1 /* tc-cr16.c -- Assembler code for the CR16 CPU core. 2 Copyright (C) 2007-2014 Free Software Foundation, Inc. 3 4 Contributed by M R Swami Reddy <MR.Swami.Reddy (at) nsc.com> 5 6 This file is part of GAS, the GNU Assembler. 7 8 GAS is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3, or (at your option) 11 any later version. 12 13 GAS is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GAS; see the file COPYING. If not, write to the 20 Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 #include "as.h" 24 #include "safe-ctype.h" 25 #include "dwarf2dbg.h" 26 #include "opcode/cr16.h" 27 #include "elf/cr16.h" 28 29 30 /* Word is considered here as a 16-bit unsigned short int. */ 31 #define WORD_SHIFT 16 32 33 /* Register is 2-byte size. */ 34 #define REG_SIZE 2 35 36 /* Maximum size of a single instruction (in words). */ 37 #define INSN_MAX_SIZE 3 38 39 /* Maximum bits which may be set in a `mask16' operand. */ 40 #define MAX_REGS_IN_MASK16 8 41 42 /* Assign a number NUM, shifted by SHIFT bytes, into a location 43 pointed by index BYTE of array 'output_opcode'. */ 44 #define CR16_PRINT(BYTE, NUM, SHIFT) output_opcode[BYTE] |= (NUM << SHIFT) 45 46 /* Operand errors. */ 47 typedef enum 48 { 49 OP_LEGAL = 0, /* Legal operand. */ 50 OP_OUT_OF_RANGE, /* Operand not within permitted range. */ 51 OP_NOT_EVEN /* Operand is Odd number, should be even. */ 52 } 53 op_err; 54 55 /* Opcode mnemonics hash table. */ 56 static struct hash_control *cr16_inst_hash; 57 /* CR16 registers hash table. */ 58 static struct hash_control *reg_hash; 59 /* CR16 register pair hash table. */ 60 static struct hash_control *regp_hash; 61 /* CR16 processor registers hash table. */ 62 static struct hash_control *preg_hash; 63 /* CR16 processor registers 32 bit hash table. */ 64 static struct hash_control *pregp_hash; 65 /* Current instruction we're assembling. */ 66 const inst *instruction; 67 68 69 static int code_label = 0; 70 71 /* Global variables. */ 72 73 /* Array to hold an instruction encoding. */ 74 long output_opcode[2]; 75 76 /* Nonzero means a relocatable symbol. */ 77 int relocatable; 78 79 /* A copy of the original instruction (used in error messages). */ 80 char ins_parse[MAX_INST_LEN]; 81 82 /* The current processed argument number. */ 83 int cur_arg_num; 84 85 /* Generic assembler global variables which must be defined by all targets. */ 86 87 /* Characters which always start a comment. */ 88 const char comment_chars[] = "#"; 89 90 /* Characters which start a comment at the beginning of a line. */ 91 const char line_comment_chars[] = "#"; 92 93 /* This array holds machine specific line separator characters. */ 94 const char line_separator_chars[] = ";"; 95 96 /* Chars that can be used to separate mant from exp in floating point nums. */ 97 const char EXP_CHARS[] = "eE"; 98 99 /* Chars that mean this number is a floating point constant as in 0f12.456 */ 100 const char FLT_CHARS[] = "f'"; 101 102 #ifdef OBJ_ELF 103 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */ 104 symbolS * GOT_symbol; 105 #endif 106 107 /* Target-specific multicharacter options, not const-declared at usage. */ 108 const char *md_shortopts = ""; 109 struct option md_longopts[] = 110 { 111 {NULL, no_argument, NULL, 0} 112 }; 113 size_t md_longopts_size = sizeof (md_longopts); 114 115 static void 116 l_cons (int nbytes) 117 { 118 int c; 119 expressionS exp; 120 121 #ifdef md_flush_pending_output 122 md_flush_pending_output (); 123 #endif 124 125 if (is_it_end_of_statement ()) 126 { 127 demand_empty_rest_of_line (); 128 return; 129 } 130 131 #ifdef TC_ADDRESS_BYTES 132 if (nbytes == 0) 133 nbytes = TC_ADDRESS_BYTES (); 134 #endif 135 136 #ifdef md_cons_align 137 md_cons_align (nbytes); 138 #endif 139 140 c = 0; 141 do 142 { 143 unsigned int bits_available = BITS_PER_CHAR * nbytes; 144 char *hold = input_line_pointer; 145 146 expression (&exp); 147 148 if (*input_line_pointer == ':') 149 { 150 /* Bitfields. */ 151 long value = 0; 152 153 for (;;) 154 { 155 unsigned long width; 156 157 if (*input_line_pointer != ':') 158 { 159 input_line_pointer = hold; 160 break; 161 } 162 if (exp.X_op == O_absent) 163 { 164 as_warn (_("using a bit field width of zero")); 165 exp.X_add_number = 0; 166 exp.X_op = O_constant; 167 } 168 169 if (exp.X_op != O_constant) 170 { 171 *input_line_pointer = '\0'; 172 as_bad (_("field width \"%s\" too complex for a bitfield"), hold); 173 *input_line_pointer = ':'; 174 demand_empty_rest_of_line (); 175 return; 176 } 177 178 if ((width = exp.X_add_number) > 179 (unsigned int)(BITS_PER_CHAR * nbytes)) 180 { 181 as_warn (_("field width %lu too big to fit in %d bytes: truncated to %d bits"), width, nbytes, (BITS_PER_CHAR * nbytes)); 182 width = BITS_PER_CHAR * nbytes; 183 } /* Too big. */ 184 185 186 if (width > bits_available) 187 { 188 /* FIXME-SOMEDAY: backing up and reparsing is wasteful. */ 189 input_line_pointer = hold; 190 exp.X_add_number = value; 191 break; 192 } 193 194 /* Skip ':'. */ 195 hold = ++input_line_pointer; 196 197 expression (&exp); 198 if (exp.X_op != O_constant) 199 { 200 char cache = *input_line_pointer; 201 202 *input_line_pointer = '\0'; 203 as_bad (_("field value \"%s\" too complex for a bitfield"), hold); 204 *input_line_pointer = cache; 205 demand_empty_rest_of_line (); 206 return; 207 } 208 209 value |= ((~(-1 << width) & exp.X_add_number) 210 << ((BITS_PER_CHAR * nbytes) - bits_available)); 211 212 if ((bits_available -= width) == 0 213 || is_it_end_of_statement () 214 || *input_line_pointer != ',') 215 break; 216 217 hold = ++input_line_pointer; 218 expression (&exp); 219 } 220 221 exp.X_add_number = value; 222 exp.X_op = O_constant; 223 exp.X_unsigned = 1; 224 } 225 226 if ((*(input_line_pointer) == '@') && (*(input_line_pointer +1) == 'c')) 227 code_label = 1; 228 emit_expr (&exp, (unsigned int) nbytes); 229 ++c; 230 if ((*(input_line_pointer) == '@') && (*(input_line_pointer +1) == 'c')) 231 { 232 input_line_pointer +=3; 233 break; 234 } 235 } 236 while ((*input_line_pointer++ == ',')); 237 238 /* Put terminator back into stream. */ 239 input_line_pointer--; 240 241 demand_empty_rest_of_line (); 242 } 243 244 /* This table describes all the machine specific pseudo-ops 245 the assembler has to support. The fields are: 246 *** Pseudo-op name without dot. 247 *** Function to call to execute this pseudo-op. 248 *** Integer arg to pass to the function. */ 249 250 const pseudo_typeS md_pseudo_table[] = 251 { 252 /* In CR16 machine, align is in bytes (not a ptwo boundary). */ 253 {"align", s_align_bytes, 0}, 254 {"long", l_cons, 4 }, 255 {"4byte", l_cons, 4 }, 256 {0, 0, 0} 257 }; 258 259 /* CR16 relaxation table. */ 260 const relax_typeS md_relax_table[] = 261 { 262 /* bCC */ 263 {0x7f, -0x80, 2, 1}, /* 8 */ 264 {0xfffe, -0x10000, 4, 2}, /* 16 */ 265 {0xfffffe, -0x1000000, 6, 0}, /* 24 */ 266 }; 267 268 /* Return the bit size for a given operand. */ 269 270 static int 271 get_opbits (operand_type op) 272 { 273 if (op < MAX_OPRD) 274 return cr16_optab[op].bit_size; 275 276 return 0; 277 } 278 279 /* Return the argument type of a given operand. */ 280 281 static argtype 282 get_optype (operand_type op) 283 { 284 if (op < MAX_OPRD) 285 return cr16_optab[op].arg_type; 286 else 287 return nullargs; 288 } 289 290 /* Return the flags of a given operand. */ 291 292 static int 293 get_opflags (operand_type op) 294 { 295 if (op < MAX_OPRD) 296 return cr16_optab[op].flags; 297 298 return 0; 299 } 300 301 /* Get the cc code. */ 302 303 static int 304 get_cc (char *cc_name) 305 { 306 unsigned int i; 307 308 for (i = 0; i < cr16_num_cc; i++) 309 if (strcmp (cc_name, cr16_b_cond_tab[i]) == 0) 310 return i; 311 312 return -1; 313 } 314 315 /* Get the core processor register 'reg_name'. */ 316 317 static reg 318 get_register (char *reg_name) 319 { 320 const reg_entry *rreg; 321 322 rreg = (const reg_entry *) hash_find (reg_hash, reg_name); 323 324 if (rreg != NULL) 325 return rreg->value.reg_val; 326 327 return nullregister; 328 } 329 /* Get the core processor register-pair 'reg_name'. */ 330 331 static reg 332 get_register_pair (char *reg_name) 333 { 334 const reg_entry *rreg; 335 char tmp_rp[16]="\0"; 336 337 /* Add '(' and ')' to the reg pair, if its not present. */ 338 if (reg_name[0] != '(') 339 { 340 tmp_rp[0] = '('; 341 strcat (tmp_rp, reg_name); 342 strcat (tmp_rp,")"); 343 rreg = (const reg_entry *) hash_find (regp_hash, tmp_rp); 344 } 345 else 346 rreg = (const reg_entry *) hash_find (regp_hash, reg_name); 347 348 if (rreg != NULL) 349 return rreg->value.reg_val; 350 351 return nullregister; 352 } 353 354 /* Get the index register 'reg_name'. */ 355 356 static reg 357 get_index_register (char *reg_name) 358 { 359 const reg_entry *rreg; 360 361 rreg = (const reg_entry *) hash_find (reg_hash, reg_name); 362 363 if ((rreg != NULL) 364 && ((rreg->value.reg_val == 12) || (rreg->value.reg_val == 13))) 365 return rreg->value.reg_val; 366 367 return nullregister; 368 } 369 /* Get the core processor index register-pair 'reg_name'. */ 370 371 static reg 372 get_index_register_pair (char *reg_name) 373 { 374 const reg_entry *rreg; 375 376 rreg = (const reg_entry *) hash_find (regp_hash, reg_name); 377 378 if (rreg != NULL) 379 { 380 if ((rreg->value.reg_val != 1) || (rreg->value.reg_val != 7) 381 || (rreg->value.reg_val != 9) || (rreg->value.reg_val > 10)) 382 return rreg->value.reg_val; 383 384 as_bad (_("Unknown register pair - index relative mode: `%d'"), rreg->value.reg_val); 385 } 386 387 return nullregister; 388 } 389 390 /* Get the processor register 'preg_name'. */ 391 392 static preg 393 get_pregister (char *preg_name) 394 { 395 const reg_entry *prreg; 396 397 prreg = (const reg_entry *) hash_find (preg_hash, preg_name); 398 399 if (prreg != NULL) 400 return prreg->value.preg_val; 401 402 return nullpregister; 403 } 404 405 /* Get the processor register 'preg_name 32 bit'. */ 406 407 static preg 408 get_pregisterp (char *preg_name) 409 { 410 const reg_entry *prreg; 411 412 prreg = (const reg_entry *) hash_find (pregp_hash, preg_name); 413 414 if (prreg != NULL) 415 return prreg->value.preg_val; 416 417 return nullpregister; 418 } 419 420 421 /* Round up a section size to the appropriate boundary. */ 422 423 valueT 424 md_section_align (segT seg, valueT val) 425 { 426 /* Round .text section to a multiple of 2. */ 427 if (seg == text_section) 428 return (val + 1) & ~1; 429 return val; 430 } 431 432 /* Parse an operand that is machine-specific (remove '*'). */ 433 434 void 435 md_operand (expressionS * exp) 436 { 437 char c = *input_line_pointer; 438 439 switch (c) 440 { 441 case '*': 442 input_line_pointer++; 443 expression (exp); 444 break; 445 default: 446 break; 447 } 448 } 449 450 /* Reset global variables before parsing a new instruction. */ 451 452 static void 453 reset_vars (char *op) 454 { 455 cur_arg_num = relocatable = 0; 456 memset (& output_opcode, '\0', sizeof (output_opcode)); 457 458 /* Save a copy of the original OP (used in error messages). */ 459 strncpy (ins_parse, op, sizeof ins_parse - 1); 460 ins_parse [sizeof ins_parse - 1] = 0; 461 } 462 463 /* This macro decides whether a particular reloc is an entry in a 464 switch table. It is used when relaxing, because the linker needs 465 to know about all such entries so that it can adjust them if 466 necessary. */ 467 468 #define SWITCH_TABLE(fix) \ 469 ( (fix)->fx_addsy != NULL \ 470 && (fix)->fx_subsy != NULL \ 471 && S_GET_SEGMENT ((fix)->fx_addsy) == \ 472 S_GET_SEGMENT ((fix)->fx_subsy) \ 473 && S_GET_SEGMENT (fix->fx_addsy) != undefined_section \ 474 && ( (fix)->fx_r_type == BFD_RELOC_CR16_NUM8 \ 475 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM16 \ 476 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM32 \ 477 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM32a)) 478 479 /* See whether we need to force a relocation into the output file. 480 This is used to force out switch and PC relative relocations when 481 relaxing. */ 482 483 int 484 cr16_force_relocation (fixS *fix) 485 { 486 if (generic_force_reloc (fix) || SWITCH_TABLE (fix)) 487 return 1; 488 489 return 0; 490 } 491 492 /* Record a fixup for a cons expression. */ 493 494 void 495 cr16_cons_fix_new (fragS *frag, int offset, int len, expressionS *exp, 496 bfd_reloc_code_real_type rtype) 497 { 498 switch (len) 499 { 500 default: rtype = BFD_RELOC_NONE; break; 501 case 1: rtype = BFD_RELOC_CR16_NUM8 ; break; 502 case 2: rtype = BFD_RELOC_CR16_NUM16; break; 503 case 4: 504 if (code_label) 505 { 506 rtype = BFD_RELOC_CR16_NUM32a; 507 code_label = 0; 508 } 509 else 510 rtype = BFD_RELOC_CR16_NUM32; 511 break; 512 } 513 514 fix_new_exp (frag, offset, len, exp, 0, rtype); 515 } 516 517 /* Generate a relocation entry for a fixup. */ 518 519 arelent * 520 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS * fixP) 521 { 522 arelent * reloc; 523 524 /* If symbols are local and resolved, then no relocation needed. */ 525 if ( ((fixP->fx_addsy) 526 && (S_GET_SEGMENT (fixP->fx_addsy) == absolute_section)) 527 || ((fixP->fx_subsy) 528 && (S_GET_SEGMENT (fixP->fx_subsy) == absolute_section))) 529 return NULL; 530 531 reloc = xmalloc (sizeof (arelent)); 532 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *)); 533 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); 534 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; 535 reloc->addend = fixP->fx_offset; 536 537 if (fixP->fx_subsy != NULL) 538 { 539 if (SWITCH_TABLE (fixP)) 540 { 541 /* Keep the current difference in the addend. */ 542 reloc->addend = (S_GET_VALUE (fixP->fx_addsy) 543 - S_GET_VALUE (fixP->fx_subsy) + fixP->fx_offset); 544 545 switch (fixP->fx_r_type) 546 { 547 case BFD_RELOC_CR16_NUM8: 548 fixP->fx_r_type = BFD_RELOC_CR16_SWITCH8; 549 break; 550 case BFD_RELOC_CR16_NUM16: 551 fixP->fx_r_type = BFD_RELOC_CR16_SWITCH16; 552 break; 553 case BFD_RELOC_CR16_NUM32: 554 fixP->fx_r_type = BFD_RELOC_CR16_SWITCH32; 555 break; 556 case BFD_RELOC_CR16_NUM32a: 557 fixP->fx_r_type = BFD_RELOC_CR16_NUM32a; 558 break; 559 default: 560 abort (); 561 break; 562 } 563 } 564 else 565 { 566 /* We only resolve difference expressions in the same section. */ 567 as_bad_where (fixP->fx_file, fixP->fx_line, 568 _("can't resolve `%s' {%s section} - `%s' {%s section}"), 569 fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : "0", 570 segment_name (fixP->fx_addsy 571 ? S_GET_SEGMENT (fixP->fx_addsy) 572 : absolute_section), 573 S_GET_NAME (fixP->fx_subsy), 574 segment_name (S_GET_SEGMENT (fixP->fx_addsy))); 575 } 576 } 577 #ifdef OBJ_ELF 578 if ((fixP->fx_r_type == BFD_RELOC_CR16_GOT_REGREL20) 579 && GOT_symbol 580 && fixP->fx_addsy == GOT_symbol) 581 { 582 reloc->addend = fixP->fx_offset = reloc->address; 583 } 584 else if ((fixP->fx_r_type == BFD_RELOC_CR16_GOTC_REGREL20) 585 && GOT_symbol 586 && fixP->fx_addsy == GOT_symbol) 587 { 588 reloc->addend = fixP->fx_offset = reloc->address; 589 } 590 #endif 591 592 gas_assert ((int) fixP->fx_r_type > 0); 593 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); 594 595 if (reloc->howto == NULL) 596 { 597 as_bad_where (fixP->fx_file, fixP->fx_line, 598 _("internal error: reloc %d (`%s') not supported by object file format"), 599 fixP->fx_r_type, 600 bfd_get_reloc_code_name (fixP->fx_r_type)); 601 return NULL; 602 } 603 gas_assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); 604 605 return reloc; 606 } 607 608 /* Prepare machine-dependent frags for relaxation. */ 609 610 int 611 md_estimate_size_before_relax (fragS *fragp, asection *seg) 612 { 613 /* If symbol is undefined or located in a different section, 614 select the largest supported relocation. */ 615 relax_substateT subtype; 616 relax_substateT rlx_state[] = {0, 2}; 617 618 for (subtype = 0; subtype < ARRAY_SIZE (rlx_state); subtype += 2) 619 { 620 if (fragp->fr_subtype == rlx_state[subtype] 621 && (!S_IS_DEFINED (fragp->fr_symbol) 622 || seg != S_GET_SEGMENT (fragp->fr_symbol))) 623 { 624 fragp->fr_subtype = rlx_state[subtype + 1]; 625 break; 626 } 627 } 628 629 if (fragp->fr_subtype >= ARRAY_SIZE (md_relax_table)) 630 abort (); 631 632 return md_relax_table[fragp->fr_subtype].rlx_length; 633 } 634 635 void 636 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, fragS *fragP) 637 { 638 /* 'opcode' points to the start of the instruction, whether 639 we need to change the instruction's fixed encoding. */ 640 char *opcode = fragP->fr_literal + fragP->fr_fix; 641 bfd_reloc_code_real_type reloc; 642 643 subseg_change (sec, 0); 644 645 switch (fragP->fr_subtype) 646 { 647 case 0: 648 reloc = BFD_RELOC_CR16_DISP8; 649 break; 650 case 1: 651 /* If the subtype is not changed due to :m operand qualifier, 652 then no need to update the opcode value. */ 653 if ((int)opcode[1] != 0x18) 654 { 655 opcode[0] = (opcode[0] & 0xf0); 656 opcode[1] = 0x18; 657 } 658 reloc = BFD_RELOC_CR16_DISP16; 659 break; 660 case 2: 661 /* If the subtype is not changed due to :l operand qualifier, 662 then no need to update the opcode value. */ 663 if ((int)opcode[1] != 0) 664 { 665 opcode[2] = opcode[0]; 666 opcode[0] = opcode[1]; 667 opcode[1] = 0x0; 668 } 669 reloc = BFD_RELOC_CR16_DISP24; 670 break; 671 default: 672 abort(); 673 } 674 675 fix_new (fragP, fragP->fr_fix, 676 bfd_get_reloc_size (bfd_reloc_type_lookup (stdoutput, reloc)), 677 fragP->fr_symbol, fragP->fr_offset, 1, reloc); 678 fragP->fr_var = 0; 679 fragP->fr_fix += md_relax_table[fragP->fr_subtype].rlx_length; 680 } 681 682 symbolS * 683 md_undefined_symbol (char *name) 684 { 685 if (*name == '_' && *(name + 1) == 'G' 686 && strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) 687 { 688 if (!GOT_symbol) 689 { 690 if (symbol_find (name)) 691 as_bad (_("GOT already in symbol table")); 692 GOT_symbol = symbol_new (name, undefined_section, 693 (valueT) 0, &zero_address_frag); 694 } 695 return GOT_symbol; 696 } 697 return 0; 698 } 699 700 /* Process machine-dependent command line options. Called once for 701 each option on the command line that the machine-independent part of 702 GAS does not understand. */ 703 704 int 705 md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED) 706 { 707 return 0; 708 } 709 710 /* Machine-dependent usage-output. */ 711 712 void 713 md_show_usage (FILE *stream ATTRIBUTE_UNUSED) 714 { 715 return; 716 } 717 718 char * 719 md_atof (int type, char *litP, int *sizeP) 720 { 721 return ieee_md_atof (type, litP, sizeP, target_big_endian); 722 } 723 724 /* Apply a fixS (fixup of an instruction or data that we didn't have 725 enough info to complete immediately) to the data in a frag. 726 Since linkrelax is nonzero and TC_LINKRELAX_FIXUP is defined to disable 727 relaxation of debug sections, this function is called only when 728 fixuping relocations of debug sections. */ 729 730 void 731 md_apply_fix (fixS *fixP, valueT *valP, segT seg) 732 { 733 valueT val = * valP; 734 735 if (fixP->fx_addsy == NULL 736 && fixP->fx_pcrel == 0) 737 fixP->fx_done = 1; 738 else if (fixP->fx_pcrel == 1 739 && fixP->fx_addsy != NULL 740 && S_GET_SEGMENT (fixP->fx_addsy) == seg) 741 fixP->fx_done = 1; 742 else 743 fixP->fx_done = 0; 744 745 if (fixP->fx_addsy != NULL && !fixP->fx_pcrel) 746 { 747 val = fixP->fx_offset; 748 fixP->fx_done = 1; 749 } 750 751 if (fixP->fx_done) 752 { 753 char *buf = fixP->fx_frag->fr_literal + fixP->fx_where; 754 755 fixP->fx_offset = 0; 756 757 switch (fixP->fx_r_type) 758 { 759 case BFD_RELOC_CR16_NUM8: 760 bfd_put_8 (stdoutput, (unsigned char) val, buf); 761 break; 762 case BFD_RELOC_CR16_NUM16: 763 bfd_put_16 (stdoutput, val, buf); 764 break; 765 case BFD_RELOC_CR16_NUM32: 766 bfd_put_32 (stdoutput, val, buf); 767 break; 768 case BFD_RELOC_CR16_NUM32a: 769 bfd_put_32 (stdoutput, val, buf); 770 break; 771 default: 772 /* We shouldn't ever get here because linkrelax is nonzero. */ 773 abort (); 774 break; 775 } 776 fixP->fx_done = 0; 777 } 778 else 779 fixP->fx_offset = * valP; 780 } 781 782 /* The location from which a PC relative jump should be calculated, 783 given a PC relative reloc. */ 784 785 long 786 md_pcrel_from (fixS *fixp) 787 { 788 return fixp->fx_frag->fr_address + fixp->fx_where; 789 } 790 791 static void 792 initialise_reg_hash_table (struct hash_control ** hash_table, 793 const reg_entry * register_table, 794 const unsigned int num_entries) 795 { 796 const reg_entry * rreg; 797 const char *hashret; 798 799 if ((* hash_table = hash_new ()) == NULL) 800 as_fatal (_("Virtual memory exhausted")); 801 802 for (rreg = register_table; 803 rreg < (register_table + num_entries); 804 rreg++) 805 { 806 hashret = hash_insert (* hash_table, rreg->name, (char *) rreg); 807 if (hashret) 808 as_fatal (_("Internal Error: Can't hash %s: %s"), 809 rreg->name, hashret); 810 } 811 } 812 813 /* This function is called once, at assembler startup time. This should 814 set up all the tables, etc that the MD part of the assembler needs. */ 815 816 void 817 md_begin (void) 818 { 819 int i = 0; 820 821 /* Set up a hash table for the instructions. */ 822 if ((cr16_inst_hash = hash_new ()) == NULL) 823 as_fatal (_("Virtual memory exhausted")); 824 825 while (cr16_instruction[i].mnemonic != NULL) 826 { 827 const char *hashret; 828 const char *mnemonic = cr16_instruction[i].mnemonic; 829 830 hashret = hash_insert (cr16_inst_hash, mnemonic, 831 (char *)(cr16_instruction + i)); 832 833 if (hashret != NULL && *hashret != '\0') 834 as_fatal (_("Can't hash `%s': %s\n"), cr16_instruction[i].mnemonic, 835 *hashret == 0 ? _("(unknown reason)") : hashret); 836 837 /* Insert unique names into hash table. The CR16 instruction set 838 has many identical opcode names that have different opcodes based 839 on the operands. This hash table then provides a quick index to 840 the first opcode with a particular name in the opcode table. */ 841 do 842 { 843 ++i; 844 } 845 while (cr16_instruction[i].mnemonic != NULL 846 && streq (cr16_instruction[i].mnemonic, mnemonic)); 847 } 848 849 /* Initialize reg_hash hash table. */ 850 initialise_reg_hash_table (& reg_hash, cr16_regtab, NUMREGS); 851 /* Initialize regp_hash hash table. */ 852 initialise_reg_hash_table (& regp_hash, cr16_regptab, NUMREGPS); 853 /* Initialize preg_hash hash table. */ 854 initialise_reg_hash_table (& preg_hash, cr16_pregtab, NUMPREGS); 855 /* Initialize pregp_hash hash table. */ 856 initialise_reg_hash_table (& pregp_hash, cr16_pregptab, NUMPREGPS); 857 858 /* Set linkrelax here to avoid fixups in most sections. */ 859 linkrelax = 1; 860 } 861 862 /* Process constants (immediate/absolute) 863 and labels (jump targets/Memory locations). */ 864 865 static void 866 process_label_constant (char *str, ins * cr16_ins) 867 { 868 char *saved_input_line_pointer; 869 int symbol_with_at = 0; 870 int symbol_with_s = 0; 871 int symbol_with_m = 0; 872 int symbol_with_l = 0; 873 int symbol_with_at_got = 0; 874 int symbol_with_at_gotc = 0; 875 argument *cur_arg = cr16_ins->arg + cur_arg_num; /* Current argument. */ 876 877 saved_input_line_pointer = input_line_pointer; 878 input_line_pointer = str; 879 880 expression (&cr16_ins->exp); 881 882 switch (cr16_ins->exp.X_op) 883 { 884 case O_big: 885 case O_absent: 886 /* Missing or bad expr becomes absolute 0. */ 887 as_bad (_("missing or invalid displacement expression `%s' taken as 0"), 888 str); 889 cr16_ins->exp.X_op = O_constant; 890 cr16_ins->exp.X_add_number = 0; 891 cr16_ins->exp.X_add_symbol = NULL; 892 cr16_ins->exp.X_op_symbol = NULL; 893 /* Fall through. */ 894 895 case O_constant: 896 cur_arg->X_op = O_constant; 897 cur_arg->constant = cr16_ins->exp.X_add_number; 898 break; 899 900 case O_symbol: 901 case O_subtract: 902 case O_add: 903 cur_arg->X_op = O_symbol; 904 cur_arg->constant = cr16_ins->exp.X_add_number; 905 cr16_ins->exp.X_add_number = 0; 906 cr16_ins->rtype = BFD_RELOC_NONE; 907 relocatable = 1; 908 909 if (strneq (input_line_pointer, "@c", 2)) 910 symbol_with_at = 1; 911 912 if (strneq (input_line_pointer, "@l", 2) 913 || strneq (input_line_pointer, ":l", 2)) 914 symbol_with_l = 1; 915 916 if (strneq (input_line_pointer, "@m", 2) 917 || strneq (input_line_pointer, ":m", 2)) 918 symbol_with_m = 1; 919 920 if (strneq (input_line_pointer, "@s", 2) 921 || strneq (input_line_pointer, ":s", 2)) 922 symbol_with_s = 1; 923 924 if (strneq (input_line_pointer, "@cGOT", 5) 925 || strneq (input_line_pointer, "@cgot", 5)) 926 { 927 if (GOT_symbol == NULL) 928 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME); 929 930 symbol_with_at_gotc = 1; 931 } 932 else if (strneq (input_line_pointer, "@GOT", 4) 933 || strneq (input_line_pointer, "@got", 4)) 934 { 935 if ((strneq (input_line_pointer, "+", 1)) 936 || (strneq (input_line_pointer, "-", 1))) 937 as_warn (_("GOT bad expression with %s."), input_line_pointer); 938 939 if (GOT_symbol == NULL) 940 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME); 941 942 symbol_with_at_got = 1; 943 } 944 945 switch (cur_arg->type) 946 { 947 case arg_cr: 948 if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)) 949 { 950 if (symbol_with_at_got) 951 cr16_ins->rtype = BFD_RELOC_CR16_GOT_REGREL20; 952 else if (symbol_with_at_gotc) 953 cr16_ins->rtype = BFD_RELOC_CR16_GOTC_REGREL20; 954 else if (cur_arg->size == 20) 955 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20; 956 else 957 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20a; 958 } 959 break; 960 961 case arg_crp: 962 if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)) 963 { 964 if (symbol_with_at_got) 965 cr16_ins->rtype = BFD_RELOC_CR16_GOT_REGREL20; 966 else if (symbol_with_at_gotc) 967 cr16_ins->rtype = BFD_RELOC_CR16_GOTC_REGREL20; 968 } else { 969 switch (instruction->size) 970 { 971 case 1: 972 switch (cur_arg->size) 973 { 974 case 0: 975 cr16_ins->rtype = BFD_RELOC_CR16_REGREL0; 976 break; 977 case 4: 978 if (IS_INSN_MNEMONIC ("loadb") || IS_INSN_MNEMONIC ("storb")) 979 cr16_ins->rtype = BFD_RELOC_CR16_REGREL4; 980 else 981 cr16_ins->rtype = BFD_RELOC_CR16_REGREL4a; 982 break; 983 default: break; 984 } 985 break; 986 case 2: 987 cr16_ins->rtype = BFD_RELOC_CR16_REGREL16; 988 break; 989 case 3: 990 if (cur_arg->size == 20) 991 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20; 992 else 993 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20a; 994 break; 995 default: 996 break; 997 } 998 } 999 break; 1000 1001 case arg_idxr: 1002 if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)) 1003 { 1004 if (symbol_with_at_got) 1005 cr16_ins->rtype = BFD_RELOC_CR16_GOT_REGREL20; 1006 else if (symbol_with_at_gotc) 1007 cr16_ins->rtype = BFD_RELOC_CR16_GOTC_REGREL20; 1008 else 1009 cr16_ins->rtype = BFD_RELOC_CR16_REGREL20; 1010 } 1011 break; 1012 1013 case arg_idxrp: 1014 if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)) 1015 { 1016 if (symbol_with_at_got) 1017 cr16_ins->rtype = BFD_RELOC_CR16_GOT_REGREL20; 1018 else if (symbol_with_at_gotc) 1019 cr16_ins->rtype = BFD_RELOC_CR16_GOTC_REGREL20; 1020 else { 1021 switch (instruction->size) 1022 { 1023 case 1: cr16_ins->rtype = BFD_RELOC_CR16_REGREL0; break; 1024 case 2: cr16_ins->rtype = BFD_RELOC_CR16_REGREL14; break; 1025 case 3: cr16_ins->rtype = BFD_RELOC_CR16_REGREL20; break; 1026 default: break; 1027 } 1028 } 1029 } 1030 break; 1031 1032 case arg_c: 1033 if (IS_INSN_MNEMONIC ("bal")) 1034 cr16_ins->rtype = BFD_RELOC_CR16_DISP24; 1035 else if (IS_INSN_TYPE (BRANCH_INS)) 1036 { 1037 if (symbol_with_l) 1038 cr16_ins->rtype = BFD_RELOC_CR16_DISP24; 1039 else if (symbol_with_m) 1040 cr16_ins->rtype = BFD_RELOC_CR16_DISP16; 1041 else 1042 cr16_ins->rtype = BFD_RELOC_CR16_DISP8; 1043 } 1044 else if (IS_INSN_TYPE (STOR_IMM_INS) || IS_INSN_TYPE (LD_STOR_INS) 1045 || IS_INSN_TYPE (CSTBIT_INS)) 1046 { 1047 if (symbol_with_s) 1048 as_bad (_("operand %d: illegal use expression: `%s`"), cur_arg_num + 1, str); 1049 if (symbol_with_at_got) 1050 cr16_ins->rtype = BFD_RELOC_CR16_GOT_REGREL20; 1051 else if (symbol_with_at_gotc) 1052 cr16_ins->rtype = BFD_RELOC_CR16_GOTC_REGREL20; 1053 else if (symbol_with_m) 1054 cr16_ins->rtype = BFD_RELOC_CR16_ABS20; 1055 else /* Default to (symbol_with_l) */ 1056 cr16_ins->rtype = BFD_RELOC_CR16_ABS24; 1057 } 1058 else if (IS_INSN_TYPE (BRANCH_NEQ_INS)) 1059 cr16_ins->rtype = BFD_RELOC_CR16_DISP4; 1060 break; 1061 1062 case arg_ic: 1063 if (IS_INSN_TYPE (ARITH_INS)) 1064 { 1065 if (symbol_with_at_got) 1066 cr16_ins->rtype = BFD_RELOC_CR16_GOT_REGREL20; 1067 else if (symbol_with_at_gotc) 1068 cr16_ins->rtype = BFD_RELOC_CR16_GOTC_REGREL20; 1069 else if (symbol_with_s) 1070 cr16_ins->rtype = BFD_RELOC_CR16_IMM4; 1071 else if (symbol_with_m) 1072 cr16_ins->rtype = BFD_RELOC_CR16_IMM20; 1073 else if (symbol_with_at) 1074 cr16_ins->rtype = BFD_RELOC_CR16_IMM32a; 1075 else /* Default to (symbol_with_l) */ 1076 cr16_ins->rtype = BFD_RELOC_CR16_IMM32; 1077 } 1078 else if (IS_INSN_TYPE (ARITH_BYTE_INS)) 1079 { 1080 cr16_ins->rtype = BFD_RELOC_CR16_IMM16; 1081 } 1082 break; 1083 default: 1084 break; 1085 } 1086 break; 1087 1088 default: 1089 cur_arg->X_op = cr16_ins->exp.X_op; 1090 break; 1091 } 1092 1093 input_line_pointer = saved_input_line_pointer; 1094 return; 1095 } 1096 1097 /* Retrieve the opcode image of a given register. 1098 If the register is illegal for the current instruction, 1099 issue an error. */ 1100 1101 static int 1102 getreg_image (reg r) 1103 { 1104 const reg_entry *rreg; 1105 char *reg_name; 1106 int is_procreg = 0; /* Nonzero means argument should be processor reg. */ 1107 1108 /* Check whether the register is in registers table. */ 1109 if (r < MAX_REG) 1110 rreg = cr16_regtab + r; 1111 else /* Register not found. */ 1112 { 1113 as_bad (_("Unknown register: `%d'"), r); 1114 return 0; 1115 } 1116 1117 reg_name = rreg->name; 1118 1119 /* Issue a error message when register is illegal. */ 1120 #define IMAGE_ERR \ 1121 as_bad (_("Illegal register (`%s') in Instruction: `%s'"), \ 1122 reg_name, ins_parse); \ 1123 break; 1124 1125 switch (rreg->type) 1126 { 1127 case CR16_R_REGTYPE: 1128 if (! is_procreg) 1129 return rreg->image; 1130 else 1131 IMAGE_ERR; 1132 1133 case CR16_P_REGTYPE: 1134 return rreg->image; 1135 break; 1136 1137 default: 1138 IMAGE_ERR; 1139 } 1140 1141 return 0; 1142 } 1143 1144 /* Parsing different types of operands 1145 -> constants Immediate/Absolute/Relative numbers 1146 -> Labels Relocatable symbols 1147 -> (reg pair base) Register pair base 1148 -> (rbase) Register base 1149 -> disp(rbase) Register relative 1150 -> [rinx]disp(reg pair) Register index with reg pair mode 1151 -> disp(rbase,ridx,scl) Register index mode. */ 1152 1153 static void 1154 set_operand (char *operand, ins * cr16_ins) 1155 { 1156 char *operandS; /* Pointer to start of sub-opearand. */ 1157 char *operandE; /* Pointer to end of sub-opearand. */ 1158 1159 argument *cur_arg = &cr16_ins->arg[cur_arg_num]; /* Current argument. */ 1160 1161 /* Initialize pointers. */ 1162 operandS = operandE = operand; 1163 1164 switch (cur_arg->type) 1165 { 1166 case arg_ic: /* Case $0x18. */ 1167 operandS++; 1168 case arg_c: /* Case 0x18. */ 1169 /* Set constant. */ 1170 process_label_constant (operandS, cr16_ins); 1171 1172 if (cur_arg->type != arg_ic) 1173 cur_arg->type = arg_c; 1174 break; 1175 1176 case arg_icr: /* Case $0x18(r1). */ 1177 operandS++; 1178 case arg_cr: /* Case 0x18(r1). */ 1179 /* Set displacement constant. */ 1180 while (*operandE != '(') 1181 operandE++; 1182 *operandE = '\0'; 1183 process_label_constant (operandS, cr16_ins); 1184 operandS = operandE; 1185 case arg_rbase: /* Case (r1) or (r1,r0). */ 1186 operandS++; 1187 /* Set register base. */ 1188 while (*operandE != ')') 1189 operandE++; 1190 *operandE = '\0'; 1191 if ((cur_arg->r = get_register (operandS)) == nullregister) 1192 as_bad (_("Illegal register `%s' in Instruction `%s'"), 1193 operandS, ins_parse); 1194 1195 /* set the arg->rp, if reg is "r12" or "r13" or "14" or "15" */ 1196 if ((cur_arg->type != arg_rbase) 1197 && ((getreg_image (cur_arg->r) == 12) 1198 || (getreg_image (cur_arg->r) == 13) 1199 || (getreg_image (cur_arg->r) == 14) 1200 || (getreg_image (cur_arg->r) == 15))) 1201 { 1202 cur_arg->type = arg_crp; 1203 cur_arg->rp = cur_arg->r; 1204 } 1205 break; 1206 1207 case arg_crp: /* Case 0x18(r1,r0). */ 1208 /* Set displacement constant. */ 1209 while (*operandE != '(') 1210 operandE++; 1211 *operandE = '\0'; 1212 process_label_constant (operandS, cr16_ins); 1213 operandS = operandE; 1214 operandS++; 1215 /* Set register pair base. */ 1216 while (*operandE != ')') 1217 operandE++; 1218 *operandE = '\0'; 1219 if ((cur_arg->rp = get_register_pair (operandS)) == nullregister) 1220 as_bad (_("Illegal register pair `%s' in Instruction `%s'"), 1221 operandS, ins_parse); 1222 break; 1223 1224 case arg_idxr: 1225 /* Set register pair base. */ 1226 if ((strchr (operandS,'(') != NULL)) 1227 { 1228 while ((*operandE != '(') && (! ISSPACE (*operandE))) 1229 operandE++; 1230 if ((cur_arg->rp = get_index_register_pair (operandE)) == nullregister) 1231 as_bad (_("Illegal register pair `%s' in Instruction `%s'"), 1232 operandS, ins_parse); 1233 *operandE++ = '\0'; 1234 cur_arg->type = arg_idxrp; 1235 } 1236 else 1237 cur_arg->rp = -1; 1238 1239 operandE = operandS; 1240 /* Set displacement constant. */ 1241 while (*operandE != ']') 1242 operandE++; 1243 process_label_constant (++operandE, cr16_ins); 1244 *operandE++ = '\0'; 1245 operandE = operandS; 1246 1247 /* Set index register . */ 1248 operandS = strchr (operandE,'['); 1249 if (operandS != NULL) 1250 { /* Eliminate '[', detach from rest of operand. */ 1251 *operandS++ = '\0'; 1252 1253 operandE = strchr (operandS, ']'); 1254 1255 if (operandE == NULL) 1256 as_bad (_("unmatched '['")); 1257 else 1258 { /* Eliminate ']' and make sure it was the last thing 1259 in the string. */ 1260 *operandE = '\0'; 1261 if (*(operandE + 1) != '\0') 1262 as_bad (_("garbage after index spec ignored")); 1263 } 1264 } 1265 1266 if ((cur_arg->i_r = get_index_register (operandS)) == nullregister) 1267 as_bad (_("Illegal register `%s' in Instruction `%s'"), 1268 operandS, ins_parse); 1269 *operandE = '\0'; 1270 *operandS = '\0'; 1271 break; 1272 1273 default: 1274 break; 1275 } 1276 } 1277 1278 /* Parse a single operand. 1279 operand - Current operand to parse. 1280 cr16_ins - Current assembled instruction. */ 1281 1282 static void 1283 parse_operand (char *operand, ins * cr16_ins) 1284 { 1285 int ret_val; 1286 argument *cur_arg = cr16_ins->arg + cur_arg_num; /* Current argument. */ 1287 1288 /* Initialize the type to NULL before parsing. */ 1289 cur_arg->type = nullargs; 1290 1291 /* Check whether this is a condition code . */ 1292 if ((IS_INSN_MNEMONIC ("b")) && ((ret_val = get_cc (operand)) != -1)) 1293 { 1294 cur_arg->type = arg_cc; 1295 cur_arg->cc = ret_val; 1296 cur_arg->X_op = O_register; 1297 return; 1298 } 1299 1300 /* Check whether this is a general processor register. */ 1301 if ((ret_val = get_register (operand)) != nullregister) 1302 { 1303 cur_arg->type = arg_r; 1304 cur_arg->r = ret_val; 1305 cur_arg->X_op = 0; 1306 return; 1307 } 1308 1309 /* Check whether this is a general processor register pair. */ 1310 if ((operand[0] == '(') 1311 && ((ret_val = get_register_pair (operand)) != nullregister)) 1312 { 1313 cur_arg->type = arg_rp; 1314 cur_arg->rp = ret_val; 1315 cur_arg->X_op = O_register; 1316 return; 1317 } 1318 1319 /* Check whether the operand is a processor register. 1320 For "lprd" and "sprd" instruction, only 32 bit 1321 processor registers used. */ 1322 if (!(IS_INSN_MNEMONIC ("lprd") || (IS_INSN_MNEMONIC ("sprd"))) 1323 && ((ret_val = get_pregister (operand)) != nullpregister)) 1324 { 1325 cur_arg->type = arg_pr; 1326 cur_arg->pr = ret_val; 1327 cur_arg->X_op = O_register; 1328 return; 1329 } 1330 1331 /* Check whether this is a processor register - 32 bit. */ 1332 if ((ret_val = get_pregisterp (operand)) != nullpregister) 1333 { 1334 cur_arg->type = arg_prp; 1335 cur_arg->prp = ret_val; 1336 cur_arg->X_op = O_register; 1337 return; 1338 } 1339 1340 /* Deal with special characters. */ 1341 switch (operand[0]) 1342 { 1343 case '$': 1344 if (strchr (operand, '(') != NULL) 1345 cur_arg->type = arg_icr; 1346 else 1347 cur_arg->type = arg_ic; 1348 goto set_params; 1349 break; 1350 1351 case '(': 1352 cur_arg->type = arg_rbase; 1353 goto set_params; 1354 break; 1355 1356 case '[': 1357 cur_arg->type = arg_idxr; 1358 goto set_params; 1359 break; 1360 1361 default: 1362 break; 1363 } 1364 1365 if (strchr (operand, '(') != NULL) 1366 { 1367 if (strchr (operand, ',') != NULL 1368 && (strchr (operand, ',') > strchr (operand, '('))) 1369 cur_arg->type = arg_crp; 1370 else 1371 cur_arg->type = arg_cr; 1372 } 1373 else 1374 cur_arg->type = arg_c; 1375 1376 /* Parse an operand according to its type. */ 1377 set_params: 1378 cur_arg->constant = 0; 1379 set_operand (operand, cr16_ins); 1380 } 1381 1382 /* Parse the various operands. Each operand is then analyzed to fillup 1383 the fields in the cr16_ins data structure. */ 1384 1385 static void 1386 parse_operands (ins * cr16_ins, char *operands) 1387 { 1388 char *operandS; /* Operands string. */ 1389 char *operandH, *operandT; /* Single operand head/tail pointers. */ 1390 int allocated = 0; /* Indicates a new operands string was allocated.*/ 1391 char *operand[MAX_OPERANDS];/* Separating the operands. */ 1392 int op_num = 0; /* Current operand number we are parsing. */ 1393 int bracket_flag = 0; /* Indicates a bracket '(' was found. */ 1394 int sq_bracket_flag = 0; /* Indicates a square bracket '[' was found. */ 1395 1396 /* Preprocess the list of registers, if necessary. */ 1397 operandS = operandH = operandT = operands; 1398 1399 while (*operandT != '\0') 1400 { 1401 if (*operandT == ',' && bracket_flag != 1 && sq_bracket_flag != 1) 1402 { 1403 *operandT++ = '\0'; 1404 operand[op_num++] = strdup (operandH); 1405 operandH = operandT; 1406 continue; 1407 } 1408 1409 if (*operandT == ' ') 1410 as_bad (_("Illegal operands (whitespace): `%s'"), ins_parse); 1411 1412 if (*operandT == '(') 1413 bracket_flag = 1; 1414 else if (*operandT == '[') 1415 sq_bracket_flag = 1; 1416 1417 if (*operandT == ')') 1418 { 1419 if (bracket_flag) 1420 bracket_flag = 0; 1421 else 1422 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 1423 } 1424 else if (*operandT == ']') 1425 { 1426 if (sq_bracket_flag) 1427 sq_bracket_flag = 0; 1428 else 1429 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 1430 } 1431 1432 if (bracket_flag == 1 && *operandT == ')') 1433 bracket_flag = 0; 1434 else if (sq_bracket_flag == 1 && *operandT == ']') 1435 sq_bracket_flag = 0; 1436 1437 operandT++; 1438 } 1439 1440 /* Adding the last operand. */ 1441 operand[op_num++] = strdup (operandH); 1442 cr16_ins->nargs = op_num; 1443 1444 /* Verifying correct syntax of operands (all brackets should be closed). */ 1445 if (bracket_flag || sq_bracket_flag) 1446 as_fatal (_("Missing matching brackets : `%s'"), ins_parse); 1447 1448 /* Now we parse each operand separately. */ 1449 for (op_num = 0; op_num < cr16_ins->nargs; op_num++) 1450 { 1451 cur_arg_num = op_num; 1452 parse_operand (operand[op_num], cr16_ins); 1453 free (operand[op_num]); 1454 } 1455 1456 if (allocated) 1457 free (operandS); 1458 } 1459 1460 /* Get the trap index in dispatch table, given its name. 1461 This routine is used by assembling the 'excp' instruction. */ 1462 1463 static int 1464 gettrap (char *s) 1465 { 1466 const trap_entry *trap; 1467 1468 for (trap = cr16_traps; trap < (cr16_traps + NUMTRAPS); trap++) 1469 if (strcasecmp (trap->name, s) == 0) 1470 return trap->entry; 1471 1472 /* To make compatable with CR16 4.1 tools, the below 3-lines of 1473 * code added. Refer: Development Tracker item #123 */ 1474 for (trap = cr16_traps; trap < (cr16_traps + NUMTRAPS); trap++) 1475 if (trap->entry == (unsigned int) atoi (s)) 1476 return trap->entry; 1477 1478 as_bad (_("Unknown exception: `%s'"), s); 1479 return 0; 1480 } 1481 1482 /* Top level module where instruction parsing starts. 1483 cr16_ins - data structure holds some information. 1484 operands - holds the operands part of the whole instruction. */ 1485 1486 static void 1487 parse_insn (ins *insn, char *operands) 1488 { 1489 int i; 1490 1491 /* Handle instructions with no operands. */ 1492 for (i = 0; cr16_no_op_insn[i] != NULL; i++) 1493 { 1494 if (streq (cr16_no_op_insn[i], instruction->mnemonic)) 1495 { 1496 insn->nargs = 0; 1497 return; 1498 } 1499 } 1500 1501 /* Handle 'excp' instructions. */ 1502 if (IS_INSN_MNEMONIC ("excp")) 1503 { 1504 insn->nargs = 1; 1505 insn->arg[0].type = arg_ic; 1506 insn->arg[0].constant = gettrap (operands); 1507 insn->arg[0].X_op = O_constant; 1508 return; 1509 } 1510 1511 if (operands != NULL) 1512 parse_operands (insn, operands); 1513 } 1514 1515 /* bCC instruction requires special handling. */ 1516 static char * 1517 get_b_cc (char * op) 1518 { 1519 unsigned int i; 1520 char op1[5]; 1521 1522 for (i = 1; i < strlen (op); i++) 1523 op1[i-1] = op[i]; 1524 1525 op1[i-1] = '\0'; 1526 1527 for (i = 0; i < cr16_num_cc ; i++) 1528 if (streq (op1, cr16_b_cond_tab[i])) 1529 return (char *) cr16_b_cond_tab[i]; 1530 1531 return NULL; 1532 } 1533 1534 /* bCC instruction requires special handling. */ 1535 static int 1536 is_bcc_insn (char * op) 1537 { 1538 if (!(streq (op, "bal") || streq (op, "beq0b") || streq (op, "bnq0b") 1539 || streq (op, "beq0w") || streq (op, "bnq0w"))) 1540 if ((op[0] == 'b') && (get_b_cc (op) != NULL)) 1541 return 1; 1542 return 0; 1543 } 1544 1545 /* Cinv instruction requires special handling. */ 1546 1547 static void 1548 check_cinv_options (char * operand) 1549 { 1550 char *p = operand; 1551 1552 while (*++p != ']') 1553 { 1554 switch (*p) 1555 { 1556 case ',': 1557 case ' ': 1558 case 'i': 1559 case 'u': 1560 case 'd': 1561 break; 1562 default: 1563 as_bad (_("Illegal `cinv' parameter: `%c'"), *p); 1564 } 1565 } 1566 } 1567 1568 /* Retrieve the opcode image of a given register pair. 1569 If the register is illegal for the current instruction, 1570 issue an error. */ 1571 1572 static int 1573 getregp_image (reg r) 1574 { 1575 const reg_entry *rreg; 1576 char *reg_name; 1577 1578 /* Check whether the register is in registers table. */ 1579 if (r < MAX_REG) 1580 rreg = cr16_regptab + r; 1581 /* Register not found. */ 1582 else 1583 { 1584 as_bad (_("Unknown register pair: `%d'"), r); 1585 return 0; 1586 } 1587 1588 reg_name = rreg->name; 1589 1590 /* Issue a error message when register pair is illegal. */ 1591 #define RPAIR_IMAGE_ERR \ 1592 as_bad (_("Illegal register pair (`%s') in Instruction: `%s'"), \ 1593 reg_name, ins_parse); \ 1594 break; 1595 1596 switch (rreg->type) 1597 { 1598 case CR16_RP_REGTYPE: 1599 return rreg->image; 1600 default: 1601 RPAIR_IMAGE_ERR; 1602 } 1603 1604 return 0; 1605 } 1606 1607 /* Retrieve the opcode image of a given index register pair. 1608 If the register is illegal for the current instruction, 1609 issue an error. */ 1610 1611 static int 1612 getidxregp_image (reg r) 1613 { 1614 const reg_entry *rreg; 1615 char *reg_name; 1616 1617 /* Check whether the register is in registers table. */ 1618 if (r < MAX_REG) 1619 rreg = cr16_regptab + r; 1620 /* Register not found. */ 1621 else 1622 { 1623 as_bad (_("Unknown register pair: `%d'"), r); 1624 return 0; 1625 } 1626 1627 reg_name = rreg->name; 1628 1629 /* Issue a error message when register pair is illegal. */ 1630 #define IDX_RPAIR_IMAGE_ERR \ 1631 as_bad (_("Illegal index register pair (`%s') in Instruction: `%s'"), \ 1632 reg_name, ins_parse); \ 1633 1634 if (rreg->type == CR16_RP_REGTYPE) 1635 { 1636 switch (rreg->image) 1637 { 1638 case 0: return 0; break; 1639 case 2: return 1; break; 1640 case 4: return 2; break; 1641 case 6: return 3; break; 1642 case 8: return 4; break; 1643 case 10: return 5; break; 1644 case 3: return 6; break; 1645 case 5: return 7; break; 1646 default: 1647 break; 1648 } 1649 } 1650 1651 IDX_RPAIR_IMAGE_ERR; 1652 return 0; 1653 } 1654 1655 /* Retrieve the opcode image of a given processort register. 1656 If the register is illegal for the current instruction, 1657 issue an error. */ 1658 static int 1659 getprocreg_image (int r) 1660 { 1661 const reg_entry *rreg; 1662 char *reg_name; 1663 1664 /* Check whether the register is in registers table. */ 1665 if (r >= MAX_REG && r < MAX_PREG) 1666 rreg = &cr16_pregtab[r - MAX_REG]; 1667 /* Register not found. */ 1668 else 1669 { 1670 as_bad (_("Unknown processor register : `%d'"), r); 1671 return 0; 1672 } 1673 1674 reg_name = rreg->name; 1675 1676 /* Issue a error message when register pair is illegal. */ 1677 #define PROCREG_IMAGE_ERR \ 1678 as_bad (_("Illegal processor register (`%s') in Instruction: `%s'"), \ 1679 reg_name, ins_parse); \ 1680 break; 1681 1682 switch (rreg->type) 1683 { 1684 case CR16_P_REGTYPE: 1685 return rreg->image; 1686 default: 1687 PROCREG_IMAGE_ERR; 1688 } 1689 1690 return 0; 1691 } 1692 1693 /* Retrieve the opcode image of a given processort register. 1694 If the register is illegal for the current instruction, 1695 issue an error. */ 1696 static int 1697 getprocregp_image (int r) 1698 { 1699 const reg_entry *rreg; 1700 char *reg_name; 1701 int pregptab_disp = 0; 1702 1703 /* Check whether the register is in registers table. */ 1704 if (r >= MAX_REG && r < MAX_PREG) 1705 { 1706 r = r - MAX_REG; 1707 switch (r) 1708 { 1709 case 4: pregptab_disp = 1; break; 1710 case 6: pregptab_disp = 2; break; 1711 case 8: 1712 case 9: 1713 case 10: 1714 pregptab_disp = 3; break; 1715 case 12: 1716 pregptab_disp = 4; break; 1717 case 14: 1718 pregptab_disp = 5; break; 1719 default: break; 1720 } 1721 rreg = &cr16_pregptab[r - pregptab_disp]; 1722 } 1723 /* Register not found. */ 1724 else 1725 { 1726 as_bad (_("Unknown processor register (32 bit) : `%d'"), r); 1727 return 0; 1728 } 1729 1730 reg_name = rreg->name; 1731 1732 /* Issue a error message when register pair is illegal. */ 1733 #define PROCREGP_IMAGE_ERR \ 1734 as_bad (_("Illegal 32 bit - processor register (`%s') in Instruction: `%s'"),\ 1735 reg_name, ins_parse); \ 1736 break; 1737 1738 switch (rreg->type) 1739 { 1740 case CR16_P_REGTYPE: 1741 return rreg->image; 1742 default: 1743 PROCREGP_IMAGE_ERR; 1744 } 1745 1746 return 0; 1747 } 1748 1749 /* Routine used to represent integer X using NBITS bits. */ 1750 1751 static long 1752 getconstant (long x, int nbits) 1753 { 1754 /* The following expression avoids overflow if 1755 'nbits' is the number of bits in 'bfd_vma'. */ 1756 return (x & ((((1 << (nbits - 1)) - 1) << 1) | 1)); 1757 } 1758 1759 /* Print a constant value to 'output_opcode': 1760 ARG holds the operand's type and value. 1761 SHIFT represents the location of the operand to be print into. 1762 NBITS determines the size (in bits) of the constant. */ 1763 1764 static void 1765 print_constant (int nbits, int shift, argument *arg) 1766 { 1767 unsigned long mask = 0; 1768 1769 long constant = getconstant (arg->constant, nbits); 1770 1771 switch (nbits) 1772 { 1773 case 32: 1774 case 28: 1775 /* mask the upper part of the constant, that is, the bits 1776 going to the lowest byte of output_opcode[0]. 1777 The upper part of output_opcode[1] is always filled, 1778 therefore it is always masked with 0xFFFF. */ 1779 mask = (1 << (nbits - 16)) - 1; 1780 /* Divide the constant between two consecutive words : 1781 0 1 2 3 1782 +---------+---------+---------+---------+ 1783 | | X X X X | x X x X | | 1784 +---------+---------+---------+---------+ 1785 output_opcode[0] output_opcode[1] */ 1786 1787 CR16_PRINT (0, (constant >> WORD_SHIFT) & mask, 0); 1788 CR16_PRINT (1, (constant & 0xFFFF), WORD_SHIFT); 1789 break; 1790 1791 case 21: 1792 if ((nbits == 21) && (IS_INSN_TYPE (LD_STOR_INS))) nbits = 20; 1793 case 24: 1794 case 22: 1795 case 20: 1796 /* mask the upper part of the constant, that is, the bits 1797 going to the lowest byte of output_opcode[0]. 1798 The upper part of output_opcode[1] is always filled, 1799 therefore it is always masked with 0xFFFF. */ 1800 mask = (1 << (nbits - 16)) - 1; 1801 /* Divide the constant between two consecutive words : 1802 0 1 2 3 1803 +---------+---------+---------+---------+ 1804 | | X X X X | - X - X | | 1805 +---------+---------+---------+---------+ 1806 output_opcode[0] output_opcode[1] */ 1807 1808 if ((instruction->size > 2) && (shift == WORD_SHIFT)) 1809 { 1810 if (arg->type == arg_idxrp) 1811 { 1812 CR16_PRINT (0, ((constant >> WORD_SHIFT) & mask) << 8, 0); 1813 CR16_PRINT (1, (constant & 0xFFFF), WORD_SHIFT); 1814 } 1815 else 1816 { 1817 CR16_PRINT (0, (((((constant >> WORD_SHIFT) & mask) << 8) & 0x0f00) | ((((constant >> WORD_SHIFT) & mask) >> 4) & 0xf)),0); 1818 CR16_PRINT (1, (constant & 0xFFFF), WORD_SHIFT); 1819 } 1820 } 1821 else 1822 CR16_PRINT (0, constant, shift); 1823 break; 1824 1825 case 14: 1826 if (arg->type == arg_idxrp) 1827 { 1828 if (instruction->size == 2) 1829 { 1830 CR16_PRINT (0, ((constant) & 0xf), shift); /* 0-3 bits. */ 1831 CR16_PRINT (0, ((constant >> 4) & 0x3), (shift + 20)); /* 4-5 bits. */ 1832 CR16_PRINT (0, ((constant >> 6) & 0x3), (shift + 14)); /* 6-7 bits. */ 1833 CR16_PRINT (0, ((constant >> 8) & 0x3f), (shift + 8)); /* 8-13 bits. */ 1834 } 1835 else 1836 CR16_PRINT (0, constant, shift); 1837 } 1838 break; 1839 1840 case 16: 1841 case 12: 1842 /* When instruction size is 3 and 'shift' is 16, a 16-bit constant is 1843 always filling the upper part of output_opcode[1]. If we mistakenly 1844 write it to output_opcode[0], the constant prefix (that is, 'match') 1845 will be overriden. 1846 0 1 2 3 1847 +---------+---------+---------+---------+ 1848 | 'match' | | X X X X | | 1849 +---------+---------+---------+---------+ 1850 output_opcode[0] output_opcode[1] */ 1851 1852 if ((instruction->size > 2) && (shift == WORD_SHIFT)) 1853 CR16_PRINT (1, constant, WORD_SHIFT); 1854 else 1855 CR16_PRINT (0, constant, shift); 1856 break; 1857 1858 case 8: 1859 CR16_PRINT (0, ((constant / 2) & 0xf), shift); 1860 CR16_PRINT (0, ((constant / 2) >> 4), (shift + 8)); 1861 break; 1862 1863 default: 1864 CR16_PRINT (0, constant, shift); 1865 break; 1866 } 1867 } 1868 1869 /* Print an operand to 'output_opcode', which later on will be 1870 printed to the object file: 1871 ARG holds the operand's type, size and value. 1872 SHIFT represents the printing location of operand. 1873 NBITS determines the size (in bits) of a constant operand. */ 1874 1875 static void 1876 print_operand (int nbits, int shift, argument *arg) 1877 { 1878 switch (arg->type) 1879 { 1880 case arg_cc: 1881 CR16_PRINT (0, arg->cc, shift); 1882 break; 1883 1884 case arg_r: 1885 CR16_PRINT (0, getreg_image (arg->r), shift); 1886 break; 1887 1888 case arg_rp: 1889 CR16_PRINT (0, getregp_image (arg->rp), shift); 1890 break; 1891 1892 case arg_pr: 1893 CR16_PRINT (0, getprocreg_image (arg->pr), shift); 1894 break; 1895 1896 case arg_prp: 1897 CR16_PRINT (0, getprocregp_image (arg->prp), shift); 1898 break; 1899 1900 case arg_idxrp: 1901 /* 16 12 8 6 0 1902 +-----------------------------+ 1903 | r_index | disp | rp_base | 1904 +-----------------------------+ */ 1905 1906 if (instruction->size == 3) 1907 { 1908 CR16_PRINT (0, getidxregp_image (arg->rp), 0); 1909 if (getreg_image (arg->i_r) == 12) 1910 CR16_PRINT (0, 0, 3); 1911 else 1912 CR16_PRINT (0, 1, 3); 1913 } 1914 else 1915 { 1916 CR16_PRINT (0, getidxregp_image (arg->rp), 16); 1917 if (getreg_image (arg->i_r) == 12) 1918 CR16_PRINT (0, 0, 19); 1919 else 1920 CR16_PRINT (0, 1, 19); 1921 } 1922 print_constant (nbits, shift, arg); 1923 break; 1924 1925 case arg_idxr: 1926 if (getreg_image (arg->i_r) == 12) 1927 if (IS_INSN_MNEMONIC ("cbitb") || IS_INSN_MNEMONIC ("sbitb") 1928 || IS_INSN_MNEMONIC ("tbitb")) 1929 CR16_PRINT (0, 0, 23); 1930 else CR16_PRINT (0, 0, 24); 1931 else 1932 if (IS_INSN_MNEMONIC ("cbitb") || IS_INSN_MNEMONIC ("sbitb") 1933 || IS_INSN_MNEMONIC ("tbitb")) 1934 CR16_PRINT (0, 1, 23); 1935 else CR16_PRINT (0, 1, 24); 1936 1937 print_constant (nbits, shift, arg); 1938 break; 1939 1940 case arg_ic: 1941 case arg_c: 1942 print_constant (nbits, shift, arg); 1943 break; 1944 1945 case arg_rbase: 1946 CR16_PRINT (0, getreg_image (arg->r), shift); 1947 break; 1948 1949 case arg_cr: 1950 print_constant (nbits, shift , arg); 1951 /* Add the register argument to the output_opcode. */ 1952 CR16_PRINT (0, getreg_image (arg->r), (shift+16)); 1953 break; 1954 1955 case arg_crp: 1956 print_constant (nbits, shift , arg); 1957 if (instruction->size > 1) 1958 CR16_PRINT (0, getregp_image (arg->rp), (shift + 16)); 1959 else if (IS_INSN_TYPE (LD_STOR_INS) || (IS_INSN_TYPE (CSTBIT_INS))) 1960 { 1961 if (instruction->size == 2) 1962 CR16_PRINT (0, getregp_image (arg->rp), (shift - 8)); 1963 else if (instruction->size == 1) 1964 CR16_PRINT (0, getregp_image (arg->rp), 16); 1965 } 1966 else 1967 CR16_PRINT (0, getregp_image (arg->rp), shift); 1968 break; 1969 1970 default: 1971 break; 1972 } 1973 } 1974 1975 /* Retrieve the number of operands for the current assembled instruction. */ 1976 1977 static int 1978 get_number_of_operands (void) 1979 { 1980 int i; 1981 1982 for (i = 0; instruction->operands[i].op_type && i < MAX_OPERANDS; i++) 1983 ; 1984 return i; 1985 } 1986 1987 /* Verify that the number NUM can be represented in BITS bits (that is, 1988 within its permitted range), based on the instruction's FLAGS. 1989 If UPDATE is nonzero, update the value of NUM if necessary. 1990 Return OP_LEGAL upon success, actual error type upon failure. */ 1991 1992 static op_err 1993 check_range (long *num, int bits, int unsigned flags, int update) 1994 { 1995 long min, max; 1996 int retval = OP_LEGAL; 1997 long value = *num; 1998 1999 if (bits == 0 && value > 0) return OP_OUT_OF_RANGE; 2000 2001 /* For hosts witah longs bigger than 32-bits make sure that the top 2002 bits of a 32-bit negative value read in by the parser are set, 2003 so that the correct comparisons are made. */ 2004 if (value & 0x80000000) 2005 value |= (-1L << 31); 2006 2007 2008 /* Verify operand value is even. */ 2009 if (flags & OP_EVEN) 2010 { 2011 if (value % 2) 2012 return OP_NOT_EVEN; 2013 } 2014 2015 if (flags & OP_DEC) 2016 { 2017 value -= 1; 2018 if (update) 2019 *num = value; 2020 } 2021 2022 if (flags & OP_SHIFT) 2023 { 2024 value >>= 1; 2025 if (update) 2026 *num = value; 2027 } 2028 else if (flags & OP_SHIFT_DEC) 2029 { 2030 value = (value >> 1) - 1; 2031 if (update) 2032 *num = value; 2033 } 2034 2035 if (flags & OP_ABS20) 2036 { 2037 if (value > 0xEFFFF) 2038 return OP_OUT_OF_RANGE; 2039 } 2040 2041 if (flags & OP_ESC) 2042 { 2043 if (value == 0xB || value == 0x9) 2044 return OP_OUT_OF_RANGE; 2045 else if (value == -1) 2046 { 2047 if (update) 2048 *num = 9; 2049 return retval; 2050 } 2051 } 2052 2053 if (flags & OP_ESC1) 2054 { 2055 if (value > 13) 2056 return OP_OUT_OF_RANGE; 2057 } 2058 2059 if (flags & OP_SIGNED) 2060 { 2061 max = (1 << (bits - 1)) - 1; 2062 min = - (1 << (bits - 1)); 2063 if ((value > max) || (value < min)) 2064 retval = OP_OUT_OF_RANGE; 2065 } 2066 else if (flags & OP_UNSIGNED) 2067 { 2068 max = ((((1 << (bits - 1)) - 1) << 1) | 1); 2069 min = 0; 2070 if (((unsigned long) value > (unsigned long) max) 2071 || ((unsigned long) value < (unsigned long) min)) 2072 retval = OP_OUT_OF_RANGE; 2073 } 2074 else if (flags & OP_NEG) 2075 { 2076 max = - 1; 2077 min = - ((1 << (bits - 1)) - 1); 2078 if ((value > max) || (value < min)) 2079 retval = OP_OUT_OF_RANGE; 2080 } 2081 return retval; 2082 } 2083 2084 /* Bunch of error checkings. 2085 The checks are made after a matching instruction was found. */ 2086 2087 static void 2088 warn_if_needed (ins *insn) 2089 { 2090 /* If the post-increment address mode is used and the load/store 2091 source register is the same as rbase, the result of the 2092 instruction is undefined. */ 2093 if (IS_INSN_TYPE (LD_STOR_INS_INC)) 2094 { 2095 /* Enough to verify that one of the arguments is a simple reg. */ 2096 if ((insn->arg[0].type == arg_r) || (insn->arg[1].type == arg_r)) 2097 if (insn->arg[0].r == insn->arg[1].r) 2098 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"), insn->arg[0].r); 2099 } 2100 2101 if (IS_INSN_MNEMONIC ("pop") 2102 || IS_INSN_MNEMONIC ("push") 2103 || IS_INSN_MNEMONIC ("popret")) 2104 { 2105 unsigned int count = insn->arg[0].constant, reg_val; 2106 2107 /* Check if count operand caused to save/retrive the RA twice 2108 to generate warning message. */ 2109 if (insn->nargs > 2) 2110 { 2111 reg_val = getreg_image (insn->arg[1].r); 2112 2113 if ( ((reg_val == 9) && (count > 7)) 2114 || ((reg_val == 10) && (count > 6)) 2115 || ((reg_val == 11) && (count > 5)) 2116 || ((reg_val == 12) && (count > 4)) 2117 || ((reg_val == 13) && (count > 2)) 2118 || ((reg_val == 14) && (count > 0))) 2119 as_warn (_("RA register is saved twice.")); 2120 2121 /* Check if the third operand is "RA" or "ra" */ 2122 if (!(((insn->arg[2].r) == ra) || ((insn->arg[2].r) == RA))) 2123 as_bad (_("`%s' Illegal use of registers."), ins_parse); 2124 } 2125 2126 if (insn->nargs > 1) 2127 { 2128 reg_val = getreg_image (insn->arg[1].r); 2129 2130 /* If register is a register pair ie r12/r13/r14 in operand1, then 2131 the count constant should be validated. */ 2132 if (((reg_val == 11) && (count > 7)) 2133 || ((reg_val == 12) && (count > 6)) 2134 || ((reg_val == 13) && (count > 4)) 2135 || ((reg_val == 14) && (count > 2)) 2136 || ((reg_val == 15) && (count > 0))) 2137 as_bad (_("`%s' Illegal count-register combination."), ins_parse); 2138 } 2139 else 2140 { 2141 /* Check if the operand is "RA" or "ra" */ 2142 if (!(((insn->arg[0].r) == ra) || ((insn->arg[0].r) == RA))) 2143 as_bad (_("`%s' Illegal use of register."), ins_parse); 2144 } 2145 } 2146 2147 /* Some instruction assume the stack pointer as rptr operand. 2148 Issue an error when the register to be loaded is also SP. */ 2149 if (instruction->flags & NO_SP) 2150 { 2151 if (getreg_image (insn->arg[1].r) == getreg_image (sp)) 2152 as_bad (_("`%s' has undefined result"), ins_parse); 2153 } 2154 2155 /* If the rptr register is specified as one of the registers to be loaded, 2156 the final contents of rptr are undefined. Thus, we issue an error. */ 2157 if (instruction->flags & NO_RPTR) 2158 { 2159 if ((1 << getreg_image (insn->arg[0].r)) & insn->arg[1].constant) 2160 as_bad (_("Same src/dest register is used (`r%d'),result is undefined"), 2161 getreg_image (insn->arg[0].r)); 2162 } 2163 } 2164 2165 /* In some cases, we need to adjust the instruction pointer although a 2166 match was already found. Here, we gather all these cases. 2167 Returns 1 if instruction pointer was adjusted, otherwise 0. */ 2168 2169 static int 2170 adjust_if_needed (ins *insn ATTRIBUTE_UNUSED) 2171 { 2172 int ret_value = 0; 2173 2174 if ((IS_INSN_TYPE (CSTBIT_INS)) || (IS_INSN_TYPE (LD_STOR_INS))) 2175 { 2176 if ((instruction->operands[0].op_type == abs24) 2177 && ((insn->arg[0].constant) > 0xF00000)) 2178 { 2179 insn->arg[0].constant &= 0xFFFFF; 2180 instruction--; 2181 ret_value = 1; 2182 } 2183 } 2184 2185 return ret_value; 2186 } 2187 2188 /* Assemble a single instruction: 2189 INSN is already parsed (that is, all operand values and types are set). 2190 For instruction to be assembled, we need to find an appropriate template in 2191 the instruction table, meeting the following conditions: 2192 1: Has the same number of operands. 2193 2: Has the same operand types. 2194 3: Each operand size is sufficient to represent the instruction's values. 2195 Returns 1 upon success, 0 upon failure. */ 2196 2197 static int 2198 assemble_insn (char *mnemonic, ins *insn) 2199 { 2200 /* Type of each operand in the current template. */ 2201 argtype cur_type[MAX_OPERANDS]; 2202 /* Size (in bits) of each operand in the current template. */ 2203 unsigned int cur_size[MAX_OPERANDS]; 2204 /* Flags of each operand in the current template. */ 2205 unsigned int cur_flags[MAX_OPERANDS]; 2206 /* Instruction type to match. */ 2207 unsigned int ins_type; 2208 /* Boolean flag to mark whether a match was found. */ 2209 int match = 0; 2210 int i; 2211 /* Nonzero if an instruction with same number of operands was found. */ 2212 int found_same_number_of_operands = 0; 2213 /* Nonzero if an instruction with same argument types was found. */ 2214 int found_same_argument_types = 0; 2215 /* Nonzero if a constant was found within the required range. */ 2216 int found_const_within_range = 0; 2217 /* Argument number of an operand with invalid type. */ 2218 int invalid_optype = -1; 2219 /* Argument number of an operand with invalid constant value. */ 2220 int invalid_const = -1; 2221 /* Operand error (used for issuing various constant error messages). */ 2222 op_err op_error, const_err = OP_LEGAL; 2223 2224 /* Retrieve data (based on FUNC) for each operand of a given instruction. */ 2225 #define GET_CURRENT_DATA(FUNC, ARRAY) \ 2226 for (i = 0; i < insn->nargs; i++) \ 2227 ARRAY[i] = FUNC (instruction->operands[i].op_type) 2228 2229 #define GET_CURRENT_TYPE GET_CURRENT_DATA (get_optype, cur_type) 2230 #define GET_CURRENT_SIZE GET_CURRENT_DATA (get_opbits, cur_size) 2231 #define GET_CURRENT_FLAGS GET_CURRENT_DATA (get_opflags, cur_flags) 2232 2233 /* Instruction has no operands -> only copy the constant opcode. */ 2234 if (insn->nargs == 0) 2235 { 2236 output_opcode[0] = BIN (instruction->match, instruction->match_bits); 2237 return 1; 2238 } 2239 2240 /* In some case, same mnemonic can appear with different instruction types. 2241 For example, 'storb' is supported with 3 different types : 2242 LD_STOR_INS, LD_STOR_INS_INC, STOR_IMM_INS. 2243 We assume that when reaching this point, the instruction type was 2244 pre-determined. We need to make sure that the type stays the same 2245 during a search for matching instruction. */ 2246 ins_type = CR16_INS_TYPE (instruction->flags); 2247 2248 while (/* Check that match is still not found. */ 2249 match != 1 2250 /* Check we didn't get to end of table. */ 2251 && instruction->mnemonic != NULL 2252 /* Check that the actual mnemonic is still available. */ 2253 && IS_INSN_MNEMONIC (mnemonic) 2254 /* Check that the instruction type wasn't changed. */ 2255 && IS_INSN_TYPE (ins_type)) 2256 { 2257 /* Check whether number of arguments is legal. */ 2258 if (get_number_of_operands () != insn->nargs) 2259 goto next_insn; 2260 found_same_number_of_operands = 1; 2261 2262 /* Initialize arrays with data of each operand in current template. */ 2263 GET_CURRENT_TYPE; 2264 GET_CURRENT_SIZE; 2265 GET_CURRENT_FLAGS; 2266 2267 /* Check for type compatibility. */ 2268 for (i = 0; i < insn->nargs; i++) 2269 { 2270 if (cur_type[i] != insn->arg[i].type) 2271 { 2272 if (invalid_optype == -1) 2273 invalid_optype = i + 1; 2274 goto next_insn; 2275 } 2276 } 2277 found_same_argument_types = 1; 2278 2279 for (i = 0; i < insn->nargs; i++) 2280 { 2281 /* If 'bal' instruction size is '2' and reg operand is not 'ra' 2282 then goto next instruction. */ 2283 if (IS_INSN_MNEMONIC ("bal") && (i == 0) 2284 && (instruction->size == 2) && (insn->arg[i].rp != 14)) 2285 goto next_insn; 2286 2287 /* If 'storb' instruction with 'sp' reg and 16-bit disp of 2288 * reg-pair, leads to undifined trap, so this should use 2289 * 20-bit disp of reg-pair. */ 2290 if (IS_INSN_MNEMONIC ("storb") && (instruction->size == 2) 2291 && (insn->arg[i].r == 15) && (insn->arg[i + 1].type == arg_crp)) 2292 goto next_insn; 2293 2294 /* Only check range - don't update the constant's value, since the 2295 current instruction may not be the last we try to match. 2296 The constant's value will be updated later, right before printing 2297 it to the object file. */ 2298 if ((insn->arg[i].X_op == O_constant) 2299 && (op_error = check_range (&insn->arg[i].constant, cur_size[i], 2300 cur_flags[i], 0))) 2301 { 2302 if (invalid_const == -1) 2303 { 2304 invalid_const = i + 1; 2305 const_err = op_error; 2306 } 2307 goto next_insn; 2308 } 2309 /* For symbols, we make sure the relocation size (which was already 2310 determined) is sufficient. */ 2311 else if ((insn->arg[i].X_op == O_symbol) 2312 && ((bfd_reloc_type_lookup (stdoutput, insn->rtype))->bitsize 2313 > cur_size[i])) 2314 goto next_insn; 2315 } 2316 found_const_within_range = 1; 2317 2318 /* If we got till here -> Full match is found. */ 2319 match = 1; 2320 break; 2321 2322 /* Try again with next instruction. */ 2323 next_insn: 2324 instruction++; 2325 } 2326 2327 if (!match) 2328 { 2329 /* We haven't found a match - instruction can't be assembled. */ 2330 if (!found_same_number_of_operands) 2331 as_bad (_("Incorrect number of operands")); 2332 else if (!found_same_argument_types) 2333 as_bad (_("Illegal type of operand (arg %d)"), invalid_optype); 2334 else if (!found_const_within_range) 2335 { 2336 switch (const_err) 2337 { 2338 case OP_OUT_OF_RANGE: 2339 as_bad (_("Operand out of range (arg %d)"), invalid_const); 2340 break; 2341 case OP_NOT_EVEN: 2342 as_bad (_("Operand has odd displacement (arg %d)"), invalid_const); 2343 break; 2344 default: 2345 as_bad (_("Illegal operand (arg %d)"), invalid_const); 2346 break; 2347 } 2348 } 2349 2350 return 0; 2351 } 2352 else 2353 /* Full match - print the encoding to output file. */ 2354 { 2355 /* Make further checkings (such that couldn't be made earlier). 2356 Warn the user if necessary. */ 2357 warn_if_needed (insn); 2358 2359 /* Check whether we need to adjust the instruction pointer. */ 2360 if (adjust_if_needed (insn)) 2361 /* If instruction pointer was adjusted, we need to update 2362 the size of the current template operands. */ 2363 GET_CURRENT_SIZE; 2364 2365 for (i = 0; i < insn->nargs; i++) 2366 { 2367 int j = instruction->flags & REVERSE_MATCH ? 2368 i == 0 ? 1 : 2369 i == 1 ? 0 : i : 2370 i; 2371 2372 /* This time, update constant value before printing it. */ 2373 if ((insn->arg[j].X_op == O_constant) 2374 && (check_range (&insn->arg[j].constant, cur_size[j], 2375 cur_flags[j], 1) != OP_LEGAL)) 2376 as_fatal (_("Illegal operand (arg %d)"), j+1); 2377 } 2378 2379 /* First, copy the instruction's opcode. */ 2380 output_opcode[0] = BIN (instruction->match, instruction->match_bits); 2381 2382 for (i = 0; i < insn->nargs; i++) 2383 { 2384 /* For BAL (ra),disp17 instuction only. And also set the 2385 DISP24a relocation type. */ 2386 if (IS_INSN_MNEMONIC ("bal") && (instruction->size == 2) && i == 0) 2387 { 2388 insn->rtype = BFD_RELOC_CR16_DISP24a; 2389 continue; 2390 } 2391 cur_arg_num = i; 2392 print_operand (cur_size[i], instruction->operands[i].shift, 2393 &insn->arg[i]); 2394 } 2395 } 2396 2397 return 1; 2398 } 2399 2400 /* Print the instruction. 2401 Handle also cases where the instruction is relaxable/relocatable. */ 2402 2403 static void 2404 print_insn (ins *insn) 2405 { 2406 unsigned int i, j, insn_size; 2407 char *this_frag; 2408 unsigned short words[4]; 2409 int addr_mod; 2410 2411 /* Arrange the insn encodings in a WORD size array. */ 2412 for (i = 0, j = 0; i < 2; i++) 2413 { 2414 words[j++] = (output_opcode[i] >> 16) & 0xFFFF; 2415 words[j++] = output_opcode[i] & 0xFFFF; 2416 } 2417 2418 /* Handle relocation. */ 2419 if ((instruction->flags & RELAXABLE) && relocatable) 2420 { 2421 int relax_subtype; 2422 /* Write the maximal instruction size supported. */ 2423 insn_size = INSN_MAX_SIZE; 2424 2425 if (IS_INSN_TYPE (BRANCH_INS)) 2426 { 2427 switch (insn->rtype) 2428 { 2429 case BFD_RELOC_CR16_DISP24: 2430 relax_subtype = 2; 2431 break; 2432 case BFD_RELOC_CR16_DISP16: 2433 relax_subtype = 1; 2434 break; 2435 default: 2436 relax_subtype = 0; 2437 break; 2438 } 2439 } 2440 else 2441 abort (); 2442 2443 this_frag = frag_var (rs_machine_dependent, insn_size *2, 2444 4, relax_subtype, 2445 insn->exp.X_add_symbol, 2446 0, 2447 0); 2448 } 2449 else 2450 { 2451 insn_size = instruction->size; 2452 this_frag = frag_more (insn_size * 2); 2453 2454 if ((relocatable) && (insn->rtype != BFD_RELOC_NONE)) 2455 { 2456 reloc_howto_type *reloc_howto; 2457 int size; 2458 2459 reloc_howto = bfd_reloc_type_lookup (stdoutput, insn->rtype); 2460 2461 if (!reloc_howto) 2462 abort (); 2463 2464 size = bfd_get_reloc_size (reloc_howto); 2465 2466 if (size < 1 || size > 4) 2467 abort (); 2468 2469 fix_new_exp (frag_now, this_frag - frag_now->fr_literal, 2470 size, &insn->exp, reloc_howto->pc_relative, 2471 insn->rtype); 2472 } 2473 } 2474 2475 /* Verify a 2-byte code alignment. */ 2476 addr_mod = frag_now_fix () & 1; 2477 if (frag_now->has_code && frag_now->insn_addr != addr_mod) 2478 as_bad (_("instruction address is not a multiple of 2")); 2479 frag_now->insn_addr = addr_mod; 2480 frag_now->has_code = 1; 2481 2482 /* Write the instruction encoding to frag. */ 2483 for (i = 0; i < insn_size; i++) 2484 { 2485 md_number_to_chars (this_frag, (valueT) words[i], 2); 2486 this_frag += 2; 2487 } 2488 } 2489 2490 /* This is the guts of the machine-dependent assembler. OP points to a 2491 machine dependent instruction. This function is supposed to emit 2492 the frags/bytes it assembles to. */ 2493 2494 void 2495 md_assemble (char *op) 2496 { 2497 ins cr16_ins; 2498 char *param, param1[32]; 2499 2500 /* Reset global variables for a new instruction. */ 2501 reset_vars (op); 2502 2503 /* Strip the mnemonic. */ 2504 for (param = op; *param != 0 && !ISSPACE (*param); param++) 2505 ; 2506 *param++ = '\0'; 2507 2508 /* bCC instuctions and adjust the mnemonic by adding extra white spaces. */ 2509 if (is_bcc_insn (op)) 2510 { 2511 strcpy (param1, get_b_cc (op)); 2512 op = "b"; 2513 strcat (param1,","); 2514 strcat (param1, param); 2515 param = (char *) ¶m1; 2516 } 2517 2518 /* Checking the cinv options and adjust the mnemonic by removing the 2519 extra white spaces. */ 2520 if (streq ("cinv", op)) 2521 { 2522 /* Validate the cinv options. */ 2523 check_cinv_options (param); 2524 strcat (op, param); 2525 } 2526 2527 /* MAPPING - SHIFT INSN, if imm4/imm16 positive values 2528 lsh[b/w] imm4/imm6, reg ==> ashu[b/w] imm4/imm16, reg 2529 as CR16 core doesn't support lsh[b/w] right shift operaions. */ 2530 if ((streq ("lshb", op) || streq ("lshw", op) || streq ("lshd", op)) 2531 && (param [0] == '$')) 2532 { 2533 strcpy (param1, param); 2534 /* Find the instruction. */ 2535 instruction = (const inst *) hash_find (cr16_inst_hash, op); 2536 parse_operands (&cr16_ins, param1); 2537 if (((&cr16_ins)->arg[0].type == arg_ic) 2538 && ((&cr16_ins)->arg[0].constant >= 0)) 2539 { 2540 if (streq ("lshb", op)) 2541 op = "ashub"; 2542 else if (streq ("lshd", op)) 2543 op = "ashud"; 2544 else 2545 op = "ashuw"; 2546 } 2547 } 2548 2549 /* Find the instruction. */ 2550 instruction = (const inst *) hash_find (cr16_inst_hash, op); 2551 if (instruction == NULL) 2552 { 2553 as_bad (_("Unknown opcode: `%s'"), op); 2554 return; 2555 } 2556 2557 /* Tie dwarf2 debug info to the address at the start of the insn. */ 2558 dwarf2_emit_insn (0); 2559 2560 /* Parse the instruction's operands. */ 2561 parse_insn (&cr16_ins, param); 2562 2563 /* Assemble the instruction - return upon failure. */ 2564 if (assemble_insn (op, &cr16_ins) == 0) 2565 return; 2566 2567 /* Print the instruction. */ 2568 print_insn (&cr16_ins); 2569 } 2570