Home | History | Annotate | Download | only in math
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 // The original C code, the long comment, and the constants
      8 // below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
      9 // available from http://www.netlib.org/cephes/cmath.tgz.
     10 // The go code is a simplified version of the original C.
     11 //      tanh.c
     12 //
     13 //      Hyperbolic tangent
     14 //
     15 // SYNOPSIS:
     16 //
     17 // double x, y, tanh();
     18 //
     19 // y = tanh( x );
     20 //
     21 // DESCRIPTION:
     22 //
     23 // Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG.
     24 //      MAXLOG = 8.8029691931113054295988e+01 = log(2**127)
     25 //      MINLOG = -8.872283911167299960540e+01 = log(2**-128)
     26 //
     27 // A rational function is used for |x| < 0.625.  The form
     28 // x + x**3 P(x)/Q(x) of Cody & Waite is employed.
     29 // Otherwise,
     30 //      tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1).
     31 //
     32 // ACCURACY:
     33 //
     34 //                      Relative error:
     35 // arithmetic   domain     # trials      peak         rms
     36 //    IEEE      -2,2        30000       2.5e-16     5.8e-17
     37 //
     38 // Cephes Math Library Release 2.8:  June, 2000
     39 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
     40 //
     41 // The readme file at http://netlib.sandia.gov/cephes/ says:
     42 //    Some software in this archive may be from the book _Methods and
     43 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
     44 // International, 1989) or from the Cephes Mathematical Library, a
     45 // commercial product. In either event, it is copyrighted by the author.
     46 // What you see here may be used freely but it comes with no support or
     47 // guarantee.
     48 //
     49 //   The two known misprints in the book are repaired here in the
     50 // source listings for the gamma function and the incomplete beta
     51 // integral.
     52 //
     53 //   Stephen L. Moshier
     54 //   moshier (a] na-net.ornl.gov
     55 //
     56 
     57 var tanhP = [...]float64{
     58 	-9.64399179425052238628E-1,
     59 	-9.92877231001918586564E1,
     60 	-1.61468768441708447952E3,
     61 }
     62 var tanhQ = [...]float64{
     63 	1.12811678491632931402E2,
     64 	2.23548839060100448583E3,
     65 	4.84406305325125486048E3,
     66 }
     67 
     68 // Tanh returns the hyperbolic tangent of x.
     69 //
     70 // Special cases are:
     71 //	Tanh(0) = 0
     72 //	Tanh(Inf) = 1
     73 //	Tanh(NaN) = NaN
     74 func Tanh(x float64) float64 {
     75 	const MAXLOG = 8.8029691931113054295988e+01 // log(2**127)
     76 	z := Abs(x)
     77 	switch {
     78 	case z > 0.5*MAXLOG:
     79 		if x < 0 {
     80 			return -1
     81 		}
     82 		return 1
     83 	case z >= 0.625:
     84 		s := Exp(2 * z)
     85 		z = 1 - 2/(s+1)
     86 		if x < 0 {
     87 			z = -z
     88 		}
     89 	default:
     90 		if x == 0 {
     91 			return x
     92 		}
     93 		s := x * x
     94 		z = x + x*s*((tanhP[0]*s+tanhP[1])*s+tanhP[2])/(((s+tanhQ[0])*s+tanhQ[1])*s+tanhQ[2])
     95 	}
     96 	return z
     97 }
     98