255 - v" at various points. Note that a double 664 // inversion is a no-op, so inversions might be implicit in the code below. 665 func (d *decoder) applyBlack() (image.Image, error) { 666 if !d.adobeTransformValid { 667 return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata") 668 } 669 670 // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB 671 // or CMYK)" as per 672 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 673 // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c. 674 if d.adobeTransform != adobeTransformUnknown { 675 // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get 676 // CMY, and patch in the original K. The RGB to CMY inversion cancels 677 // out the 'Adobe inversion' described in the applyBlack doc comment 678 // above, so in practice, only the fourth channel (black) is inverted. 679 bounds := d.img3.Bounds() 680 img := image.NewRGBA(bounds) 681 imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min) 682 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 683 for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 684 img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)] 685 } 686 } 687 return &image.CMYK{ 688 Pix: img.Pix, 689 Stride: img.Stride, 690 Rect: img.Rect, 691 }, nil 692 } 693 694 // The first three channels (cyan, magenta, yellow) of the CMYK 695 // were decoded into d.img3, but each channel was decoded into a separate 696 // []byte slice, and some channels may be subsampled. We interleave the 697 // separate channels into an image.CMYK's single []byte slice containing 4 698 // contiguous bytes per pixel. 699 bounds := d.img3.Bounds() 700 img := image.NewCMYK(bounds) 701 702 translations := [4]struct { 703 src []byte 704 stride int 705 }{ 706 {d.img3.Y, d.img3.YStride}, 707 {d.img3.Cb, d.img3.CStride}, 708 {d.img3.Cr, d.img3.CStride}, 709 {d.blackPix, d.blackStride}, 710 } 711 for t, translation := range translations { 712 subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v 713 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 714 sy := y - bounds.Min.Y 715 if subsample { 716 sy /= 2 717 } 718 for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 719 sx := x - bounds.Min.X 720 if subsample { 721 sx /= 2 722 } 723 img.Pix[i] = 255 - translation.src[sy*translation.stride+sx] 724 } 725 } 726 } 727 return img, nil 728 } 729 730 func (d *decoder) isRGB() bool { 731 if d.jfif { 732 return false 733 } 734 if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown { 735 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 736 // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr. 737 return true 738 } 739 return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B' 740 } 741 742 func (d *decoder) convertToRGB() (image.Image, error) { 743 cScale := d.comp[0].h / d.comp[1].h 744 bounds := d.img3.Bounds() 745 img := image.NewRGBA(bounds) 746 for y := bounds.Min.Y; y < bounds.Max.Y; y++ { 747 po := img.PixOffset(bounds.Min.X, y) 748 yo := d.img3.YOffset(bounds.Min.X, y) 749 co := d.img3.COffset(bounds.Min.X, y) 750 for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ { 751 img.Pix[po+4*i+0] = d.img3.Y[yo+i] 752 img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale] 753 img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale] 754 img.Pix[po+4*i+3] = 255 755 } 756 } 757 return img, nil 758 } 759 760 // Decode reads a JPEG image from r and returns it as an image.Image. 761 func Decode(r io.Reader) (image.Image, error) { 762 var d decoder 763 return d.decode(r, false) 764 } 765 766 // DecodeConfig returns the color model and dimensions of a JPEG image without 767 // decoding the entire image. 768 func DecodeConfig(r io.Reader) (image.Config, error) { 769 var d decoder 770 if _, err := d.decode(r, true); err != nil { 771 return image.Config{}, err 772 } 773 switch d.nComp { 774 case 1: 775 return image.Config{ 776 ColorModel: color.GrayModel, 777 Width: d.width, 778 Height: d.height, 779 }, nil 780 case 3: 781 cm := color.YCbCrModel 782 if d.isRGB() { 783 cm = color.RGBAModel 784 } 785 return image.Config{ 786 ColorModel: cm, 787 Width: d.width, 788 Height: d.height, 789 }, nil 790 case 4: 791 return image.Config{ 792 ColorModel: color.CMYKModel, 793 Width: d.width, 794 Height: d.height, 795 }, nil 796 } 797 return image.Config{}, FormatError("missing SOF marker") 798 } 799 800 func init() { 801 image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) 802 } 803