Home | History | Annotate | Download | only in doc
      1 @c Copyright (C) 2013-2014 Free Software Foundation, Inc.
      2 @c This is part of the GAS manual.
      3 @c For copying conditions, see the file as.texinfo.
      4 @c man end
      5 
      6 @ifset GENERIC
      7 @page
      8 @node NDS32-Dependent
      9 @chapter NDS32 Dependent Features
     10 @end ifset
     11 @ifclear GENERIC
     12 @node Machine Dependencies
     13 @chapter NDS32 Dependent Features
     14 @end ifclear
     15 
     16 @cindex NDS32 processor
     17 The NDS32 processors family includes high-performance and low-power 32-bit
     18 processors for high-end to low-end.  @sc{gnu} @code{@value{AS}} for NDS32
     19 architectures supports NDS32 ISA version 3.  For detail about NDS32
     20 instruction set, please see the AndeStar ISA User Manual which is availible
     21 at http://www.andestech.com/en/index/index.htm
     22 
     23 @menu
     24 * NDS32 Options::         Assembler options
     25 * NDS32 Syntax::          High-level assembly macros
     26 @end menu
     27 
     28 @node NDS32 Options
     29 @section NDS32 Options
     30 
     31 @cindex NDS32 options
     32 @cindex options for NDS32
     33 The NDS32 configurations of @sc{gnu} @code{@value{AS}} support these
     34 special options:
     35 
     36 @c man begin OPTIONS
     37 @table @code
     38 
     39 @item -O1
     40 Optimize for performance.
     41 
     42 @item -Os
     43 Optimize for space.
     44 
     45 @item -EL
     46 Produce little endian data output.
     47 
     48 @item -EB
     49 Produce little endian data output.
     50 
     51 @item -mpic
     52 Generate PIC.
     53 
     54 @item -mno-fp-as-gp-relax
     55 Suppress fp-as-gp relaxation for this file.
     56 
     57 @item -mb2bb-relax
     58 Back-to-back branch optimization.
     59 
     60 @item -mno-all-relax
     61 Suppress all relaxation for this file.
     62 
     63 @item -march=<arch name>
     64 Assemble for architecture <arch name> which could be v3, v3j, v3m, v3f,
     65 v3s, v2, v2j, v2f, v2s.
     66 
     67 @item -mbaseline=<baseline>
     68 Assemble for baseline <baseline> which could be v2, v3, v3m.
     69 
     70 @item -mfpu-freg=@var{FREG}
     71 Specify a FPU configuration.
     72 @table @code
     73 @item 0      8 SP /  4 DP registers
     74 @item 1     16 SP /  8 DP registers
     75 @item 2     32 SP / 16 DP registers
     76 @item 3     32 SP / 32 DP registers
     77 @end table
     78 
     79 @item -mabi=@var{abi}
     80 Specify a abi version <abi> could be v1, v2, v2fp, v2fpp.
     81 
     82 @item -m[no-]mac
     83 Enable/Disable Multiply instructions support.
     84 
     85 @item -m[no-]div
     86 Enable/Disable Divide instructions support.
     87 
     88 @item -m[no-]16bit-ext
     89 Enable/Disable 16-bit extension
     90 
     91 @item -m[no-]dx-regs
     92 Enable/Disable d0/d1 registers
     93 
     94 @item -m[no-]perf-ext
     95 Enable/Disable Performance extension
     96 
     97 @item -m[no-]perf2-ext
     98 Enable/Disable Performance extension 2
     99 
    100 @item -m[no-]string-ext
    101 Enable/Disable String extension
    102 
    103 @item -m[no-]reduced-regs
    104 Enable/Disable Reduced Register configuration (GPR16) option
    105 
    106 @item -m[no-]audio-isa-ext
    107 Enable/Disable AUDIO ISA extension
    108 
    109 @item -m[no-]fpu-sp-ext
    110 Enable/Disable FPU SP extension
    111 
    112 @item -m[no-]fpu-dp-ext
    113 Enable/Disable FPU DP extension
    114 
    115 @item -m[no-]fpu-fma
    116 Enable/Disable FPU fused-multiply-add instructions
    117 
    118 @item -mall-ext
    119 Turn on all extensions and instructions support
    120 @end table
    121 @c man end
    122 
    123 @node NDS32 Syntax
    124 @section Syntax
    125 
    126 @menu
    127 * NDS32-Chars::                Special Characters
    128 * NDS32-Regs::                 Register Names
    129 * NDS32-Ops::                  Pseudo Instructions
    130 @end menu
    131 
    132 @node NDS32-Chars
    133 @subsection Special Characters
    134 
    135 Use @samp{#} at column 1 and @samp{!} anywhere in the line except inside
    136 quotes.
    137 
    138 Multiple instructions in a line are allowed though not recommended and
    139 should be separated by @samp{;}.
    140 
    141 Assembler is not case-sensitive in general except user defined label.
    142 For example, @samp{jral F1} is different from @samp{jral f1} while it is
    143 the same as @samp{JRAL F1}.
    144 
    145 @node NDS32-Regs
    146 @subsection Register Names
    147 @table @code
    148 @item General purpose registers (GPR)
    149 There are 32 32-bit general purpose registers $r0 to $r31.
    150 
    151 @item Accumulators d0 and d1
    152 64-bit accumulators: $d0.hi, $d0.lo, $d1.hi, and $d1.lo.
    153 
    154 @item Assembler reserved register $ta
    155 Register $ta ($r15) is reserved for assembler using.
    156 
    157 @item Operating system reserved registers $p0 and $p1
    158 Registers $p0 ($r26) and $p1 ($r27) are used by operating system as scratch
    159 registers.
    160 
    161 @item Frame pointer $fp
    162 Register $r28 is regarded as the frame pointer.
    163 
    164 @item Global pointer
    165 Register $r29 is regarded as the global pointer.
    166 
    167 @item Link pointer
    168 Register $r30 is regarded as the link pointer.
    169 
    170 @item Stack pointer
    171 Register $r31 is regarded as the stack pointer.
    172 @end table
    173 
    174 @node NDS32-Ops
    175 @subsection Pseudo Instructions
    176 @table @code
    177 @item li rt5,imm32
    178 load 32-bit integer into register rt5.  @samp{sethi rt5,hi20(imm32)} and then
    179 @samp{ori rt5,reg,lo12(imm32)}.
    180 
    181 @item la rt5,var
    182 Load 32-bit address of var into register rt5.  @samp{sethi rt5,hi20(var)} and
    183 then @samp{ori reg,rt5,lo12(var)}
    184 
    185 @item l.[bhw] rt5,var
    186 Load value of var into register rt5.  @samp{sethi $ta,hi20(var)} and then
    187 @samp{l[bhw]i rt5,[$ta+lo12(var)]}
    188 
    189 @item l.[bh]s rt5,var
    190 Load value of var into register rt5.  @samp{sethi $ta,hi20(var)} and then
    191 @samp{l[bh]si rt5,[$ta+lo12(var)]}
    192 
    193 @item  l.[bhw]p rt5,var,inc
    194 Load value of var into register rt5 and increment $ta by amount inc.
    195 @samp{la $ta,var} and then @samp{l[bhw]i.bi rt5,[$ta],inc}
    196 
    197 @item l.[bhw]pc rt5,inc
    198 Continue loading value of var into register rt5 and increment $ta by amount inc.
    199 @samp{l[bhw]i.bi rt5,[$ta],inc.}
    200 
    201 @item l.[bh]sp rt5,var,inc
    202 Load value of var into register rt5 and increment $ta by amount inc.
    203 @samp{la $ta,var} and then @samp{l[bh]si.bi rt5,[$ta],inc}
    204 
    205 @item l.[bh]spc rt5,inc
    206 Continue loading value of var into register rt5 and increment $ta by amount inc.
    207 @samp{l[bh]si.bi rt5,[$ta],inc.}
    208 
    209 @item s.[bhw] rt5,var
    210 Store register rt5 to var.
    211 @samp{sethi $ta,hi20(var)} and then @samp{s[bhw]i rt5,[$ta+lo12(var)]}
    212 
    213 @item s.[bhw]p rt5,var,inc
    214 Store register rt5 to var and increment $ta by amount inc.
    215 @samp{la $ta,var} and then @samp{s[bhw]i.bi rt5,[$ta],inc}
    216 
    217 @item s.[bhw]pc rt5,inc
    218 Continue storing register rt5 to var and increment $ta by amount inc.
    219 @samp{s[bhw]i.bi rt5,[$ta],inc.}
    220 
    221 @item not rt5,ra5
    222 Alias of @samp{nor rt5,ra5,ra5}.
    223 
    224 @item neg rt5,ra5
    225 Alias of @samp{subri rt5,ra5,0}.
    226 
    227 @item br rb5
    228 Depending on how it is assembled, it is translated into @samp{r5 rb5}
    229 or @samp{jr rb5}.
    230 
    231 @item b label
    232 Branch to label depending on how it is assembled, it is translated into
    233 @samp{j8 label}, @samp{j label}, or "@samp{la $ta,label} @samp{br $ta}".
    234 
    235 @item bral rb5
    236 Alias of jral br5 depending on how it is assembled, it is translated
    237 into @samp{jral5 rb5} or @samp{jral rb5}.
    238 
    239 @item bal fname
    240 Alias of jal fname depending on how it is assembled, it is translated into
    241 @samp{jal fname} or "@samp{la $ta,fname} @samp{bral $ta}".
    242 
    243 @item call fname
    244 Call function fname same as @samp{jal fname}.
    245 
    246 @item move rt5,ra5
    247 For 16-bit, this is @samp{mov55 rt5,ra5}.
    248 For no 16-bit, this is @samp{ori rt5,ra5,0}.
    249 
    250 @item move rt5,var
    251 This is the same as @samp{l.w rt5,var}.
    252 
    253 @item move rt5,imm32
    254 This is the same as @samp{li rt5,imm32}.
    255 
    256 @item pushm ra5,rb5
    257 Push contents of registers from ra5 to rb5 into stack.
    258 
    259 @item push ra5
    260 Push content of register ra5 into stack. (same @samp{pushm ra5,ra5}).
    261 
    262 @item push.d var
    263 Push value of double-word variable var into stack.
    264 
    265 @item push.w var
    266 Push value of word variable var into stack.
    267 
    268 @item push.h var
    269 Push value of half-word variable var into stack.
    270 
    271 @item push.b var
    272 Push value of byte variable var into stack.
    273 
    274 @item pusha var
    275 Push 32-bit address of variable var into stack.
    276 
    277 @item pushi imm32
    278 Push 32-bit immediate value into stack.
    279 
    280 @item popm ra5,rb5
    281 Pop top of stack values into registers ra5 to rb5.
    282 
    283 @item pop rt5
    284 Pop top of stack value into register. (same as @samp{popm rt5,rt5}.)
    285 
    286 @item pop.d var,ra5
    287 Pop value of double-word variable var from stack using register ra5
    288 as 2nd scratch register. (1st is $ta)
    289 
    290 @item pop.w var,ra5
    291 Pop value of word variable var from stack using register ra5.
    292 
    293 @item pop.h var,ra5
    294 Pop value of half-word variable var from stack using register ra5.
    295 
    296 @item pop.b var,ra5
    297 Pop value of byte variable var from stack using register ra5.
    298 
    299 @end table
    300