1 @c Copyright (C) 2013-2014 Free Software Foundation, Inc. 2 @c This is part of the GAS manual. 3 @c For copying conditions, see the file as.texinfo. 4 @c man end 5 6 @ifset GENERIC 7 @page 8 @node NDS32-Dependent 9 @chapter NDS32 Dependent Features 10 @end ifset 11 @ifclear GENERIC 12 @node Machine Dependencies 13 @chapter NDS32 Dependent Features 14 @end ifclear 15 16 @cindex NDS32 processor 17 The NDS32 processors family includes high-performance and low-power 32-bit 18 processors for high-end to low-end. @sc{gnu} @code{@value{AS}} for NDS32 19 architectures supports NDS32 ISA version 3. For detail about NDS32 20 instruction set, please see the AndeStar ISA User Manual which is availible 21 at http://www.andestech.com/en/index/index.htm 22 23 @menu 24 * NDS32 Options:: Assembler options 25 * NDS32 Syntax:: High-level assembly macros 26 @end menu 27 28 @node NDS32 Options 29 @section NDS32 Options 30 31 @cindex NDS32 options 32 @cindex options for NDS32 33 The NDS32 configurations of @sc{gnu} @code{@value{AS}} support these 34 special options: 35 36 @c man begin OPTIONS 37 @table @code 38 39 @item -O1 40 Optimize for performance. 41 42 @item -Os 43 Optimize for space. 44 45 @item -EL 46 Produce little endian data output. 47 48 @item -EB 49 Produce little endian data output. 50 51 @item -mpic 52 Generate PIC. 53 54 @item -mno-fp-as-gp-relax 55 Suppress fp-as-gp relaxation for this file. 56 57 @item -mb2bb-relax 58 Back-to-back branch optimization. 59 60 @item -mno-all-relax 61 Suppress all relaxation for this file. 62 63 @item -march=<arch name> 64 Assemble for architecture <arch name> which could be v3, v3j, v3m, v3f, 65 v3s, v2, v2j, v2f, v2s. 66 67 @item -mbaseline=<baseline> 68 Assemble for baseline <baseline> which could be v2, v3, v3m. 69 70 @item -mfpu-freg=@var{FREG} 71 Specify a FPU configuration. 72 @table @code 73 @item 0 8 SP / 4 DP registers 74 @item 1 16 SP / 8 DP registers 75 @item 2 32 SP / 16 DP registers 76 @item 3 32 SP / 32 DP registers 77 @end table 78 79 @item -mabi=@var{abi} 80 Specify a abi version <abi> could be v1, v2, v2fp, v2fpp. 81 82 @item -m[no-]mac 83 Enable/Disable Multiply instructions support. 84 85 @item -m[no-]div 86 Enable/Disable Divide instructions support. 87 88 @item -m[no-]16bit-ext 89 Enable/Disable 16-bit extension 90 91 @item -m[no-]dx-regs 92 Enable/Disable d0/d1 registers 93 94 @item -m[no-]perf-ext 95 Enable/Disable Performance extension 96 97 @item -m[no-]perf2-ext 98 Enable/Disable Performance extension 2 99 100 @item -m[no-]string-ext 101 Enable/Disable String extension 102 103 @item -m[no-]reduced-regs 104 Enable/Disable Reduced Register configuration (GPR16) option 105 106 @item -m[no-]audio-isa-ext 107 Enable/Disable AUDIO ISA extension 108 109 @item -m[no-]fpu-sp-ext 110 Enable/Disable FPU SP extension 111 112 @item -m[no-]fpu-dp-ext 113 Enable/Disable FPU DP extension 114 115 @item -m[no-]fpu-fma 116 Enable/Disable FPU fused-multiply-add instructions 117 118 @item -mall-ext 119 Turn on all extensions and instructions support 120 @end table 121 @c man end 122 123 @node NDS32 Syntax 124 @section Syntax 125 126 @menu 127 * NDS32-Chars:: Special Characters 128 * NDS32-Regs:: Register Names 129 * NDS32-Ops:: Pseudo Instructions 130 @end menu 131 132 @node NDS32-Chars 133 @subsection Special Characters 134 135 Use @samp{#} at column 1 and @samp{!} anywhere in the line except inside 136 quotes. 137 138 Multiple instructions in a line are allowed though not recommended and 139 should be separated by @samp{;}. 140 141 Assembler is not case-sensitive in general except user defined label. 142 For example, @samp{jral F1} is different from @samp{jral f1} while it is 143 the same as @samp{JRAL F1}. 144 145 @node NDS32-Regs 146 @subsection Register Names 147 @table @code 148 @item General purpose registers (GPR) 149 There are 32 32-bit general purpose registers $r0 to $r31. 150 151 @item Accumulators d0 and d1 152 64-bit accumulators: $d0.hi, $d0.lo, $d1.hi, and $d1.lo. 153 154 @item Assembler reserved register $ta 155 Register $ta ($r15) is reserved for assembler using. 156 157 @item Operating system reserved registers $p0 and $p1 158 Registers $p0 ($r26) and $p1 ($r27) are used by operating system as scratch 159 registers. 160 161 @item Frame pointer $fp 162 Register $r28 is regarded as the frame pointer. 163 164 @item Global pointer 165 Register $r29 is regarded as the global pointer. 166 167 @item Link pointer 168 Register $r30 is regarded as the link pointer. 169 170 @item Stack pointer 171 Register $r31 is regarded as the stack pointer. 172 @end table 173 174 @node NDS32-Ops 175 @subsection Pseudo Instructions 176 @table @code 177 @item li rt5,imm32 178 load 32-bit integer into register rt5. @samp{sethi rt5,hi20(imm32)} and then 179 @samp{ori rt5,reg,lo12(imm32)}. 180 181 @item la rt5,var 182 Load 32-bit address of var into register rt5. @samp{sethi rt5,hi20(var)} and 183 then @samp{ori reg,rt5,lo12(var)} 184 185 @item l.[bhw] rt5,var 186 Load value of var into register rt5. @samp{sethi $ta,hi20(var)} and then 187 @samp{l[bhw]i rt5,[$ta+lo12(var)]} 188 189 @item l.[bh]s rt5,var 190 Load value of var into register rt5. @samp{sethi $ta,hi20(var)} and then 191 @samp{l[bh]si rt5,[$ta+lo12(var)]} 192 193 @item l.[bhw]p rt5,var,inc 194 Load value of var into register rt5 and increment $ta by amount inc. 195 @samp{la $ta,var} and then @samp{l[bhw]i.bi rt5,[$ta],inc} 196 197 @item l.[bhw]pc rt5,inc 198 Continue loading value of var into register rt5 and increment $ta by amount inc. 199 @samp{l[bhw]i.bi rt5,[$ta],inc.} 200 201 @item l.[bh]sp rt5,var,inc 202 Load value of var into register rt5 and increment $ta by amount inc. 203 @samp{la $ta,var} and then @samp{l[bh]si.bi rt5,[$ta],inc} 204 205 @item l.[bh]spc rt5,inc 206 Continue loading value of var into register rt5 and increment $ta by amount inc. 207 @samp{l[bh]si.bi rt5,[$ta],inc.} 208 209 @item s.[bhw] rt5,var 210 Store register rt5 to var. 211 @samp{sethi $ta,hi20(var)} and then @samp{s[bhw]i rt5,[$ta+lo12(var)]} 212 213 @item s.[bhw]p rt5,var,inc 214 Store register rt5 to var and increment $ta by amount inc. 215 @samp{la $ta,var} and then @samp{s[bhw]i.bi rt5,[$ta],inc} 216 217 @item s.[bhw]pc rt5,inc 218 Continue storing register rt5 to var and increment $ta by amount inc. 219 @samp{s[bhw]i.bi rt5,[$ta],inc.} 220 221 @item not rt5,ra5 222 Alias of @samp{nor rt5,ra5,ra5}. 223 224 @item neg rt5,ra5 225 Alias of @samp{subri rt5,ra5,0}. 226 227 @item br rb5 228 Depending on how it is assembled, it is translated into @samp{r5 rb5} 229 or @samp{jr rb5}. 230 231 @item b label 232 Branch to label depending on how it is assembled, it is translated into 233 @samp{j8 label}, @samp{j label}, or "@samp{la $ta,label} @samp{br $ta}". 234 235 @item bral rb5 236 Alias of jral br5 depending on how it is assembled, it is translated 237 into @samp{jral5 rb5} or @samp{jral rb5}. 238 239 @item bal fname 240 Alias of jal fname depending on how it is assembled, it is translated into 241 @samp{jal fname} or "@samp{la $ta,fname} @samp{bral $ta}". 242 243 @item call fname 244 Call function fname same as @samp{jal fname}. 245 246 @item move rt5,ra5 247 For 16-bit, this is @samp{mov55 rt5,ra5}. 248 For no 16-bit, this is @samp{ori rt5,ra5,0}. 249 250 @item move rt5,var 251 This is the same as @samp{l.w rt5,var}. 252 253 @item move rt5,imm32 254 This is the same as @samp{li rt5,imm32}. 255 256 @item pushm ra5,rb5 257 Push contents of registers from ra5 to rb5 into stack. 258 259 @item push ra5 260 Push content of register ra5 into stack. (same @samp{pushm ra5,ra5}). 261 262 @item push.d var 263 Push value of double-word variable var into stack. 264 265 @item push.w var 266 Push value of word variable var into stack. 267 268 @item push.h var 269 Push value of half-word variable var into stack. 270 271 @item push.b var 272 Push value of byte variable var into stack. 273 274 @item pusha var 275 Push 32-bit address of variable var into stack. 276 277 @item pushi imm32 278 Push 32-bit immediate value into stack. 279 280 @item popm ra5,rb5 281 Pop top of stack values into registers ra5 to rb5. 282 283 @item pop rt5 284 Pop top of stack value into register. (same as @samp{popm rt5,rt5}.) 285 286 @item pop.d var,ra5 287 Pop value of double-word variable var from stack using register ra5 288 as 2nd scratch register. (1st is $ta) 289 290 @item pop.w var,ra5 291 Pop value of word variable var from stack using register ra5. 292 293 @item pop.h var,ra5 294 Pop value of half-word variable var from stack using register ra5. 295 296 @item pop.b var,ra5 297 Pop value of byte variable var from stack using register ra5. 298 299 @end table 300