Home | History | Annotate | Download | only in obj
      1 // Copyright 2013 The Go Authors.  All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package obj
      6 
      7 import (
      8 	"fmt"
      9 	"log"
     10 )
     11 
     12 func addvarint(ctxt *Link, d *Pcdata, val uint32) {
     13 	var v uint32
     14 	for v = val; v >= 0x80; v >>= 7 {
     15 		d.P = append(d.P, uint8(v|0x80))
     16 	}
     17 	d.P = append(d.P, uint8(v))
     18 }
     19 
     20 // funcpctab writes to dst a pc-value table mapping the code in func to the values
     21 // returned by valfunc parameterized by arg. The invocation of valfunc to update the
     22 // current value is, for each p,
     23 //
     24 //	val = valfunc(func, val, p, 0, arg);
     25 //	record val as value at p->pc;
     26 //	val = valfunc(func, val, p, 1, arg);
     27 //
     28 // where func is the function, val is the current value, p is the instruction being
     29 // considered, and arg can be used to further parameterize valfunc.
     30 func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) {
     31 	// To debug a specific function, uncomment second line and change name.
     32 	dbg := 0
     33 
     34 	//dbg = strcmp(func->name, "main.main") == 0;
     35 	//dbg = strcmp(desc, "pctofile") == 0;
     36 
     37 	ctxt.Debugpcln += int32(dbg)
     38 
     39 	dst.P = dst.P[:0]
     40 
     41 	if ctxt.Debugpcln != 0 {
     42 		fmt.Fprintf(ctxt.Bso, "funcpctab %s [valfunc=%s]\n", func_.Name, desc)
     43 	}
     44 
     45 	val := int32(-1)
     46 	oldval := val
     47 	if func_.Text == nil {
     48 		ctxt.Debugpcln -= int32(dbg)
     49 		return
     50 	}
     51 
     52 	pc := func_.Text.Pc
     53 
     54 	if ctxt.Debugpcln != 0 {
     55 		fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(pc), val, func_.Text)
     56 	}
     57 
     58 	started := int32(0)
     59 	var delta uint32
     60 	for p := func_.Text; p != nil; p = p.Link {
     61 		// Update val. If it's not changing, keep going.
     62 		val = valfunc(ctxt, func_, val, p, 0, arg)
     63 
     64 		if val == oldval && started != 0 {
     65 			val = valfunc(ctxt, func_, val, p, 1, arg)
     66 			if ctxt.Debugpcln != 0 {
     67 				fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p)
     68 			}
     69 			continue
     70 		}
     71 
     72 		// If the pc of the next instruction is the same as the
     73 		// pc of this instruction, this instruction is not a real
     74 		// instruction. Keep going, so that we only emit a delta
     75 		// for a true instruction boundary in the program.
     76 		if p.Link != nil && p.Link.Pc == p.Pc {
     77 			val = valfunc(ctxt, func_, val, p, 1, arg)
     78 			if ctxt.Debugpcln != 0 {
     79 				fmt.Fprintf(ctxt.Bso, "%6x %6s %v\n", uint64(int64(p.Pc)), "", p)
     80 			}
     81 			continue
     82 		}
     83 
     84 		// The table is a sequence of (value, pc) pairs, where each
     85 		// pair states that the given value is in effect from the current position
     86 		// up to the given pc, which becomes the new current position.
     87 		// To generate the table as we scan over the program instructions,
     88 		// we emit a "(value" when pc == func->value, and then
     89 		// each time we observe a change in value we emit ", pc) (value".
     90 		// When the scan is over, we emit the closing ", pc)".
     91 		//
     92 		// The table is delta-encoded. The value deltas are signed and
     93 		// transmitted in zig-zag form, where a complement bit is placed in bit 0,
     94 		// and the pc deltas are unsigned. Both kinds of deltas are sent
     95 		// as variable-length little-endian base-128 integers,
     96 		// where the 0x80 bit indicates that the integer continues.
     97 
     98 		if ctxt.Debugpcln != 0 {
     99 			fmt.Fprintf(ctxt.Bso, "%6x %6d %v\n", uint64(int64(p.Pc)), val, p)
    100 		}
    101 
    102 		if started != 0 {
    103 			addvarint(ctxt, dst, uint32((p.Pc-pc)/int64(ctxt.Arch.Minlc)))
    104 			pc = p.Pc
    105 		}
    106 
    107 		delta = uint32(val) - uint32(oldval)
    108 		if delta>>31 != 0 {
    109 			delta = 1 | ^(delta << 1)
    110 		} else {
    111 			delta <<= 1
    112 		}
    113 		addvarint(ctxt, dst, delta)
    114 		oldval = val
    115 		started = 1
    116 		val = valfunc(ctxt, func_, val, p, 1, arg)
    117 	}
    118 
    119 	if started != 0 {
    120 		if ctxt.Debugpcln != 0 {
    121 			fmt.Fprintf(ctxt.Bso, "%6x done\n", uint64(int64(func_.Text.Pc)+func_.Size))
    122 		}
    123 		addvarint(ctxt, dst, uint32((func_.Value+func_.Size-pc)/int64(ctxt.Arch.Minlc)))
    124 		addvarint(ctxt, dst, 0) // terminator
    125 	}
    126 
    127 	if ctxt.Debugpcln != 0 {
    128 		fmt.Fprintf(ctxt.Bso, "wrote %d bytes to %p\n", len(dst.P), dst)
    129 		for i := 0; i < len(dst.P); i++ {
    130 			fmt.Fprintf(ctxt.Bso, " %02x", dst.P[i])
    131 		}
    132 		fmt.Fprintf(ctxt.Bso, "\n")
    133 	}
    134 
    135 	ctxt.Debugpcln -= int32(dbg)
    136 }
    137 
    138 // pctofileline computes either the file number (arg == 0)
    139 // or the line number (arg == 1) to use at p.
    140 // Because p->lineno applies to p, phase == 0 (before p)
    141 // takes care of the update.
    142 func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
    143 	if p.As == ATEXT || p.As == ANOP || p.As == AUSEFIELD || p.Lineno == 0 || phase == 1 {
    144 		return oldval
    145 	}
    146 	var l int32
    147 	var f *LSym
    148 	linkgetline(ctxt, p.Lineno, &f, &l)
    149 	if f == nil {
    150 		//	print("getline failed for %s %v\n", ctxt->cursym->name, p);
    151 		return oldval
    152 	}
    153 
    154 	if arg == nil {
    155 		return l
    156 	}
    157 	pcln := arg.(*Pcln)
    158 
    159 	if f == pcln.Lastfile {
    160 		return int32(pcln.Lastindex)
    161 	}
    162 
    163 	var i int32
    164 	for i = 0; i < int32(len(pcln.File)); i++ {
    165 		file := pcln.File[i]
    166 		if file == f {
    167 			pcln.Lastfile = f
    168 			pcln.Lastindex = int(i)
    169 			return int32(i)
    170 		}
    171 	}
    172 	pcln.File = append(pcln.File, f)
    173 	pcln.Lastfile = f
    174 	pcln.Lastindex = int(i)
    175 	return i
    176 }
    177 
    178 // pctospadj computes the sp adjustment in effect.
    179 // It is oldval plus any adjustment made by p itself.
    180 // The adjustment by p takes effect only after p, so we
    181 // apply the change during phase == 1.
    182 func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
    183 	if oldval == -1 { // starting
    184 		oldval = 0
    185 	}
    186 	if phase == 0 {
    187 		return oldval
    188 	}
    189 	if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
    190 		ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
    191 		log.Fatalf("bad code")
    192 	}
    193 
    194 	return oldval + p.Spadj
    195 }
    196 
    197 // pctopcdata computes the pcdata value in effect at p.
    198 // A PCDATA instruction sets the value in effect at future
    199 // non-PCDATA instructions.
    200 // Since PCDATA instructions have no width in the final code,
    201 // it does not matter which phase we use for the update.
    202 func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
    203 	if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) {
    204 		return oldval
    205 	}
    206 	if int64(int32(p.To.Offset)) != p.To.Offset {
    207 		ctxt.Diag("overflow in PCDATA instruction: %v", p)
    208 		log.Fatalf("bad code")
    209 	}
    210 
    211 	return int32(p.To.Offset)
    212 }
    213 
    214 func linkpcln(ctxt *Link, cursym *LSym) {
    215 	ctxt.Cursym = cursym
    216 
    217 	pcln := new(Pcln)
    218 	cursym.Pcln = pcln
    219 
    220 	npcdata := 0
    221 	nfuncdata := 0
    222 	for p := cursym.Text; p != nil; p = p.Link {
    223 		if p.As == APCDATA && p.From.Offset >= int64(npcdata) {
    224 			npcdata = int(p.From.Offset + 1)
    225 		}
    226 		if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
    227 			nfuncdata = int(p.From.Offset + 1)
    228 		}
    229 	}
    230 
    231 	pcln.Pcdata = make([]Pcdata, npcdata)
    232 	pcln.Pcdata = pcln.Pcdata[:npcdata]
    233 	pcln.Funcdata = make([]*LSym, nfuncdata)
    234 	pcln.Funcdataoff = make([]int64, nfuncdata)
    235 	pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata]
    236 
    237 	funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil)
    238 	funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln)
    239 	funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil)
    240 
    241 	// tabulate which pc and func data we have.
    242 	havepc := make([]uint32, (npcdata+31)/32)
    243 	havefunc := make([]uint32, (nfuncdata+31)/32)
    244 	for p := cursym.Text; p != nil; p = p.Link {
    245 		if p.As == AFUNCDATA {
    246 			if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
    247 				ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
    248 			}
    249 			havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
    250 		}
    251 
    252 		if p.As == APCDATA {
    253 			havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
    254 		}
    255 	}
    256 
    257 	// pcdata.
    258 	for i := 0; i < npcdata; i++ {
    259 		if (havepc[i/32]>>uint(i%32))&1 == 0 {
    260 			continue
    261 		}
    262 		funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
    263 	}
    264 
    265 	// funcdata
    266 	if nfuncdata > 0 {
    267 		var i int
    268 		for p := cursym.Text; p != nil; p = p.Link {
    269 			if p.As == AFUNCDATA {
    270 				i = int(p.From.Offset)
    271 				pcln.Funcdataoff[i] = p.To.Offset
    272 				if p.To.Type != TYPE_CONST {
    273 					// TODO: Dedup.
    274 					//funcdata_bytes += p->to.sym->size;
    275 					pcln.Funcdata[i] = p.To.Sym
    276 				}
    277 			}
    278 		}
    279 	}
    280 }
    281 
    282 // iteration over encoded pcdata tables.
    283 
    284 func getvarint(pp *[]byte) uint32 {
    285 	v := uint32(0)
    286 	p := *pp
    287 	for shift := 0; ; shift += 7 {
    288 		v |= uint32(p[0]&0x7F) << uint(shift)
    289 		tmp7 := p
    290 		p = p[1:]
    291 		if tmp7[0]&0x80 == 0 {
    292 			break
    293 		}
    294 	}
    295 
    296 	*pp = p
    297 	return v
    298 }
    299 
    300 func pciternext(it *Pciter) {
    301 	it.pc = it.nextpc
    302 	if it.done != 0 {
    303 		return
    304 	}
    305 	if -cap(it.p) >= -cap(it.d.P[len(it.d.P):]) {
    306 		it.done = 1
    307 		return
    308 	}
    309 
    310 	// value delta
    311 	v := getvarint(&it.p)
    312 
    313 	if v == 0 && it.start == 0 {
    314 		it.done = 1
    315 		return
    316 	}
    317 
    318 	it.start = 0
    319 	dv := int32(v>>1) ^ (int32(v<<31) >> 31)
    320 	it.value += dv
    321 
    322 	// pc delta
    323 	v = getvarint(&it.p)
    324 
    325 	it.nextpc = it.pc + v*it.pcscale
    326 }
    327 
    328 func pciterinit(ctxt *Link, it *Pciter, d *Pcdata) {
    329 	it.d = *d
    330 	it.p = it.d.P
    331 	it.pc = 0
    332 	it.nextpc = 0
    333 	it.value = -1
    334 	it.start = 1
    335 	it.done = 0
    336 	it.pcscale = uint32(ctxt.Arch.Minlc)
    337 	pciternext(it)
    338 }
    339