Home | History | Annotate | Download | only in math
      1 // Copyright 2010 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package math
      6 
      7 /*
      8 	Bessel function of the first and second kinds of order zero.
      9 */
     10 
     11 // The original C code and the long comment below are
     12 // from FreeBSD's /usr/src/lib/msun/src/e_j0.c and
     13 // came with this notice.  The go code is a simplified
     14 // version of the original C.
     15 //
     16 // ====================================================
     17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     18 //
     19 // Developed at SunPro, a Sun Microsystems, Inc. business.
     20 // Permission to use, copy, modify, and distribute this
     21 // software is freely granted, provided that this notice
     22 // is preserved.
     23 // ====================================================
     24 //
     25 // __ieee754_j0(x), __ieee754_y0(x)
     26 // Bessel function of the first and second kinds of order zero.
     27 // Method -- j0(x):
     28 //      1. For tiny x, we use j0(x) = 1 - x**2/4 + x**4/64 - ...
     29 //      2. Reduce x to |x| since j0(x)=j0(-x),  and
     30 //         for x in (0,2)
     31 //              j0(x) = 1-z/4+ z**2*R0/S0,  where z = x*x;
     32 //         (precision:  |j0-1+z/4-z**2R0/S0 |<2**-63.67 )
     33 //         for x in (2,inf)
     34 //              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
     35 //         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
     36 //         as follow:
     37 //              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
     38 //                      = 1/sqrt(2) * (cos(x) + sin(x))
     39 //              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
     40 //                      = 1/sqrt(2) * (sin(x) - cos(x))
     41 //         (To avoid cancellation, use
     42 //              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     43 //         to compute the worse one.)
     44 //
     45 //      3 Special cases
     46 //              j0(nan)= nan
     47 //              j0(0) = 1
     48 //              j0(inf) = 0
     49 //
     50 // Method -- y0(x):
     51 //      1. For x<2.
     52 //         Since
     53 //              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x**2/4 - ...)
     54 //         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
     55 //         We use the following function to approximate y0,
     56 //              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x**2
     57 //         where
     58 //              U(z) = u00 + u01*z + ... + u06*z**6
     59 //              V(z) = 1  + v01*z + ... + v04*z**4
     60 //         with absolute approximation error bounded by 2**-72.
     61 //         Note: For tiny x, U/V = u0 and j0(x)~1, hence
     62 //              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
     63 //      2. For x>=2.
     64 //              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
     65 //         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
     66 //         by the method mentioned above.
     67 //      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
     68 //
     69 
     70 // J0 returns the order-zero Bessel function of the first kind.
     71 //
     72 // Special cases are:
     73 //	J0(Inf) = 0
     74 //	J0(0) = 1
     75 //	J0(NaN) = NaN
     76 func J0(x float64) float64 {
     77 	const (
     78 		Huge   = 1e300
     79 		TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
     80 		TwoM13 = 1.0 / (1 << 13) // 2**-13 0x3f20000000000000
     81 		Two129 = 1 << 129        // 2**129 0x4800000000000000
     82 		// R0/S0 on [0, 2]
     83 		R02 = 1.56249999999999947958e-02  // 0x3F8FFFFFFFFFFFFD
     84 		R03 = -1.89979294238854721751e-04 // 0xBF28E6A5B61AC6E9
     85 		R04 = 1.82954049532700665670e-06  // 0x3EBEB1D10C503919
     86 		R05 = -4.61832688532103189199e-09 // 0xBE33D5E773D63FCE
     87 		S01 = 1.56191029464890010492e-02  // 0x3F8FFCE882C8C2A4
     88 		S02 = 1.16926784663337450260e-04  // 0x3F1EA6D2DD57DBF4
     89 		S03 = 5.13546550207318111446e-07  // 0x3EA13B54CE84D5A9
     90 		S04 = 1.16614003333790000205e-09  // 0x3E1408BCF4745D8F
     91 	)
     92 	// special cases
     93 	switch {
     94 	case IsNaN(x):
     95 		return x
     96 	case IsInf(x, 0):
     97 		return 0
     98 	case x == 0:
     99 		return 1
    100 	}
    101 
    102 	if x < 0 {
    103 		x = -x
    104 	}
    105 	if x >= 2 {
    106 		s, c := Sincos(x)
    107 		ss := s - c
    108 		cc := s + c
    109 
    110 		// make sure x+x does not overflow
    111 		if x < MaxFloat64/2 {
    112 			z := -Cos(x + x)
    113 			if s*c < 0 {
    114 				cc = z / ss
    115 			} else {
    116 				ss = z / cc
    117 			}
    118 		}
    119 
    120 		// j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    121 		// y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    122 
    123 		var z float64
    124 		if x > Two129 { // |x| > ~6.8056e+38
    125 			z = (1 / SqrtPi) * cc / Sqrt(x)
    126 		} else {
    127 			u := pzero(x)
    128 			v := qzero(x)
    129 			z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
    130 		}
    131 		return z // |x| >= 2.0
    132 	}
    133 	if x < TwoM13 { // |x| < ~1.2207e-4
    134 		if x < TwoM27 {
    135 			return 1 // |x| < ~7.4506e-9
    136 		}
    137 		return 1 - 0.25*x*x // ~7.4506e-9 < |x| < ~1.2207e-4
    138 	}
    139 	z := x * x
    140 	r := z * (R02 + z*(R03+z*(R04+z*R05)))
    141 	s := 1 + z*(S01+z*(S02+z*(S03+z*S04)))
    142 	if x < 1 {
    143 		return 1 + z*(-0.25+(r/s)) // |x| < 1.00
    144 	}
    145 	u := 0.5 * x
    146 	return (1+u)*(1-u) + z*(r/s) // 1.0 < |x| < 2.0
    147 }
    148 
    149 // Y0 returns the order-zero Bessel function of the second kind.
    150 //
    151 // Special cases are:
    152 //	Y0(+Inf) = 0
    153 //	Y0(0) = -Inf
    154 //	Y0(x < 0) = NaN
    155 //	Y0(NaN) = NaN
    156 func Y0(x float64) float64 {
    157 	const (
    158 		TwoM27 = 1.0 / (1 << 27)             // 2**-27 0x3e40000000000000
    159 		Two129 = 1 << 129                    // 2**129 0x4800000000000000
    160 		U00    = -7.38042951086872317523e-02 // 0xBFB2E4D699CBD01F
    161 		U01    = 1.76666452509181115538e-01  // 0x3FC69D019DE9E3FC
    162 		U02    = -1.38185671945596898896e-02 // 0xBF8C4CE8B16CFA97
    163 		U03    = 3.47453432093683650238e-04  // 0x3F36C54D20B29B6B
    164 		U04    = -3.81407053724364161125e-06 // 0xBECFFEA773D25CAD
    165 		U05    = 1.95590137035022920206e-08  // 0x3E5500573B4EABD4
    166 		U06    = -3.98205194132103398453e-11 // 0xBDC5E43D693FB3C8
    167 		V01    = 1.27304834834123699328e-02  // 0x3F8A127091C9C71A
    168 		V02    = 7.60068627350353253702e-05  // 0x3F13ECBBF578C6C1
    169 		V03    = 2.59150851840457805467e-07  // 0x3E91642D7FF202FD
    170 		V04    = 4.41110311332675467403e-10  // 0x3DFE50183BD6D9EF
    171 	)
    172 	// special cases
    173 	switch {
    174 	case x < 0 || IsNaN(x):
    175 		return NaN()
    176 	case IsInf(x, 1):
    177 		return 0
    178 	case x == 0:
    179 		return Inf(-1)
    180 	}
    181 
    182 	if x >= 2 { // |x| >= 2.0
    183 
    184 		// y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
    185 		//     where x0 = x-pi/4
    186 		// Better formula:
    187 		//     cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
    188 		//             =  1/sqrt(2) * (sin(x) + cos(x))
    189 		//     sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    190 		//             =  1/sqrt(2) * (sin(x) - cos(x))
    191 		// To avoid cancellation, use
    192 		//     sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    193 		// to compute the worse one.
    194 
    195 		s, c := Sincos(x)
    196 		ss := s - c
    197 		cc := s + c
    198 
    199 		// j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    200 		// y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    201 
    202 		// make sure x+x does not overflow
    203 		if x < MaxFloat64/2 {
    204 			z := -Cos(x + x)
    205 			if s*c < 0 {
    206 				cc = z / ss
    207 			} else {
    208 				ss = z / cc
    209 			}
    210 		}
    211 		var z float64
    212 		if x > Two129 { // |x| > ~6.8056e+38
    213 			z = (1 / SqrtPi) * ss / Sqrt(x)
    214 		} else {
    215 			u := pzero(x)
    216 			v := qzero(x)
    217 			z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
    218 		}
    219 		return z // |x| >= 2.0
    220 	}
    221 	if x <= TwoM27 {
    222 		return U00 + (2/Pi)*Log(x) // |x| < ~7.4506e-9
    223 	}
    224 	z := x * x
    225 	u := U00 + z*(U01+z*(U02+z*(U03+z*(U04+z*(U05+z*U06)))))
    226 	v := 1 + z*(V01+z*(V02+z*(V03+z*V04)))
    227 	return u/v + (2/Pi)*J0(x)*Log(x) // ~7.4506e-9 < |x| < 2.0
    228 }
    229 
    230 // The asymptotic expansions of pzero is
    231 //      1 - 9/128 s**2 + 11025/98304 s**4 - ..., where s = 1/x.
    232 // For x >= 2, We approximate pzero by
    233 // 	pzero(x) = 1 + (R/S)
    234 // where  R = pR0 + pR1*s**2 + pR2*s**4 + ... + pR5*s**10
    235 // 	  S = 1 + pS0*s**2 + ... + pS4*s**10
    236 // and
    237 //      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
    238 
    239 // for x in [inf, 8]=1/[0,0.125]
    240 var p0R8 = [6]float64{
    241 	0.00000000000000000000e+00,  // 0x0000000000000000
    242 	-7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32
    243 	-8.08167041275349795626e+00, // 0xC02029D0B44FA779
    244 	-2.57063105679704847262e+02, // 0xC07011027B19E863
    245 	-2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC
    246 	-5.25304380490729545272e+03, // 0xC0B4850B36CC643D
    247 }
    248 var p0S8 = [5]float64{
    249 	1.16534364619668181717e+02, // 0x405D223307A96751
    250 	3.83374475364121826715e+03, // 0x40ADF37D50596938
    251 	4.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F
    252 	1.16752972564375915681e+05, // 0x40FC810F8F9FA9BD
    253 	4.76277284146730962675e+04, // 0x40E741774F2C49DC
    254 }
    255 
    256 // for x in [8,4.5454]=1/[0.125,0.22001]
    257 var p0R5 = [6]float64{
    258 	-1.14125464691894502584e-11, // 0xBDA918B147E495CC
    259 	-7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6
    260 	-4.15961064470587782438e+00, // 0xC010A370F90C6BBF
    261 	-6.76747652265167261021e+01, // 0xC050EB2F5A7D1783
    262 	-3.31231299649172967747e+02, // 0xC074B3B36742CC63
    263 	-3.46433388365604912451e+02, // 0xC075A6EF28A38BD7
    264 }
    265 var p0S5 = [5]float64{
    266 	6.07539382692300335975e+01, // 0x404E60810C98C5DE
    267 	1.05125230595704579173e+03, // 0x40906D025C7E2864
    268 	5.97897094333855784498e+03, // 0x40B75AF88FBE1D60
    269 	9.62544514357774460223e+03, // 0x40C2CCB8FA76FA38
    270 	2.40605815922939109441e+03, // 0x40A2CC1DC70BE864
    271 }
    272 
    273 // for x in [4.547,2.8571]=1/[0.2199,0.35001]
    274 var p0R3 = [6]float64{
    275 	-2.54704601771951915620e-09, // 0xBE25E1036FE1AA86
    276 	-7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B
    277 	-2.40903221549529611423e+00, // 0xC00345B2AEA48074
    278 	-2.19659774734883086467e+01, // 0xC035F74A4CB94E14
    279 	-5.80791704701737572236e+01, // 0xC04D0A22420A1A45
    280 	-3.14479470594888503854e+01, // 0xC03F72ACA892D80F
    281 }
    282 var p0S3 = [5]float64{
    283 	3.58560338055209726349e+01, // 0x4041ED9284077DD3
    284 	3.61513983050303863820e+02, // 0x40769839464A7C0E
    285 	1.19360783792111533330e+03, // 0x4092A66E6D1061D6
    286 	1.12799679856907414432e+03, // 0x40919FFCB8C39B7E
    287 	1.73580930813335754692e+02, // 0x4065B296FC379081
    288 }
    289 
    290 // for x in [2.8570,2]=1/[0.3499,0.5]
    291 var p0R2 = [6]float64{
    292 	-8.87534333032526411254e-08, // 0xBE77D316E927026D
    293 	-7.03030995483624743247e-02, // 0xBFB1FF62495E1E42
    294 	-1.45073846780952986357e+00, // 0xBFF736398A24A843
    295 	-7.63569613823527770791e+00, // 0xC01E8AF3EDAFA7F3
    296 	-1.11931668860356747786e+01, // 0xC02662E6C5246303
    297 	-3.23364579351335335033e+00, // 0xC009DE81AF8FE70F
    298 }
    299 var p0S2 = [5]float64{
    300 	2.22202997532088808441e+01, // 0x40363865908B5959
    301 	1.36206794218215208048e+02, // 0x4061069E0EE8878F
    302 	2.70470278658083486789e+02, // 0x4070E78642EA079B
    303 	1.53875394208320329881e+02, // 0x40633C033AB6FAFF
    304 	1.46576176948256193810e+01, // 0x402D50B344391809
    305 }
    306 
    307 func pzero(x float64) float64 {
    308 	var p [6]float64
    309 	var q [5]float64
    310 	if x >= 8 {
    311 		p = p0R8
    312 		q = p0S8
    313 	} else if x >= 4.5454 {
    314 		p = p0R5
    315 		q = p0S5
    316 	} else if x >= 2.8571 {
    317 		p = p0R3
    318 		q = p0S3
    319 	} else if x >= 2 {
    320 		p = p0R2
    321 		q = p0S2
    322 	}
    323 	z := 1 / (x * x)
    324 	r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
    325 	s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
    326 	return 1 + r/s
    327 }
    328 
    329 // For x >= 8, the asymptotic expansions of qzero is
    330 //      -1/8 s + 75/1024 s**3 - ..., where s = 1/x.
    331 // We approximate pzero by
    332 //      qzero(x) = s*(-1.25 + (R/S))
    333 // where R = qR0 + qR1*s**2 + qR2*s**4 + ... + qR5*s**10
    334 //       S = 1 + qS0*s**2 + ... + qS5*s**12
    335 // and
    336 //      | qzero(x)/s +1.25-R/S | <= 2**(-61.22)
    337 
    338 // for x in [inf, 8]=1/[0,0.125]
    339 var q0R8 = [6]float64{
    340 	0.00000000000000000000e+00, // 0x0000000000000000
    341 	7.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C
    342 	1.17682064682252693899e+01, // 0x402789525BB334D6
    343 	5.57673380256401856059e+02, // 0x40816D6315301825
    344 	8.85919720756468632317e+03, // 0x40C14D993E18F46D
    345 	3.70146267776887834771e+04, // 0x40E212D40E901566
    346 }
    347 var q0S8 = [6]float64{
    348 	1.63776026895689824414e+02,  // 0x406478D5365B39BC
    349 	8.09834494656449805916e+03,  // 0x40BFA2584E6B0563
    350 	1.42538291419120476348e+05,  // 0x4101665254D38C3F
    351 	8.03309257119514397345e+05,  // 0x412883DA83A52B43
    352 	8.40501579819060512818e+05,  // 0x4129A66B28DE0B3D
    353 	-3.43899293537866615225e+05, // 0xC114FD6D2C9530C5
    354 }
    355 
    356 // for x in [8,4.5454]=1/[0.125,0.22001]
    357 var q0R5 = [6]float64{
    358 	1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD9
    359 	7.32421766612684765896e-02, // 0x3FB2BFFFD172B04C
    360 	5.83563508962056953777e+00, // 0x401757B0B9953DD3
    361 	1.35111577286449829671e+02, // 0x4060E3920A8788E9
    362 	1.02724376596164097464e+03, // 0x40900CF99DC8C481
    363 	1.98997785864605384631e+03, // 0x409F17E953C6E3A6
    364 }
    365 var q0S5 = [6]float64{
    366 	8.27766102236537761883e+01,  // 0x4054B1B3FB5E1543
    367 	2.07781416421392987104e+03,  // 0x40A03BA0DA21C0CE
    368 	1.88472887785718085070e+04,  // 0x40D267D27B591E6D
    369 	5.67511122894947329769e+04,  // 0x40EBB5E397E02372
    370 	3.59767538425114471465e+04,  // 0x40E191181F7A54A0
    371 	-5.35434275601944773371e+03, // 0xC0B4EA57BEDBC609
    372 }
    373 
    374 // for x in [4.547,2.8571]=1/[0.2199,0.35001]
    375 var q0R3 = [6]float64{
    376 	4.37741014089738620906e-09, // 0x3E32CD036ADECB82
    377 	7.32411180042911447163e-02, // 0x3FB2BFEE0E8D0842
    378 	3.34423137516170720929e+00, // 0x400AC0FC61149CF5
    379 	4.26218440745412650017e+01, // 0x40454F98962DAEDD
    380 	1.70808091340565596283e+02, // 0x406559DBE25EFD1F
    381 	1.66733948696651168575e+02, // 0x4064D77C81FA21E0
    382 }
    383 var q0S3 = [6]float64{
    384 	4.87588729724587182091e+01,  // 0x40486122BFE343A6
    385 	7.09689221056606015736e+02,  // 0x40862D8386544EB3
    386 	3.70414822620111362994e+03,  // 0x40ACF04BE44DFC63
    387 	6.46042516752568917582e+03,  // 0x40B93C6CD7C76A28
    388 	2.51633368920368957333e+03,  // 0x40A3A8AAD94FB1C0
    389 	-1.49247451836156386662e+02, // 0xC062A7EB201CF40F
    390 }
    391 
    392 // for x in [2.8570,2]=1/[0.3499,0.5]
    393 var q0R2 = [6]float64{
    394 	1.50444444886983272379e-07, // 0x3E84313B54F76BDB
    395 	7.32234265963079278272e-02, // 0x3FB2BEC53E883E34
    396 	1.99819174093815998816e+00, // 0x3FFFF897E727779C
    397 	1.44956029347885735348e+01, // 0x402CFDBFAAF96FE5
    398 	3.16662317504781540833e+01, // 0x403FAA8E29FBDC4A
    399 	1.62527075710929267416e+01, // 0x403040B171814BB4
    400 }
    401 var q0S2 = [6]float64{
    402 	3.03655848355219184498e+01,  // 0x403E5D96F7C07AED
    403 	2.69348118608049844624e+02,  // 0x4070D591E4D14B40
    404 	8.44783757595320139444e+02,  // 0x408A664522B3BF22
    405 	8.82935845112488550512e+02,  // 0x408B977C9C5CC214
    406 	2.12666388511798828631e+02,  // 0x406A95530E001365
    407 	-5.31095493882666946917e+00, // 0xC0153E6AF8B32931
    408 }
    409 
    410 func qzero(x float64) float64 {
    411 	var p, q [6]float64
    412 	if x >= 8 {
    413 		p = q0R8
    414 		q = q0S8
    415 	} else if x >= 4.5454 {
    416 		p = q0R5
    417 		q = q0S5
    418 	} else if x >= 2.8571 {
    419 		p = q0R3
    420 		q = q0S3
    421 	} else if x >= 2 {
    422 		p = q0R2
    423 		q = q0S2
    424 	}
    425 	z := 1 / (x * x)
    426 	r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
    427 	s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
    428 	return (-0.125 + r/s) / x
    429 }
    430