Home | History | Annotate | Download | only in obj
      1 // Do not edit. Bootstrap copy of /usr/local/google/buildbot/src/android/build-tools/out/obj/go/src/cmd/internal/obj/pcln.go
      2 
      3 //line /usr/local/google/buildbot/src/android/build-tools/out/obj/go/src/cmd/internal/obj/pcln.go:1
      4 // Copyright 2013 The Go Authors.  All rights reserved.
      5 // Use of this source code is governed by a BSD-style
      6 // license that can be found in the LICENSE file.
      7 
      8 package obj
      9 
     10 import (
     11 	"fmt"
     12 	"log"
     13 )
     14 
     15 func addvarint(ctxt *Link, d *Pcdata, val uint32) {
     16 	var v uint32
     17 	for v = val; v >= 0x80; v >>= 7 {
     18 		d.P = append(d.P, uint8(v|0x80))
     19 	}
     20 	d.P = append(d.P, uint8(v))
     21 }
     22 
     23 // funcpctab writes to dst a pc-value table mapping the code in func to the values
     24 // returned by valfunc parameterized by arg. The invocation of valfunc to update the
     25 // current value is, for each p,
     26 //
     27 //	val = valfunc(func, val, p, 0, arg);
     28 //	record val as value at p->pc;
     29 //	val = valfunc(func, val, p, 1, arg);
     30 //
     31 // where func is the function, val is the current value, p is the instruction being
     32 // considered, and arg can be used to further parameterize valfunc.
     33 func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) {
     34 	// To debug a specific function, uncomment second line and change name.
     35 	dbg := 0
     36 
     37 	//dbg = strcmp(func->name, "main.main") == 0;
     38 	//dbg = strcmp(desc, "pctofile") == 0;
     39 
     40 	ctxt.Debugpcln += int32(dbg)
     41 
     42 	dst.P = dst.P[:0]
     43 
     44 	if ctxt.Debugpcln != 0 {
     45 		fmt.Fprintf(ctxt.Bso, "funcpctab %s [valfunc=%s]\n", func_.Name, desc)
     46 	}
     47 
     48 	val := int32(-1)
     49 	oldval := val
     50 	if func_.Text == nil {
     51 		ctxt.Debugpcln -= int32(dbg)
     52 		return
     53 	}
     54 
     55 	pc := func_.Text.Pc
     56 
     57 	if ctxt.Debugpcln != 0 {
     58 		fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(pc), val, func_.Text)
     59 	}
     60 
     61 	started := int32(0)
     62 	var delta uint32
     63 	for p := func_.Text; p != nil; p = p.Link {
     64 		// Update val. If it's not changing, keep going.
     65 		val = valfunc(ctxt, func_, val, p, 0, arg)
     66 
     67 		if val == oldval && started != 0 {
     68 			val = valfunc(ctxt, func_, val, p, 1, arg)
     69 			if ctxt.Debugpcln != 0 {
     70 				fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p)
     71 			}
     72 			continue
     73 		}
     74 
     75 		// If the pc of the next instruction is the same as the
     76 		// pc of this instruction, this instruction is not a real
     77 		// instruction. Keep going, so that we only emit a delta
     78 		// for a true instruction boundary in the program.
     79 		if p.Link != nil && p.Link.Pc == p.Pc {
     80 			val = valfunc(ctxt, func_, val, p, 1, arg)
     81 			if ctxt.Debugpcln != 0 {
     82 				fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p)
     83 			}
     84 			continue
     85 		}
     86 
     87 		// The table is a sequence of (value, pc) pairs, where each
     88 		// pair states that the given value is in effect from the current position
     89 		// up to the given pc, which becomes the new current position.
     90 		// To generate the table as we scan over the program instructions,
     91 		// we emit a "(value" when pc == func->value, and then
     92 		// each time we observe a change in value we emit ", pc) (value".
     93 		// When the scan is over, we emit the closing ", pc)".
     94 		//
     95 		// The table is delta-encoded. The value deltas are signed and
     96 		// transmitted in zig-zag form, where a complement bit is placed in bit 0,
     97 		// and the pc deltas are unsigned. Both kinds of deltas are sent
     98 		// as variable-length little-endian base-128 integers,
     99 		// where the 0x80 bit indicates that the integer continues.
    100 
    101 		if ctxt.Debugpcln != 0 {
    102 			fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(int64(p.Pc)), val, p)
    103 		}
    104 
    105 		if started != 0 {
    106 			addvarint(ctxt, dst, uint32((p.Pc-pc)/int64(ctxt.Arch.Minlc)))
    107 			pc = p.Pc
    108 		}
    109 
    110 		delta = uint32(val) - uint32(oldval)
    111 		if delta>>31 != 0 {
    112 			delta = 1 | ^(delta << 1)
    113 		} else {
    114 			delta <<= 1
    115 		}
    116 		addvarint(ctxt, dst, delta)
    117 		oldval = val
    118 		started = 1
    119 		val = valfunc(ctxt, func_, val, p, 1, arg)
    120 	}
    121 
    122 	if started != 0 {
    123 		if ctxt.Debugpcln != 0 {
    124 			fmt.Fprintf(ctxt.Bso, "%6x done\n", uint64(int64(func_.Text.Pc)+func_.Size))
    125 		}
    126 		addvarint(ctxt, dst, uint32((func_.Value+func_.Size-pc)/int64(ctxt.Arch.Minlc)))
    127 		addvarint(ctxt, dst, 0) // terminator
    128 	}
    129 
    130 	if ctxt.Debugpcln != 0 {
    131 		fmt.Fprintf(ctxt.Bso, "wrote %d bytes to %p\n", len(dst.P), dst)
    132 		for i := 0; i < len(dst.P); i++ {
    133 			fmt.Fprintf(ctxt.Bso, " %02x", dst.P[i])
    134 		}
    135 		fmt.Fprintf(ctxt.Bso, "\n")
    136 	}
    137 
    138 	ctxt.Debugpcln -= int32(dbg)
    139 }
    140 
    141 // pctofileline computes either the file number (arg == 0)
    142 // or the line number (arg == 1) to use at p.
    143 // Because p->lineno applies to p, phase == 0 (before p)
    144 // takes care of the update.
    145 func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
    146 	if p.As == ATEXT || p.As == ANOP || p.As == AUSEFIELD || p.Lineno == 0 || phase == 1 {
    147 		return oldval
    148 	}
    149 	var l int32
    150 	var f *LSym
    151 	linkgetline(ctxt, p.Lineno, &f, &l)
    152 	if f == nil {
    153 		//	print("getline failed for %s %v\n", ctxt->cursym->name, p);
    154 		return oldval
    155 	}
    156 
    157 	if arg == nil {
    158 		return l
    159 	}
    160 	pcln := arg.(*Pcln)
    161 
    162 	if f == pcln.Lastfile {
    163 		return int32(pcln.Lastindex)
    164 	}
    165 
    166 	var i int32
    167 	for i = 0; i < int32(len(pcln.File)); i++ {
    168 		file := pcln.File[i]
    169 		if file == f {
    170 			pcln.Lastfile = f
    171 			pcln.Lastindex = int(i)
    172 			return int32(i)
    173 		}
    174 	}
    175 	pcln.File = append(pcln.File, f)
    176 	pcln.Lastfile = f
    177 	pcln.Lastindex = int(i)
    178 	return i
    179 }
    180 
    181 // pctospadj computes the sp adjustment in effect.
    182 // It is oldval plus any adjustment made by p itself.
    183 // The adjustment by p takes effect only after p, so we
    184 // apply the change during phase == 1.
    185 func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
    186 	if oldval == -1 { // starting
    187 		oldval = 0
    188 	}
    189 	if phase == 0 {
    190 		return oldval
    191 	}
    192 	if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
    193 		ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
    194 		log.Fatalf("bad code")
    195 	}
    196 
    197 	return oldval + p.Spadj
    198 }
    199 
    200 // pctopcdata computes the pcdata value in effect at p.
    201 // A PCDATA instruction sets the value in effect at future
    202 // non-PCDATA instructions.
    203 // Since PCDATA instructions have no width in the final code,
    204 // it does not matter which phase we use for the update.
    205 func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
    206 	if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) {
    207 		return oldval
    208 	}
    209 	if int64(int32(p.To.Offset)) != p.To.Offset {
    210 		ctxt.Diag("overflow in PCDATA instruction: %v", p)
    211 		log.Fatalf("bad code")
    212 	}
    213 
    214 	return int32(p.To.Offset)
    215 }
    216 
    217 func linkpcln(ctxt *Link, cursym *LSym) {
    218 	ctxt.Cursym = cursym
    219 
    220 	pcln := new(Pcln)
    221 	cursym.Pcln = pcln
    222 
    223 	npcdata := 0
    224 	nfuncdata := 0
    225 	for p := cursym.Text; p != nil; p = p.Link {
    226 		if p.As == APCDATA && p.From.Offset >= int64(npcdata) {
    227 			npcdata = int(p.From.Offset + 1)
    228 		}
    229 		if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
    230 			nfuncdata = int(p.From.Offset + 1)
    231 		}
    232 	}
    233 
    234 	pcln.Pcdata = make([]Pcdata, npcdata)
    235 	pcln.Pcdata = pcln.Pcdata[:npcdata]
    236 	pcln.Funcdata = make([]*LSym, nfuncdata)
    237 	pcln.Funcdataoff = make([]int64, nfuncdata)
    238 	pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata]
    239 
    240 	funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil)
    241 	funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln)
    242 	funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil)
    243 
    244 	// tabulate which pc and func data we have.
    245 	havepc := make([]uint32, (npcdata+31)/32)
    246 	havefunc := make([]uint32, (nfuncdata+31)/32)
    247 	for p := cursym.Text; p != nil; p = p.Link {
    248 		if p.As == AFUNCDATA {
    249 			if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
    250 				ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
    251 			}
    252 			havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
    253 		}
    254 
    255 		if p.As == APCDATA {
    256 			havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
    257 		}
    258 	}
    259 
    260 	// pcdata.
    261 	for i := 0; i < npcdata; i++ {
    262 		if (havepc[i/32]>>uint(i%32))&1 == 0 {
    263 			continue
    264 		}
    265 		funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
    266 	}
    267 
    268 	// funcdata
    269 	if nfuncdata > 0 {
    270 		var i int
    271 		for p := cursym.Text; p != nil; p = p.Link {
    272 			if p.As == AFUNCDATA {
    273 				i = int(p.From.Offset)
    274 				pcln.Funcdataoff[i] = p.To.Offset
    275 				if p.To.Type != TYPE_CONST {
    276 					// TODO: Dedup.
    277 					//funcdata_bytes += p->to.sym->size;
    278 					pcln.Funcdata[i] = p.To.Sym
    279 				}
    280 			}
    281 		}
    282 	}
    283 }
    284 
    285 // iteration over encoded pcdata tables.
    286 
    287 func getvarint(pp *[]byte) uint32 {
    288 	v := uint32(0)
    289 	p := *pp
    290 	for shift := 0; ; shift += 7 {
    291 		v |= uint32(p[0]&0x7F) << uint(shift)
    292 		tmp7 := p
    293 		p = p[1:]
    294 		if tmp7[0]&0x80 == 0 {
    295 			break
    296 		}
    297 	}
    298 
    299 	*pp = p
    300 	return v
    301 }
    302 
    303 func pciternext(it *Pciter) {
    304 	it.pc = it.nextpc
    305 	if it.done != 0 {
    306 		return
    307 	}
    308 	if -cap(it.p) >= -cap(it.d.P[len(it.d.P):]) {
    309 		it.done = 1
    310 		return
    311 	}
    312 
    313 	// value delta
    314 	v := getvarint(&it.p)
    315 
    316 	if v == 0 && it.start == 0 {
    317 		it.done = 1
    318 		return
    319 	}
    320 
    321 	it.start = 0
    322 	dv := int32(v>>1) ^ (int32(v<<31) >> 31)
    323 	it.value += dv
    324 
    325 	// pc delta
    326 	v = getvarint(&it.p)
    327 
    328 	it.nextpc = it.pc + v*it.pcscale
    329 }
    330 
    331 func pciterinit(ctxt *Link, it *Pciter, d *Pcdata) {
    332 	it.d = *d
    333 	it.p = it.d.P
    334 	it.pc = 0
    335 	it.nextpc = 0
    336 	it.value = -1
    337 	it.start = 1
    338 	it.done = 0
    339 	it.pcscale = uint32(ctxt.Arch.Minlc)
    340 	pciternext(it)
    341 }
    342