Home | History | Annotate | Download | only in suffixarray
      1 // Copyright 2011 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This algorithm is based on "Faster Suffix Sorting"
      6 //   by N. Jesper Larsson and Kunihiko Sadakane
      7 // paper: http://www.larsson.dogma.net/ssrev-tr.pdf
      8 // code:  http://www.larsson.dogma.net/qsufsort.c
      9 
     10 // This algorithm computes the suffix array sa by computing its inverse.
     11 // Consecutive groups of suffixes in sa are labeled as sorted groups or
     12 // unsorted groups. For a given pass of the sorter, all suffixes are ordered
     13 // up to their first h characters, and sa is h-ordered. Suffixes in their
     14 // final positions and unambiguously sorted in h-order are in a sorted group.
     15 // Consecutive groups of suffixes with identical first h characters are an
     16 // unsorted group. In each pass of the algorithm, unsorted groups are sorted
     17 // according to the group number of their following suffix.
     18 
     19 // In the implementation, if sa[i] is negative, it indicates that i is
     20 // the first element of a sorted group of length -sa[i], and can be skipped.
     21 // An unsorted group sa[i:k] is given the group number of the index of its
     22 // last element, k-1. The group numbers are stored in the inverse slice (inv),
     23 // and when all groups are sorted, this slice is the inverse suffix array.
     24 
     25 package suffixarray
     26 
     27 import "sort"
     28 
     29 func qsufsort(data []byte) []int {
     30 	// initial sorting by first byte of suffix
     31 	sa := sortedByFirstByte(data)
     32 	if len(sa) < 2 {
     33 		return sa
     34 	}
     35 	// initialize the group lookup table
     36 	// this becomes the inverse of the suffix array when all groups are sorted
     37 	inv := initGroups(sa, data)
     38 
     39 	// the index starts 1-ordered
     40 	sufSortable := &suffixSortable{sa: sa, inv: inv, h: 1}
     41 
     42 	for sa[0] > -len(sa) { // until all suffixes are one big sorted group
     43 		// The suffixes are h-ordered, make them 2*h-ordered
     44 		pi := 0 // pi is first position of first group
     45 		sl := 0 // sl is negated length of sorted groups
     46 		for pi < len(sa) {
     47 			if s := sa[pi]; s < 0 { // if pi starts sorted group
     48 				pi -= s // skip over sorted group
     49 				sl += s // add negated length to sl
     50 			} else { // if pi starts unsorted group
     51 				if sl != 0 {
     52 					sa[pi+sl] = sl // combine sorted groups before pi
     53 					sl = 0
     54 				}
     55 				pk := inv[s] + 1 // pk-1 is last position of unsorted group
     56 				sufSortable.sa = sa[pi:pk]
     57 				sort.Sort(sufSortable)
     58 				sufSortable.updateGroups(pi)
     59 				pi = pk // next group
     60 			}
     61 		}
     62 		if sl != 0 { // if the array ends with a sorted group
     63 			sa[pi+sl] = sl // combine sorted groups at end of sa
     64 		}
     65 
     66 		sufSortable.h *= 2 // double sorted depth
     67 	}
     68 
     69 	for i := range sa { // reconstruct suffix array from inverse
     70 		sa[inv[i]] = i
     71 	}
     72 	return sa
     73 }
     74 
     75 func sortedByFirstByte(data []byte) []int {
     76 	// total byte counts
     77 	var count [256]int
     78 	for _, b := range data {
     79 		count[b]++
     80 	}
     81 	// make count[b] equal index of first occurrence of b in sorted array
     82 	sum := 0
     83 	for b := range count {
     84 		count[b], sum = sum, count[b]+sum
     85 	}
     86 	// iterate through bytes, placing index into the correct spot in sa
     87 	sa := make([]int, len(data))
     88 	for i, b := range data {
     89 		sa[count[b]] = i
     90 		count[b]++
     91 	}
     92 	return sa
     93 }
     94 
     95 func initGroups(sa []int, data []byte) []int {
     96 	// label contiguous same-letter groups with the same group number
     97 	inv := make([]int, len(data))
     98 	prevGroup := len(sa) - 1
     99 	groupByte := data[sa[prevGroup]]
    100 	for i := len(sa) - 1; i >= 0; i-- {
    101 		if b := data[sa[i]]; b < groupByte {
    102 			if prevGroup == i+1 {
    103 				sa[i+1] = -1
    104 			}
    105 			groupByte = b
    106 			prevGroup = i
    107 		}
    108 		inv[sa[i]] = prevGroup
    109 		if prevGroup == 0 {
    110 			sa[0] = -1
    111 		}
    112 	}
    113 	// Separate out the final suffix to the start of its group.
    114 	// This is necessary to ensure the suffix "a" is before "aba"
    115 	// when using a potentially unstable sort.
    116 	lastByte := data[len(data)-1]
    117 	s := -1
    118 	for i := range sa {
    119 		if sa[i] >= 0 {
    120 			if data[sa[i]] == lastByte && s == -1 {
    121 				s = i
    122 			}
    123 			if sa[i] == len(sa)-1 {
    124 				sa[i], sa[s] = sa[s], sa[i]
    125 				inv[sa[s]] = s
    126 				sa[s] = -1 // mark it as an isolated sorted group
    127 				break
    128 			}
    129 		}
    130 	}
    131 	return inv
    132 }
    133 
    134 type suffixSortable struct {
    135 	sa  []int
    136 	inv []int
    137 	h   int
    138 	buf []int // common scratch space
    139 }
    140 
    141 func (x *suffixSortable) Len() int           { return len(x.sa) }
    142 func (x *suffixSortable) Less(i, j int) bool { return x.inv[x.sa[i]+x.h] < x.inv[x.sa[j]+x.h] }
    143 func (x *suffixSortable) Swap(i, j int)      { x.sa[i], x.sa[j] = x.sa[j], x.sa[i] }
    144 
    145 func (x *suffixSortable) updateGroups(offset int) {
    146 	bounds := x.buf[0:0]
    147 	group := x.inv[x.sa[0]+x.h]
    148 	for i := 1; i < len(x.sa); i++ {
    149 		if g := x.inv[x.sa[i]+x.h]; g > group {
    150 			bounds = append(bounds, i)
    151 			group = g
    152 		}
    153 	}
    154 	bounds = append(bounds, len(x.sa))
    155 	x.buf = bounds
    156 
    157 	// update the group numberings after all new groups are determined
    158 	prev := 0
    159 	for _, b := range bounds {
    160 		for i := prev; i < b; i++ {
    161 			x.inv[x.sa[i]] = offset + b - 1
    162 		}
    163 		if b-prev == 1 {
    164 			x.sa[prev] = -1
    165 		}
    166 		prev = b
    167 	}
    168 }
    169