1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Multiprecision decimal numbers. 6 // For floating-point formatting only; not general purpose. 7 // Only operations are assign and (binary) left/right shift. 8 // Can do binary floating point in multiprecision decimal precisely 9 // because 2 divides 10; cannot do decimal floating point 10 // in multiprecision binary precisely. 11 12 package strconv 13 14 type decimal struct { 15 d [800]byte // digits, big-endian representation 16 nd int // number of digits used 17 dp int // decimal point 18 neg bool 19 trunc bool // discarded nonzero digits beyond d[:nd] 20 } 21 22 func (a *decimal) String() string { 23 n := 10 + a.nd 24 if a.dp > 0 { 25 n += a.dp 26 } 27 if a.dp < 0 { 28 n += -a.dp 29 } 30 31 buf := make([]byte, n) 32 w := 0 33 switch { 34 case a.nd == 0: 35 return "0" 36 37 case a.dp <= 0: 38 // zeros fill space between decimal point and digits 39 buf[w] = '0' 40 w++ 41 buf[w] = '.' 42 w++ 43 w += digitZero(buf[w : w+-a.dp]) 44 w += copy(buf[w:], a.d[0:a.nd]) 45 46 case a.dp < a.nd: 47 // decimal point in middle of digits 48 w += copy(buf[w:], a.d[0:a.dp]) 49 buf[w] = '.' 50 w++ 51 w += copy(buf[w:], a.d[a.dp:a.nd]) 52 53 default: 54 // zeros fill space between digits and decimal point 55 w += copy(buf[w:], a.d[0:a.nd]) 56 w += digitZero(buf[w : w+a.dp-a.nd]) 57 } 58 return string(buf[0:w]) 59 } 60 61 func digitZero(dst []byte) int { 62 for i := range dst { 63 dst[i] = '0' 64 } 65 return len(dst) 66 } 67 68 // trim trailing zeros from number. 69 // (They are meaningless; the decimal point is tracked 70 // independent of the number of digits.) 71 func trim(a *decimal) { 72 for a.nd > 0 && a.d[a.nd-1] == '0' { 73 a.nd-- 74 } 75 if a.nd == 0 { 76 a.dp = 0 77 } 78 } 79 80 // Assign v to a. 81 func (a *decimal) Assign(v uint64) { 82 var buf [24]byte 83 84 // Write reversed decimal in buf. 85 n := 0 86 for v > 0 { 87 v1 := v / 10 88 v -= 10 * v1 89 buf[n] = byte(v + '0') 90 n++ 91 v = v1 92 } 93 94 // Reverse again to produce forward decimal in a.d. 95 a.nd = 0 96 for n--; n >= 0; n-- { 97 a.d[a.nd] = buf[n] 98 a.nd++ 99 } 100 a.dp = a.nd 101 trim(a) 102 } 103 104 // Maximum shift that we can do in one pass without overflow. 105 // A uint has 32 or 64 bits, and we have to be able to accommodate 9<<k. 106 const uintSize = 32 << (^uint(0) >> 63) 107 const maxShift = uintSize - 4 108 109 // Binary shift right (/ 2) by k bits. k <= maxShift to avoid overflow. 110 func rightShift(a *decimal, k uint) { 111 r := 0 // read pointer 112 w := 0 // write pointer 113 114 // Pick up enough leading digits to cover first shift. 115 var n uint 116 for ; n>>k == 0; r++ { 117 if r >= a.nd { 118 if n == 0 { 119 // a == 0; shouldn't get here, but handle anyway. 120 a.nd = 0 121 return 122 } 123 for n>>k == 0 { 124 n = n * 10 125 r++ 126 } 127 break 128 } 129 c := uint(a.d[r]) 130 n = n*10 + c - '0' 131 } 132 a.dp -= r - 1 133 134 // Pick up a digit, put down a digit. 135 for ; r < a.nd; r++ { 136 c := uint(a.d[r]) 137 dig := n >> k 138 n -= dig << k 139 a.d[w] = byte(dig + '0') 140 w++ 141 n = n*10 + c - '0' 142 } 143 144 // Put down extra digits. 145 for n > 0 { 146 dig := n >> k 147 n -= dig << k 148 if w < len(a.d) { 149 a.d[w] = byte(dig + '0') 150 w++ 151 } else if dig > 0 { 152 a.trunc = true 153 } 154 n = n * 10 155 } 156 157 a.nd = w 158 trim(a) 159 } 160 161 // Cheat sheet for left shift: table indexed by shift count giving 162 // number of new digits that will be introduced by that shift. 163 // 164 // For example, leftcheats[4] = {2, "625"}. That means that 165 // if we are shifting by 4 (multiplying by 16), it will add 2 digits 166 // when the string prefix is "625" through "999", and one fewer digit 167 // if the string prefix is "000" through "624". 168 // 169 // Credit for this trick goes to Ken. 170 171 type leftCheat struct { 172 delta int // number of new digits 173 cutoff string // minus one digit if original < a. 174 } 175 176 var leftcheats = []leftCheat{ 177 // Leading digits of 1/2^i = 5^i. 178 // 5^23 is not an exact 64-bit floating point number, 179 // so have to use bc for the math. 180 // Go up to 60 to be large enough for 32bit and 64bit platforms. 181 /* 182 seq 60 | sed 's/^/5^/' | bc | 183 awk 'BEGIN{ print "\t{ 0, \"\" }," } 184 { 185 log2 = log(2)/log(10) 186 printf("\t{ %d, \"%s\" },\t// * %d\n", 187 int(log2*NR+1), $0, 2**NR) 188 }' 189 */ 190 {0, ""}, 191 {1, "5"}, // * 2 192 {1, "25"}, // * 4 193 {1, "125"}, // * 8 194 {2, "625"}, // * 16 195 {2, "3125"}, // * 32 196 {2, "15625"}, // * 64 197 {3, "78125"}, // * 128 198 {3, "390625"}, // * 256 199 {3, "1953125"}, // * 512 200 {4, "9765625"}, // * 1024 201 {4, "48828125"}, // * 2048 202 {4, "244140625"}, // * 4096 203 {4, "1220703125"}, // * 8192 204 {5, "6103515625"}, // * 16384 205 {5, "30517578125"}, // * 32768 206 {5, "152587890625"}, // * 65536 207 {6, "762939453125"}, // * 131072 208 {6, "3814697265625"}, // * 262144 209 {6, "19073486328125"}, // * 524288 210 {7, "95367431640625"}, // * 1048576 211 {7, "476837158203125"}, // * 2097152 212 {7, "2384185791015625"}, // * 4194304 213 {7, "11920928955078125"}, // * 8388608 214 {8, "59604644775390625"}, // * 16777216 215 {8, "298023223876953125"}, // * 33554432 216 {8, "1490116119384765625"}, // * 67108864 217 {9, "7450580596923828125"}, // * 134217728 218 {9, "37252902984619140625"}, // * 268435456 219 {9, "186264514923095703125"}, // * 536870912 220 {10, "931322574615478515625"}, // * 1073741824 221 {10, "4656612873077392578125"}, // * 2147483648 222 {10, "23283064365386962890625"}, // * 4294967296 223 {10, "116415321826934814453125"}, // * 8589934592 224 {11, "582076609134674072265625"}, // * 17179869184 225 {11, "2910383045673370361328125"}, // * 34359738368 226 {11, "14551915228366851806640625"}, // * 68719476736 227 {12, "72759576141834259033203125"}, // * 137438953472 228 {12, "363797880709171295166015625"}, // * 274877906944 229 {12, "1818989403545856475830078125"}, // * 549755813888 230 {13, "9094947017729282379150390625"}, // * 1099511627776 231 {13, "45474735088646411895751953125"}, // * 2199023255552 232 {13, "227373675443232059478759765625"}, // * 4398046511104 233 {13, "1136868377216160297393798828125"}, // * 8796093022208 234 {14, "5684341886080801486968994140625"}, // * 17592186044416 235 {14, "28421709430404007434844970703125"}, // * 35184372088832 236 {14, "142108547152020037174224853515625"}, // * 70368744177664 237 {15, "710542735760100185871124267578125"}, // * 140737488355328 238 {15, "3552713678800500929355621337890625"}, // * 281474976710656 239 {15, "17763568394002504646778106689453125"}, // * 562949953421312 240 {16, "88817841970012523233890533447265625"}, // * 1125899906842624 241 {16, "444089209850062616169452667236328125"}, // * 2251799813685248 242 {16, "2220446049250313080847263336181640625"}, // * 4503599627370496 243 {16, "11102230246251565404236316680908203125"}, // * 9007199254740992 244 {17, "55511151231257827021181583404541015625"}, // * 18014398509481984 245 {17, "277555756156289135105907917022705078125"}, // * 36028797018963968 246 {17, "1387778780781445675529539585113525390625"}, // * 72057594037927936 247 {18, "6938893903907228377647697925567626953125"}, // * 144115188075855872 248 {18, "34694469519536141888238489627838134765625"}, // * 288230376151711744 249 {18, "173472347597680709441192448139190673828125"}, // * 576460752303423488 250 {19, "867361737988403547205962240695953369140625"}, // * 1152921504606846976 251 } 252 253 // Is the leading prefix of b lexicographically less than s? 254 func prefixIsLessThan(b []byte, s string) bool { 255 for i := 0; i < len(s); i++ { 256 if i >= len(b) { 257 return true 258 } 259 if b[i] != s[i] { 260 return b[i] < s[i] 261 } 262 } 263 return false 264 } 265 266 // Binary shift left (* 2) by k bits. k <= maxShift to avoid overflow. 267 func leftShift(a *decimal, k uint) { 268 delta := leftcheats[k].delta 269 if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) { 270 delta-- 271 } 272 273 r := a.nd // read index 274 w := a.nd + delta // write index 275 276 // Pick up a digit, put down a digit. 277 var n uint 278 for r--; r >= 0; r-- { 279 n += (uint(a.d[r]) - '0') << k 280 quo := n / 10 281 rem := n - 10*quo 282 w-- 283 if w < len(a.d) { 284 a.d[w] = byte(rem + '0') 285 } else if rem != 0 { 286 a.trunc = true 287 } 288 n = quo 289 } 290 291 // Put down extra digits. 292 for n > 0 { 293 quo := n / 10 294 rem := n - 10*quo 295 w-- 296 if w < len(a.d) { 297 a.d[w] = byte(rem + '0') 298 } else if rem != 0 { 299 a.trunc = true 300 } 301 n = quo 302 } 303 304 a.nd += delta 305 if a.nd >= len(a.d) { 306 a.nd = len(a.d) 307 } 308 a.dp += delta 309 trim(a) 310 } 311 312 // Binary shift left (k > 0) or right (k < 0). 313 func (a *decimal) Shift(k int) { 314 switch { 315 case a.nd == 0: 316 // nothing to do: a == 0 317 case k > 0: 318 for k > maxShift { 319 leftShift(a, maxShift) 320 k -= maxShift 321 } 322 leftShift(a, uint(k)) 323 case k < 0: 324 for k < -maxShift { 325 rightShift(a, maxShift) 326 k += maxShift 327 } 328 rightShift(a, uint(-k)) 329 } 330 } 331 332 // If we chop a at nd digits, should we round up? 333 func shouldRoundUp(a *decimal, nd int) bool { 334 if nd < 0 || nd >= a.nd { 335 return false 336 } 337 if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even 338 // if we truncated, a little higher than what's recorded - always round up 339 if a.trunc { 340 return true 341 } 342 return nd > 0 && (a.d[nd-1]-'0')%2 != 0 343 } 344 // not halfway - digit tells all 345 return a.d[nd] >= '5' 346 } 347 348 // Round a to nd digits (or fewer). 349 // If nd is zero, it means we're rounding 350 // just to the left of the digits, as in 351 // 0.09 -> 0.1. 352 func (a *decimal) Round(nd int) { 353 if nd < 0 || nd >= a.nd { 354 return 355 } 356 if shouldRoundUp(a, nd) { 357 a.RoundUp(nd) 358 } else { 359 a.RoundDown(nd) 360 } 361 } 362 363 // Round a down to nd digits (or fewer). 364 func (a *decimal) RoundDown(nd int) { 365 if nd < 0 || nd >= a.nd { 366 return 367 } 368 a.nd = nd 369 trim(a) 370 } 371 372 // Round a up to nd digits (or fewer). 373 func (a *decimal) RoundUp(nd int) { 374 if nd < 0 || nd >= a.nd { 375 return 376 } 377 378 // round up 379 for i := nd - 1; i >= 0; i-- { 380 c := a.d[i] 381 if c < '9' { // can stop after this digit 382 a.d[i]++ 383 a.nd = i + 1 384 return 385 } 386 } 387 388 // Number is all 9s. 389 // Change to single 1 with adjusted decimal point. 390 a.d[0] = '1' 391 a.nd = 1 392 a.dp++ 393 } 394 395 // Extract integer part, rounded appropriately. 396 // No guarantees about overflow. 397 func (a *decimal) RoundedInteger() uint64 { 398 if a.dp > 20 { 399 return 0xFFFFFFFFFFFFFFFF 400 } 401 var i int 402 n := uint64(0) 403 for i = 0; i < a.dp && i < a.nd; i++ { 404 n = n*10 + uint64(a.d[i]-'0') 405 } 406 for ; i < a.dp; i++ { 407 n *= 10 408 } 409 if shouldRoundUp(a, a.dp) { 410 n++ 411 } 412 return n 413 } 414