Home | History | Annotate | Download | only in Parse
      1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expression parsing implementation for C++.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/AST/ASTContext.h"
     14 #include "RAIIObjectsForParser.h"
     15 #include "clang/AST/DeclTemplate.h"
     16 #include "clang/Basic/PrettyStackTrace.h"
     17 #include "clang/Lex/LiteralSupport.h"
     18 #include "clang/Parse/ParseDiagnostic.h"
     19 #include "clang/Parse/Parser.h"
     20 #include "clang/Sema/DeclSpec.h"
     21 #include "clang/Sema/ParsedTemplate.h"
     22 #include "clang/Sema/Scope.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 
     25 
     26 using namespace clang;
     27 
     28 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
     29   switch (Kind) {
     30     // template name
     31     case tok::unknown:             return 0;
     32     // casts
     33     case tok::kw_const_cast:       return 1;
     34     case tok::kw_dynamic_cast:     return 2;
     35     case tok::kw_reinterpret_cast: return 3;
     36     case tok::kw_static_cast:      return 4;
     37     default:
     38       llvm_unreachable("Unknown type for digraph error message.");
     39   }
     40 }
     41 
     42 // Are the two tokens adjacent in the same source file?
     43 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
     44   SourceManager &SM = PP.getSourceManager();
     45   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
     46   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
     47   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
     48 }
     49 
     50 // Suggest fixit for "<::" after a cast.
     51 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
     52                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
     53   // Pull '<:' and ':' off token stream.
     54   if (!AtDigraph)
     55     PP.Lex(DigraphToken);
     56   PP.Lex(ColonToken);
     57 
     58   SourceRange Range;
     59   Range.setBegin(DigraphToken.getLocation());
     60   Range.setEnd(ColonToken.getLocation());
     61   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
     62       << SelectDigraphErrorMessage(Kind)
     63       << FixItHint::CreateReplacement(Range, "< ::");
     64 
     65   // Update token information to reflect their change in token type.
     66   ColonToken.setKind(tok::coloncolon);
     67   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
     68   ColonToken.setLength(2);
     69   DigraphToken.setKind(tok::less);
     70   DigraphToken.setLength(1);
     71 
     72   // Push new tokens back to token stream.
     73   PP.EnterToken(ColonToken);
     74   if (!AtDigraph)
     75     PP.EnterToken(DigraphToken);
     76 }
     77 
     78 // Check for '<::' which should be '< ::' instead of '[:' when following
     79 // a template name.
     80 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
     81                                         bool EnteringContext,
     82                                         IdentifierInfo &II, CXXScopeSpec &SS) {
     83   if (!Next.is(tok::l_square) || Next.getLength() != 2)
     84     return;
     85 
     86   Token SecondToken = GetLookAheadToken(2);
     87   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
     88     return;
     89 
     90   TemplateTy Template;
     91   UnqualifiedId TemplateName;
     92   TemplateName.setIdentifier(&II, Tok.getLocation());
     93   bool MemberOfUnknownSpecialization;
     94   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
     95                               TemplateName, ObjectType, EnteringContext,
     96                               Template, MemberOfUnknownSpecialization))
     97     return;
     98 
     99   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
    100              /*AtDigraph*/false);
    101 }
    102 
    103 /// \brief Emits an error for a left parentheses after a double colon.
    104 ///
    105 /// When a '(' is found after a '::', emit an error.  Attempt to fix the token
    106 /// stream by removing the '(', and the matching ')' if found.
    107 void Parser::CheckForLParenAfterColonColon() {
    108   if (!Tok.is(tok::l_paren))
    109     return;
    110 
    111   Token LParen = Tok;
    112   Token NextTok = GetLookAheadToken(1);
    113   Token StarTok = NextTok;
    114   // Check for (identifier or (*identifier
    115   Token IdentifierTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : StarTok;
    116   if (IdentifierTok.isNot(tok::identifier))
    117     return;
    118   // Eat the '('.
    119   ConsumeParen();
    120   Token RParen;
    121   RParen.setLocation(SourceLocation());
    122   // Do we have a ')' ?
    123   NextTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : GetLookAheadToken(1);
    124   if (NextTok.is(tok::r_paren)) {
    125     RParen = NextTok;
    126     // Eat the '*' if it is present.
    127     if (StarTok.is(tok::star))
    128       ConsumeToken();
    129     // Eat the identifier.
    130     ConsumeToken();
    131     // Add the identifier token back.
    132     PP.EnterToken(IdentifierTok);
    133     // Add the '*' back if it was present.
    134     if (StarTok.is(tok::star))
    135       PP.EnterToken(StarTok);
    136     // Eat the ')'.
    137     ConsumeParen();
    138   }
    139 
    140   Diag(LParen.getLocation(), diag::err_paren_after_colon_colon)
    141       << FixItHint::CreateRemoval(LParen.getLocation())
    142       << FixItHint::CreateRemoval(RParen.getLocation());
    143 }
    144 
    145 /// \brief Parse global scope or nested-name-specifier if present.
    146 ///
    147 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
    148 /// may be preceded by '::'). Note that this routine will not parse ::new or
    149 /// ::delete; it will just leave them in the token stream.
    150 ///
    151 ///       '::'[opt] nested-name-specifier
    152 ///       '::'
    153 ///
    154 ///       nested-name-specifier:
    155 ///         type-name '::'
    156 ///         namespace-name '::'
    157 ///         nested-name-specifier identifier '::'
    158 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
    159 ///
    160 ///
    161 /// \param SS the scope specifier that will be set to the parsed
    162 /// nested-name-specifier (or empty)
    163 ///
    164 /// \param ObjectType if this nested-name-specifier is being parsed following
    165 /// the "." or "->" of a member access expression, this parameter provides the
    166 /// type of the object whose members are being accessed.
    167 ///
    168 /// \param EnteringContext whether we will be entering into the context of
    169 /// the nested-name-specifier after parsing it.
    170 ///
    171 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
    172 /// indicates whether this nested-name-specifier may be part of a
    173 /// pseudo-destructor name. In this case, the flag will be set false
    174 /// if we don't actually end up parsing a destructor name. Moreorover,
    175 /// if we do end up determining that we are parsing a destructor name,
    176 /// the last component of the nested-name-specifier is not parsed as
    177 /// part of the scope specifier.
    178 ///
    179 /// \param IsTypename If \c true, this nested-name-specifier is known to be
    180 /// part of a type name. This is used to improve error recovery.
    181 ///
    182 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
    183 /// filled in with the leading identifier in the last component of the
    184 /// nested-name-specifier, if any.
    185 ///
    186 /// \returns true if there was an error parsing a scope specifier
    187 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
    188                                             ParsedType ObjectType,
    189                                             bool EnteringContext,
    190                                             bool *MayBePseudoDestructor,
    191                                             bool IsTypename,
    192                                             IdentifierInfo **LastII) {
    193   assert(getLangOpts().CPlusPlus &&
    194          "Call sites of this function should be guarded by checking for C++");
    195 
    196   if (Tok.is(tok::annot_cxxscope)) {
    197     assert(!LastII && "want last identifier but have already annotated scope");
    198     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
    199     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
    200                                                  Tok.getAnnotationRange(),
    201                                                  SS);
    202     ConsumeToken();
    203     return false;
    204   }
    205 
    206   if (Tok.is(tok::annot_template_id)) {
    207     // If the current token is an annotated template id, it may already have
    208     // a scope specifier. Restore it.
    209     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
    210     SS = TemplateId->SS;
    211   }
    212 
    213   // Has to happen before any "return false"s in this function.
    214   bool CheckForDestructor = false;
    215   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
    216     CheckForDestructor = true;
    217     *MayBePseudoDestructor = false;
    218   }
    219 
    220   if (LastII)
    221     *LastII = nullptr;
    222 
    223   bool HasScopeSpecifier = false;
    224 
    225   if (Tok.is(tok::coloncolon)) {
    226     // ::new and ::delete aren't nested-name-specifiers.
    227     tok::TokenKind NextKind = NextToken().getKind();
    228     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
    229       return false;
    230 
    231     if (NextKind == tok::l_brace) {
    232       // It is invalid to have :: {, consume the scope qualifier and pretend
    233       // like we never saw it.
    234       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
    235     } else {
    236       // '::' - Global scope qualifier.
    237       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
    238         return true;
    239 
    240       CheckForLParenAfterColonColon();
    241 
    242       HasScopeSpecifier = true;
    243     }
    244   }
    245 
    246   if (Tok.is(tok::kw___super)) {
    247     SourceLocation SuperLoc = ConsumeToken();
    248     if (!Tok.is(tok::coloncolon)) {
    249       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
    250       return true;
    251     }
    252 
    253     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
    254   }
    255 
    256   if (!HasScopeSpecifier &&
    257       Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
    258     DeclSpec DS(AttrFactory);
    259     SourceLocation DeclLoc = Tok.getLocation();
    260     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
    261 
    262     SourceLocation CCLoc;
    263     if (!TryConsumeToken(tok::coloncolon, CCLoc)) {
    264       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
    265       return false;
    266     }
    267 
    268     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
    269       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
    270 
    271     HasScopeSpecifier = true;
    272   }
    273 
    274   while (true) {
    275     if (HasScopeSpecifier) {
    276       // C++ [basic.lookup.classref]p5:
    277       //   If the qualified-id has the form
    278       //
    279       //       ::class-name-or-namespace-name::...
    280       //
    281       //   the class-name-or-namespace-name is looked up in global scope as a
    282       //   class-name or namespace-name.
    283       //
    284       // To implement this, we clear out the object type as soon as we've
    285       // seen a leading '::' or part of a nested-name-specifier.
    286       ObjectType = ParsedType();
    287 
    288       if (Tok.is(tok::code_completion)) {
    289         // Code completion for a nested-name-specifier, where the code
    290         // code completion token follows the '::'.
    291         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
    292         // Include code completion token into the range of the scope otherwise
    293         // when we try to annotate the scope tokens the dangling code completion
    294         // token will cause assertion in
    295         // Preprocessor::AnnotatePreviousCachedTokens.
    296         SS.setEndLoc(Tok.getLocation());
    297         cutOffParsing();
    298         return true;
    299       }
    300     }
    301 
    302     // nested-name-specifier:
    303     //   nested-name-specifier 'template'[opt] simple-template-id '::'
    304 
    305     // Parse the optional 'template' keyword, then make sure we have
    306     // 'identifier <' after it.
    307     if (Tok.is(tok::kw_template)) {
    308       // If we don't have a scope specifier or an object type, this isn't a
    309       // nested-name-specifier, since they aren't allowed to start with
    310       // 'template'.
    311       if (!HasScopeSpecifier && !ObjectType)
    312         break;
    313 
    314       TentativeParsingAction TPA(*this);
    315       SourceLocation TemplateKWLoc = ConsumeToken();
    316 
    317       UnqualifiedId TemplateName;
    318       if (Tok.is(tok::identifier)) {
    319         // Consume the identifier.
    320         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
    321         ConsumeToken();
    322       } else if (Tok.is(tok::kw_operator)) {
    323         // We don't need to actually parse the unqualified-id in this case,
    324         // because a simple-template-id cannot start with 'operator', but
    325         // go ahead and parse it anyway for consistency with the case where
    326         // we already annotated the template-id.
    327         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
    328                                        TemplateName)) {
    329           TPA.Commit();
    330           break;
    331         }
    332 
    333         if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
    334             TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
    335           Diag(TemplateName.getSourceRange().getBegin(),
    336                diag::err_id_after_template_in_nested_name_spec)
    337             << TemplateName.getSourceRange();
    338           TPA.Commit();
    339           break;
    340         }
    341       } else {
    342         TPA.Revert();
    343         break;
    344       }
    345 
    346       // If the next token is not '<', we have a qualified-id that refers
    347       // to a template name, such as T::template apply, but is not a
    348       // template-id.
    349       if (Tok.isNot(tok::less)) {
    350         TPA.Revert();
    351         break;
    352       }
    353 
    354       // Commit to parsing the template-id.
    355       TPA.Commit();
    356       TemplateTy Template;
    357       if (TemplateNameKind TNK
    358           = Actions.ActOnDependentTemplateName(getCurScope(),
    359                                                SS, TemplateKWLoc, TemplateName,
    360                                                ObjectType, EnteringContext,
    361                                                Template)) {
    362         if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
    363                                     TemplateName, false))
    364           return true;
    365       } else
    366         return true;
    367 
    368       continue;
    369     }
    370 
    371     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
    372       // We have
    373       //
    374       //   template-id '::'
    375       //
    376       // So we need to check whether the template-id is a simple-template-id of
    377       // the right kind (it should name a type or be dependent), and then
    378       // convert it into a type within the nested-name-specifier.
    379       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
    380       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
    381         *MayBePseudoDestructor = true;
    382         return false;
    383       }
    384 
    385       if (LastII)
    386         *LastII = TemplateId->Name;
    387 
    388       // Consume the template-id token.
    389       ConsumeToken();
    390 
    391       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
    392       SourceLocation CCLoc = ConsumeToken();
    393 
    394       HasScopeSpecifier = true;
    395 
    396       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
    397                                          TemplateId->NumArgs);
    398 
    399       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
    400                                               SS,
    401                                               TemplateId->TemplateKWLoc,
    402                                               TemplateId->Template,
    403                                               TemplateId->TemplateNameLoc,
    404                                               TemplateId->LAngleLoc,
    405                                               TemplateArgsPtr,
    406                                               TemplateId->RAngleLoc,
    407                                               CCLoc,
    408                                               EnteringContext)) {
    409         SourceLocation StartLoc
    410           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
    411                                       : TemplateId->TemplateNameLoc;
    412         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
    413       }
    414 
    415       continue;
    416     }
    417 
    418     // The rest of the nested-name-specifier possibilities start with
    419     // tok::identifier.
    420     if (Tok.isNot(tok::identifier))
    421       break;
    422 
    423     IdentifierInfo &II = *Tok.getIdentifierInfo();
    424 
    425     // nested-name-specifier:
    426     //   type-name '::'
    427     //   namespace-name '::'
    428     //   nested-name-specifier identifier '::'
    429     Token Next = NextToken();
    430 
    431     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
    432     // and emit a fixit hint for it.
    433     if (Next.is(tok::colon) && !ColonIsSacred) {
    434       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
    435                                             Tok.getLocation(),
    436                                             Next.getLocation(), ObjectType,
    437                                             EnteringContext) &&
    438           // If the token after the colon isn't an identifier, it's still an
    439           // error, but they probably meant something else strange so don't
    440           // recover like this.
    441           PP.LookAhead(1).is(tok::identifier)) {
    442         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
    443           << FixItHint::CreateReplacement(Next.getLocation(), "::");
    444         // Recover as if the user wrote '::'.
    445         Next.setKind(tok::coloncolon);
    446       }
    447     }
    448 
    449     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
    450       // It is invalid to have :: {, consume the scope qualifier and pretend
    451       // like we never saw it.
    452       Token Identifier = Tok; // Stash away the identifier.
    453       ConsumeToken();         // Eat the identifier, current token is now '::'.
    454       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
    455           << tok::identifier;
    456       UnconsumeToken(Identifier); // Stick the identifier back.
    457       Next = NextToken();         // Point Next at the '{' token.
    458     }
    459 
    460     if (Next.is(tok::coloncolon)) {
    461       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
    462           !Actions.isNonTypeNestedNameSpecifier(
    463               getCurScope(), SS, Tok.getLocation(), II, ObjectType)) {
    464         *MayBePseudoDestructor = true;
    465         return false;
    466       }
    467 
    468       if (ColonIsSacred) {
    469         const Token &Next2 = GetLookAheadToken(2);
    470         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
    471             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
    472           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
    473               << Next2.getName()
    474               << FixItHint::CreateReplacement(Next.getLocation(), ":");
    475           Token ColonColon;
    476           PP.Lex(ColonColon);
    477           ColonColon.setKind(tok::colon);
    478           PP.EnterToken(ColonColon);
    479           break;
    480         }
    481       }
    482 
    483       if (LastII)
    484         *LastII = &II;
    485 
    486       // We have an identifier followed by a '::'. Lookup this name
    487       // as the name in a nested-name-specifier.
    488       Token Identifier = Tok;
    489       SourceLocation IdLoc = ConsumeToken();
    490       assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
    491              "NextToken() not working properly!");
    492       Token ColonColon = Tok;
    493       SourceLocation CCLoc = ConsumeToken();
    494 
    495       CheckForLParenAfterColonColon();
    496 
    497       bool IsCorrectedToColon = false;
    498       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
    499       if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
    500                                               ObjectType, EnteringContext, SS,
    501                                               false, CorrectionFlagPtr)) {
    502         // Identifier is not recognized as a nested name, but we can have
    503         // mistyped '::' instead of ':'.
    504         if (CorrectionFlagPtr && IsCorrectedToColon) {
    505           ColonColon.setKind(tok::colon);
    506           PP.EnterToken(Tok);
    507           PP.EnterToken(ColonColon);
    508           Tok = Identifier;
    509           break;
    510         }
    511         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
    512       }
    513       HasScopeSpecifier = true;
    514       continue;
    515     }
    516 
    517     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
    518 
    519     // nested-name-specifier:
    520     //   type-name '<'
    521     if (Next.is(tok::less)) {
    522       TemplateTy Template;
    523       UnqualifiedId TemplateName;
    524       TemplateName.setIdentifier(&II, Tok.getLocation());
    525       bool MemberOfUnknownSpecialization;
    526       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
    527                                               /*hasTemplateKeyword=*/false,
    528                                                         TemplateName,
    529                                                         ObjectType,
    530                                                         EnteringContext,
    531                                                         Template,
    532                                               MemberOfUnknownSpecialization)) {
    533         // We have found a template name, so annotate this token
    534         // with a template-id annotation. We do not permit the
    535         // template-id to be translated into a type annotation,
    536         // because some clients (e.g., the parsing of class template
    537         // specializations) still want to see the original template-id
    538         // token.
    539         ConsumeToken();
    540         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
    541                                     TemplateName, false))
    542           return true;
    543         continue;
    544       }
    545 
    546       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
    547           (IsTypename || IsTemplateArgumentList(1))) {
    548         // We have something like t::getAs<T>, where getAs is a
    549         // member of an unknown specialization. However, this will only
    550         // parse correctly as a template, so suggest the keyword 'template'
    551         // before 'getAs' and treat this as a dependent template name.
    552         unsigned DiagID = diag::err_missing_dependent_template_keyword;
    553         if (getLangOpts().MicrosoftExt)
    554           DiagID = diag::warn_missing_dependent_template_keyword;
    555 
    556         Diag(Tok.getLocation(), DiagID)
    557           << II.getName()
    558           << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
    559 
    560         if (TemplateNameKind TNK
    561               = Actions.ActOnDependentTemplateName(getCurScope(),
    562                                                    SS, SourceLocation(),
    563                                                    TemplateName, ObjectType,
    564                                                    EnteringContext, Template)) {
    565           // Consume the identifier.
    566           ConsumeToken();
    567           if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
    568                                       TemplateName, false))
    569             return true;
    570         }
    571         else
    572           return true;
    573 
    574         continue;
    575       }
    576     }
    577 
    578     // We don't have any tokens that form the beginning of a
    579     // nested-name-specifier, so we're done.
    580     break;
    581   }
    582 
    583   // Even if we didn't see any pieces of a nested-name-specifier, we
    584   // still check whether there is a tilde in this position, which
    585   // indicates a potential pseudo-destructor.
    586   if (CheckForDestructor && Tok.is(tok::tilde))
    587     *MayBePseudoDestructor = true;
    588 
    589   return false;
    590 }
    591 
    592 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand,
    593                                            Token &Replacement) {
    594   SourceLocation TemplateKWLoc;
    595   UnqualifiedId Name;
    596   if (ParseUnqualifiedId(SS,
    597                          /*EnteringContext=*/false,
    598                          /*AllowDestructorName=*/false,
    599                          /*AllowConstructorName=*/false,
    600                          /*ObjectType=*/ParsedType(), TemplateKWLoc, Name))
    601     return ExprError();
    602 
    603   // This is only the direct operand of an & operator if it is not
    604   // followed by a postfix-expression suffix.
    605   if (isAddressOfOperand && isPostfixExpressionSuffixStart())
    606     isAddressOfOperand = false;
    607 
    608   return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
    609                                    Tok.is(tok::l_paren), isAddressOfOperand,
    610                                    nullptr, /*IsInlineAsmIdentifier=*/false,
    611                                    &Replacement);
    612 }
    613 
    614 /// ParseCXXIdExpression - Handle id-expression.
    615 ///
    616 ///       id-expression:
    617 ///         unqualified-id
    618 ///         qualified-id
    619 ///
    620 ///       qualified-id:
    621 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
    622 ///         '::' identifier
    623 ///         '::' operator-function-id
    624 ///         '::' template-id
    625 ///
    626 /// NOTE: The standard specifies that, for qualified-id, the parser does not
    627 /// expect:
    628 ///
    629 ///   '::' conversion-function-id
    630 ///   '::' '~' class-name
    631 ///
    632 /// This may cause a slight inconsistency on diagnostics:
    633 ///
    634 /// class C {};
    635 /// namespace A {}
    636 /// void f() {
    637 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
    638 ///                  // namespace.
    639 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
    640 /// }
    641 ///
    642 /// We simplify the parser a bit and make it work like:
    643 ///
    644 ///       qualified-id:
    645 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
    646 ///         '::' unqualified-id
    647 ///
    648 /// That way Sema can handle and report similar errors for namespaces and the
    649 /// global scope.
    650 ///
    651 /// The isAddressOfOperand parameter indicates that this id-expression is a
    652 /// direct operand of the address-of operator. This is, besides member contexts,
    653 /// the only place where a qualified-id naming a non-static class member may
    654 /// appear.
    655 ///
    656 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
    657   // qualified-id:
    658   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
    659   //   '::' unqualified-id
    660   //
    661   CXXScopeSpec SS;
    662   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
    663 
    664   Token Replacement;
    665   ExprResult Result =
    666       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
    667   if (Result.isUnset()) {
    668     // If the ExprResult is valid but null, then typo correction suggested a
    669     // keyword replacement that needs to be reparsed.
    670     UnconsumeToken(Replacement);
    671     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
    672   }
    673   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
    674                               "for a previous keyword suggestion");
    675   return Result;
    676 }
    677 
    678 /// ParseLambdaExpression - Parse a C++11 lambda expression.
    679 ///
    680 ///       lambda-expression:
    681 ///         lambda-introducer lambda-declarator[opt] compound-statement
    682 ///
    683 ///       lambda-introducer:
    684 ///         '[' lambda-capture[opt] ']'
    685 ///
    686 ///       lambda-capture:
    687 ///         capture-default
    688 ///         capture-list
    689 ///         capture-default ',' capture-list
    690 ///
    691 ///       capture-default:
    692 ///         '&'
    693 ///         '='
    694 ///
    695 ///       capture-list:
    696 ///         capture
    697 ///         capture-list ',' capture
    698 ///
    699 ///       capture:
    700 ///         simple-capture
    701 ///         init-capture     [C++1y]
    702 ///
    703 ///       simple-capture:
    704 ///         identifier
    705 ///         '&' identifier
    706 ///         'this'
    707 ///
    708 ///       init-capture:      [C++1y]
    709 ///         identifier initializer
    710 ///         '&' identifier initializer
    711 ///
    712 ///       lambda-declarator:
    713 ///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
    714 ///           'mutable'[opt] exception-specification[opt]
    715 ///           trailing-return-type[opt]
    716 ///
    717 ExprResult Parser::ParseLambdaExpression() {
    718   // Parse lambda-introducer.
    719   LambdaIntroducer Intro;
    720   Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro);
    721   if (DiagID) {
    722     Diag(Tok, DiagID.getValue());
    723     SkipUntil(tok::r_square, StopAtSemi);
    724     SkipUntil(tok::l_brace, StopAtSemi);
    725     SkipUntil(tok::r_brace, StopAtSemi);
    726     return ExprError();
    727   }
    728 
    729   return ParseLambdaExpressionAfterIntroducer(Intro);
    730 }
    731 
    732 /// TryParseLambdaExpression - Use lookahead and potentially tentative
    733 /// parsing to determine if we are looking at a C++0x lambda expression, and parse
    734 /// it if we are.
    735 ///
    736 /// If we are not looking at a lambda expression, returns ExprError().
    737 ExprResult Parser::TryParseLambdaExpression() {
    738   assert(getLangOpts().CPlusPlus11
    739          && Tok.is(tok::l_square)
    740          && "Not at the start of a possible lambda expression.");
    741 
    742   const Token Next = NextToken(), After = GetLookAheadToken(2);
    743 
    744   // If lookahead indicates this is a lambda...
    745   if (Next.is(tok::r_square) ||     // []
    746       Next.is(tok::equal) ||        // [=
    747       (Next.is(tok::amp) &&         // [&] or [&,
    748        (After.is(tok::r_square) ||
    749         After.is(tok::comma))) ||
    750       (Next.is(tok::identifier) &&  // [identifier]
    751        After.is(tok::r_square))) {
    752     return ParseLambdaExpression();
    753   }
    754 
    755   // If lookahead indicates an ObjC message send...
    756   // [identifier identifier
    757   if (Next.is(tok::identifier) && After.is(tok::identifier)) {
    758     return ExprEmpty();
    759   }
    760 
    761   // Here, we're stuck: lambda introducers and Objective-C message sends are
    762   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
    763   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
    764   // writing two routines to parse a lambda introducer, just try to parse
    765   // a lambda introducer first, and fall back if that fails.
    766   // (TryParseLambdaIntroducer never produces any diagnostic output.)
    767   LambdaIntroducer Intro;
    768   if (TryParseLambdaIntroducer(Intro))
    769     return ExprEmpty();
    770 
    771   return ParseLambdaExpressionAfterIntroducer(Intro);
    772 }
    773 
    774 /// \brief Parse a lambda introducer.
    775 /// \param Intro A LambdaIntroducer filled in with information about the
    776 ///        contents of the lambda-introducer.
    777 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C
    778 ///        message send and a lambda expression. In this mode, we will
    779 ///        sometimes skip the initializers for init-captures and not fully
    780 ///        populate \p Intro. This flag will be set to \c true if we do so.
    781 /// \return A DiagnosticID if it hit something unexpected. The location for
    782 ///         for the diagnostic is that of the current token.
    783 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
    784                                                  bool *SkippedInits) {
    785   typedef Optional<unsigned> DiagResult;
    786 
    787   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
    788   BalancedDelimiterTracker T(*this, tok::l_square);
    789   T.consumeOpen();
    790 
    791   Intro.Range.setBegin(T.getOpenLocation());
    792 
    793   bool first = true;
    794 
    795   // Parse capture-default.
    796   if (Tok.is(tok::amp) &&
    797       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
    798     Intro.Default = LCD_ByRef;
    799     Intro.DefaultLoc = ConsumeToken();
    800     first = false;
    801   } else if (Tok.is(tok::equal)) {
    802     Intro.Default = LCD_ByCopy;
    803     Intro.DefaultLoc = ConsumeToken();
    804     first = false;
    805   }
    806 
    807   while (Tok.isNot(tok::r_square)) {
    808     if (!first) {
    809       if (Tok.isNot(tok::comma)) {
    810         // Provide a completion for a lambda introducer here. Except
    811         // in Objective-C, where this is Almost Surely meant to be a message
    812         // send. In that case, fail here and let the ObjC message
    813         // expression parser perform the completion.
    814         if (Tok.is(tok::code_completion) &&
    815             !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
    816               !Intro.Captures.empty())) {
    817           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
    818                                                /*AfterAmpersand=*/false);
    819           cutOffParsing();
    820           break;
    821         }
    822 
    823         return DiagResult(diag::err_expected_comma_or_rsquare);
    824       }
    825       ConsumeToken();
    826     }
    827 
    828     if (Tok.is(tok::code_completion)) {
    829       // If we're in Objective-C++ and we have a bare '[', then this is more
    830       // likely to be a message receiver.
    831       if (getLangOpts().ObjC1 && first)
    832         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
    833       else
    834         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
    835                                              /*AfterAmpersand=*/false);
    836       cutOffParsing();
    837       break;
    838     }
    839 
    840     first = false;
    841 
    842     // Parse capture.
    843     LambdaCaptureKind Kind = LCK_ByCopy;
    844     LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
    845     SourceLocation Loc;
    846     IdentifierInfo *Id = nullptr;
    847     SourceLocation EllipsisLoc;
    848     ExprResult Init;
    849 
    850     if (Tok.is(tok::kw_this)) {
    851       Kind = LCK_This;
    852       Loc = ConsumeToken();
    853     } else {
    854       if (Tok.is(tok::amp)) {
    855         Kind = LCK_ByRef;
    856         ConsumeToken();
    857 
    858         if (Tok.is(tok::code_completion)) {
    859           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
    860                                                /*AfterAmpersand=*/true);
    861           cutOffParsing();
    862           break;
    863         }
    864       }
    865 
    866       if (Tok.is(tok::identifier)) {
    867         Id = Tok.getIdentifierInfo();
    868         Loc = ConsumeToken();
    869       } else if (Tok.is(tok::kw_this)) {
    870         // FIXME: If we want to suggest a fixit here, will need to return more
    871         // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
    872         // Clear()ed to prevent emission in case of tentative parsing?
    873         return DiagResult(diag::err_this_captured_by_reference);
    874       } else {
    875         return DiagResult(diag::err_expected_capture);
    876       }
    877 
    878       if (Tok.is(tok::l_paren)) {
    879         BalancedDelimiterTracker Parens(*this, tok::l_paren);
    880         Parens.consumeOpen();
    881 
    882         InitKind = LambdaCaptureInitKind::DirectInit;
    883 
    884         ExprVector Exprs;
    885         CommaLocsTy Commas;
    886         if (SkippedInits) {
    887           Parens.skipToEnd();
    888           *SkippedInits = true;
    889         } else if (ParseExpressionList(Exprs, Commas)) {
    890           Parens.skipToEnd();
    891           Init = ExprError();
    892         } else {
    893           Parens.consumeClose();
    894           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
    895                                             Parens.getCloseLocation(),
    896                                             Exprs);
    897         }
    898       } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
    899         // Each lambda init-capture forms its own full expression, which clears
    900         // Actions.MaybeODRUseExprs. So create an expression evaluation context
    901         // to save the necessary state, and restore it later.
    902         EnterExpressionEvaluationContext EC(Actions,
    903                                             Sema::PotentiallyEvaluated);
    904 
    905         if (TryConsumeToken(tok::equal))
    906           InitKind = LambdaCaptureInitKind::CopyInit;
    907         else
    908           InitKind = LambdaCaptureInitKind::ListInit;
    909 
    910         if (!SkippedInits) {
    911           Init = ParseInitializer();
    912         } else if (Tok.is(tok::l_brace)) {
    913           BalancedDelimiterTracker Braces(*this, tok::l_brace);
    914           Braces.consumeOpen();
    915           Braces.skipToEnd();
    916           *SkippedInits = true;
    917         } else {
    918           // We're disambiguating this:
    919           //
    920           //   [..., x = expr
    921           //
    922           // We need to find the end of the following expression in order to
    923           // determine whether this is an Obj-C message send's receiver, a
    924           // C99 designator, or a lambda init-capture.
    925           //
    926           // Parse the expression to find where it ends, and annotate it back
    927           // onto the tokens. We would have parsed this expression the same way
    928           // in either case: both the RHS of an init-capture and the RHS of an
    929           // assignment expression are parsed as an initializer-clause, and in
    930           // neither case can anything be added to the scope between the '[' and
    931           // here.
    932           //
    933           // FIXME: This is horrible. Adding a mechanism to skip an expression
    934           // would be much cleaner.
    935           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
    936           // that instead. (And if we see a ':' with no matching '?', we can
    937           // classify this as an Obj-C message send.)
    938           SourceLocation StartLoc = Tok.getLocation();
    939           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
    940           Init = ParseInitializer();
    941 
    942           if (Tok.getLocation() != StartLoc) {
    943             // Back out the lexing of the token after the initializer.
    944             PP.RevertCachedTokens(1);
    945 
    946             // Replace the consumed tokens with an appropriate annotation.
    947             Tok.setLocation(StartLoc);
    948             Tok.setKind(tok::annot_primary_expr);
    949             setExprAnnotation(Tok, Init);
    950             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
    951             PP.AnnotateCachedTokens(Tok);
    952 
    953             // Consume the annotated initializer.
    954             ConsumeToken();
    955           }
    956         }
    957       } else
    958         TryConsumeToken(tok::ellipsis, EllipsisLoc);
    959     }
    960     // If this is an init capture, process the initialization expression
    961     // right away.  For lambda init-captures such as the following:
    962     // const int x = 10;
    963     //  auto L = [i = x+1](int a) {
    964     //    return [j = x+2,
    965     //           &k = x](char b) { };
    966     //  };
    967     // keep in mind that each lambda init-capture has to have:
    968     //  - its initialization expression executed in the context
    969     //    of the enclosing/parent decl-context.
    970     //  - but the variable itself has to be 'injected' into the
    971     //    decl-context of its lambda's call-operator (which has
    972     //    not yet been created).
    973     // Each init-expression is a full-expression that has to get
    974     // Sema-analyzed (for capturing etc.) before its lambda's
    975     // call-operator's decl-context, scope & scopeinfo are pushed on their
    976     // respective stacks.  Thus if any variable is odr-used in the init-capture
    977     // it will correctly get captured in the enclosing lambda, if one exists.
    978     // The init-variables above are created later once the lambdascope and
    979     // call-operators decl-context is pushed onto its respective stack.
    980 
    981     // Since the lambda init-capture's initializer expression occurs in the
    982     // context of the enclosing function or lambda, therefore we can not wait
    983     // till a lambda scope has been pushed on before deciding whether the
    984     // variable needs to be captured.  We also need to process all
    985     // lvalue-to-rvalue conversions and discarded-value conversions,
    986     // so that we can avoid capturing certain constant variables.
    987     // For e.g.,
    988     //  void test() {
    989     //   const int x = 10;
    990     //   auto L = [&z = x](char a) { <-- don't capture by the current lambda
    991     //     return [y = x](int i) { <-- don't capture by enclosing lambda
    992     //          return y;
    993     //     }
    994     //   };
    995     // If x was not const, the second use would require 'L' to capture, and
    996     // that would be an error.
    997 
    998     ParsedType InitCaptureType;
    999     if (Init.isUsable()) {
   1000       // Get the pointer and store it in an lvalue, so we can use it as an
   1001       // out argument.
   1002       Expr *InitExpr = Init.get();
   1003       // This performs any lvalue-to-rvalue conversions if necessary, which
   1004       // can affect what gets captured in the containing decl-context.
   1005       InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
   1006           Loc, Kind == LCK_ByRef, Id, InitKind, InitExpr);
   1007       Init = InitExpr;
   1008     }
   1009     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
   1010                      InitCaptureType);
   1011   }
   1012 
   1013   T.consumeClose();
   1014   Intro.Range.setEnd(T.getCloseLocation());
   1015   return DiagResult();
   1016 }
   1017 
   1018 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
   1019 ///
   1020 /// Returns true if it hit something unexpected.
   1021 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
   1022   TentativeParsingAction PA(*this);
   1023 
   1024   bool SkippedInits = false;
   1025   Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
   1026 
   1027   if (DiagID) {
   1028     PA.Revert();
   1029     return true;
   1030   }
   1031 
   1032   if (SkippedInits) {
   1033     // Parse it again, but this time parse the init-captures too.
   1034     PA.Revert();
   1035     Intro = LambdaIntroducer();
   1036     DiagID = ParseLambdaIntroducer(Intro);
   1037     assert(!DiagID && "parsing lambda-introducer failed on reparse");
   1038     return false;
   1039   }
   1040 
   1041   PA.Commit();
   1042   return false;
   1043 }
   1044 
   1045 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
   1046 /// expression.
   1047 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
   1048                      LambdaIntroducer &Intro) {
   1049   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
   1050   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
   1051 
   1052   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
   1053                                 "lambda expression parsing");
   1054 
   1055 
   1056 
   1057   // FIXME: Call into Actions to add any init-capture declarations to the
   1058   // scope while parsing the lambda-declarator and compound-statement.
   1059 
   1060   // Parse lambda-declarator[opt].
   1061   DeclSpec DS(AttrFactory);
   1062   Declarator D(DS, Declarator::LambdaExprContext);
   1063   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
   1064   Actions.PushLambdaScope();
   1065 
   1066   TypeResult TrailingReturnType;
   1067   if (Tok.is(tok::l_paren)) {
   1068     ParseScope PrototypeScope(this,
   1069                               Scope::FunctionPrototypeScope |
   1070                               Scope::FunctionDeclarationScope |
   1071                               Scope::DeclScope);
   1072 
   1073     SourceLocation DeclEndLoc;
   1074     BalancedDelimiterTracker T(*this, tok::l_paren);
   1075     T.consumeOpen();
   1076     SourceLocation LParenLoc = T.getOpenLocation();
   1077 
   1078     // Parse parameter-declaration-clause.
   1079     ParsedAttributes Attr(AttrFactory);
   1080     SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
   1081     SourceLocation EllipsisLoc;
   1082 
   1083     if (Tok.isNot(tok::r_paren)) {
   1084       Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
   1085       ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
   1086       // For a generic lambda, each 'auto' within the parameter declaration
   1087       // clause creates a template type parameter, so increment the depth.
   1088       if (Actions.getCurGenericLambda())
   1089         ++CurTemplateDepthTracker;
   1090     }
   1091     T.consumeClose();
   1092     SourceLocation RParenLoc = T.getCloseLocation();
   1093     DeclEndLoc = RParenLoc;
   1094 
   1095     // GNU-style attributes must be parsed before the mutable specifier to be
   1096     // compatible with GCC.
   1097     MaybeParseGNUAttributes(Attr, &DeclEndLoc);
   1098 
   1099     // MSVC-style attributes must be parsed before the mutable specifier to be
   1100     // compatible with MSVC.
   1101     MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc);
   1102 
   1103     // Parse 'mutable'[opt].
   1104     SourceLocation MutableLoc;
   1105     if (TryConsumeToken(tok::kw_mutable, MutableLoc))
   1106       DeclEndLoc = MutableLoc;
   1107 
   1108     // Parse exception-specification[opt].
   1109     ExceptionSpecificationType ESpecType = EST_None;
   1110     SourceRange ESpecRange;
   1111     SmallVector<ParsedType, 2> DynamicExceptions;
   1112     SmallVector<SourceRange, 2> DynamicExceptionRanges;
   1113     ExprResult NoexceptExpr;
   1114     CachedTokens *ExceptionSpecTokens;
   1115     ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
   1116                                                ESpecRange,
   1117                                                DynamicExceptions,
   1118                                                DynamicExceptionRanges,
   1119                                                NoexceptExpr,
   1120                                                ExceptionSpecTokens);
   1121 
   1122     if (ESpecType != EST_None)
   1123       DeclEndLoc = ESpecRange.getEnd();
   1124 
   1125     // Parse attribute-specifier[opt].
   1126     MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
   1127 
   1128     SourceLocation FunLocalRangeEnd = DeclEndLoc;
   1129 
   1130     // Parse trailing-return-type[opt].
   1131     if (Tok.is(tok::arrow)) {
   1132       FunLocalRangeEnd = Tok.getLocation();
   1133       SourceRange Range;
   1134       TrailingReturnType = ParseTrailingReturnType(Range);
   1135       if (Range.getEnd().isValid())
   1136         DeclEndLoc = Range.getEnd();
   1137     }
   1138 
   1139     PrototypeScope.Exit();
   1140 
   1141     SourceLocation NoLoc;
   1142     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
   1143                                            /*isAmbiguous=*/false,
   1144                                            LParenLoc,
   1145                                            ParamInfo.data(), ParamInfo.size(),
   1146                                            EllipsisLoc, RParenLoc,
   1147                                            DS.getTypeQualifiers(),
   1148                                            /*RefQualifierIsLValueRef=*/true,
   1149                                            /*RefQualifierLoc=*/NoLoc,
   1150                                            /*ConstQualifierLoc=*/NoLoc,
   1151                                            /*VolatileQualifierLoc=*/NoLoc,
   1152                                            /*RestrictQualifierLoc=*/NoLoc,
   1153                                            MutableLoc,
   1154                                            ESpecType, ESpecRange,
   1155                                            DynamicExceptions.data(),
   1156                                            DynamicExceptionRanges.data(),
   1157                                            DynamicExceptions.size(),
   1158                                            NoexceptExpr.isUsable() ?
   1159                                              NoexceptExpr.get() : nullptr,
   1160                                            /*ExceptionSpecTokens*/nullptr,
   1161                                            LParenLoc, FunLocalRangeEnd, D,
   1162                                            TrailingReturnType),
   1163                   Attr, DeclEndLoc);
   1164   } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute) ||
   1165              (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
   1166     // It's common to forget that one needs '()' before 'mutable', an attribute
   1167     // specifier, or the result type. Deal with this.
   1168     unsigned TokKind = 0;
   1169     switch (Tok.getKind()) {
   1170     case tok::kw_mutable: TokKind = 0; break;
   1171     case tok::arrow: TokKind = 1; break;
   1172     case tok::kw___attribute:
   1173     case tok::l_square: TokKind = 2; break;
   1174     default: llvm_unreachable("Unknown token kind");
   1175     }
   1176 
   1177     Diag(Tok, diag::err_lambda_missing_parens)
   1178       << TokKind
   1179       << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
   1180     SourceLocation DeclLoc = Tok.getLocation();
   1181     SourceLocation DeclEndLoc = DeclLoc;
   1182 
   1183     // GNU-style attributes must be parsed before the mutable specifier to be
   1184     // compatible with GCC.
   1185     ParsedAttributes Attr(AttrFactory);
   1186     MaybeParseGNUAttributes(Attr, &DeclEndLoc);
   1187 
   1188     // Parse 'mutable', if it's there.
   1189     SourceLocation MutableLoc;
   1190     if (Tok.is(tok::kw_mutable)) {
   1191       MutableLoc = ConsumeToken();
   1192       DeclEndLoc = MutableLoc;
   1193     }
   1194 
   1195     // Parse attribute-specifier[opt].
   1196     MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
   1197 
   1198     // Parse the return type, if there is one.
   1199     if (Tok.is(tok::arrow)) {
   1200       SourceRange Range;
   1201       TrailingReturnType = ParseTrailingReturnType(Range);
   1202       if (Range.getEnd().isValid())
   1203         DeclEndLoc = Range.getEnd();
   1204     }
   1205 
   1206     SourceLocation NoLoc;
   1207     D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
   1208                                                /*isAmbiguous=*/false,
   1209                                                /*LParenLoc=*/NoLoc,
   1210                                                /*Params=*/nullptr,
   1211                                                /*NumParams=*/0,
   1212                                                /*EllipsisLoc=*/NoLoc,
   1213                                                /*RParenLoc=*/NoLoc,
   1214                                                /*TypeQuals=*/0,
   1215                                                /*RefQualifierIsLValueRef=*/true,
   1216                                                /*RefQualifierLoc=*/NoLoc,
   1217                                                /*ConstQualifierLoc=*/NoLoc,
   1218                                                /*VolatileQualifierLoc=*/NoLoc,
   1219                                                /*RestrictQualifierLoc=*/NoLoc,
   1220                                                MutableLoc,
   1221                                                EST_None,
   1222                                                /*ESpecRange=*/SourceRange(),
   1223                                                /*Exceptions=*/nullptr,
   1224                                                /*ExceptionRanges=*/nullptr,
   1225                                                /*NumExceptions=*/0,
   1226                                                /*NoexceptExpr=*/nullptr,
   1227                                                /*ExceptionSpecTokens=*/nullptr,
   1228                                                DeclLoc, DeclEndLoc, D,
   1229                                                TrailingReturnType),
   1230                   Attr, DeclEndLoc);
   1231   }
   1232 
   1233 
   1234   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
   1235   // it.
   1236   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
   1237   ParseScope BodyScope(this, ScopeFlags);
   1238 
   1239   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
   1240 
   1241   // Parse compound-statement.
   1242   if (!Tok.is(tok::l_brace)) {
   1243     Diag(Tok, diag::err_expected_lambda_body);
   1244     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
   1245     return ExprError();
   1246   }
   1247 
   1248   StmtResult Stmt(ParseCompoundStatementBody());
   1249   BodyScope.Exit();
   1250 
   1251   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
   1252     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
   1253 
   1254   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
   1255   return ExprError();
   1256 }
   1257 
   1258 /// ParseCXXCasts - This handles the various ways to cast expressions to another
   1259 /// type.
   1260 ///
   1261 ///       postfix-expression: [C++ 5.2p1]
   1262 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
   1263 ///         'static_cast' '<' type-name '>' '(' expression ')'
   1264 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
   1265 ///         'const_cast' '<' type-name '>' '(' expression ')'
   1266 ///
   1267 ExprResult Parser::ParseCXXCasts() {
   1268   tok::TokenKind Kind = Tok.getKind();
   1269   const char *CastName = nullptr; // For error messages
   1270 
   1271   switch (Kind) {
   1272   default: llvm_unreachable("Unknown C++ cast!");
   1273   case tok::kw_const_cast:       CastName = "const_cast";       break;
   1274   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
   1275   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
   1276   case tok::kw_static_cast:      CastName = "static_cast";      break;
   1277   }
   1278 
   1279   SourceLocation OpLoc = ConsumeToken();
   1280   SourceLocation LAngleBracketLoc = Tok.getLocation();
   1281 
   1282   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
   1283   // diagnose error, suggest fix, and recover parsing.
   1284   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
   1285     Token Next = NextToken();
   1286     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
   1287       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
   1288   }
   1289 
   1290   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
   1291     return ExprError();
   1292 
   1293   // Parse the common declaration-specifiers piece.
   1294   DeclSpec DS(AttrFactory);
   1295   ParseSpecifierQualifierList(DS);
   1296 
   1297   // Parse the abstract-declarator, if present.
   1298   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   1299   ParseDeclarator(DeclaratorInfo);
   1300 
   1301   SourceLocation RAngleBracketLoc = Tok.getLocation();
   1302 
   1303   if (ExpectAndConsume(tok::greater))
   1304     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
   1305 
   1306   SourceLocation LParenLoc, RParenLoc;
   1307   BalancedDelimiterTracker T(*this, tok::l_paren);
   1308 
   1309   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
   1310     return ExprError();
   1311 
   1312   ExprResult Result = ParseExpression();
   1313 
   1314   // Match the ')'.
   1315   T.consumeClose();
   1316 
   1317   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
   1318     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
   1319                                        LAngleBracketLoc, DeclaratorInfo,
   1320                                        RAngleBracketLoc,
   1321                                        T.getOpenLocation(), Result.get(),
   1322                                        T.getCloseLocation());
   1323 
   1324   return Result;
   1325 }
   1326 
   1327 /// ParseCXXTypeid - This handles the C++ typeid expression.
   1328 ///
   1329 ///       postfix-expression: [C++ 5.2p1]
   1330 ///         'typeid' '(' expression ')'
   1331 ///         'typeid' '(' type-id ')'
   1332 ///
   1333 ExprResult Parser::ParseCXXTypeid() {
   1334   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
   1335 
   1336   SourceLocation OpLoc = ConsumeToken();
   1337   SourceLocation LParenLoc, RParenLoc;
   1338   BalancedDelimiterTracker T(*this, tok::l_paren);
   1339 
   1340   // typeid expressions are always parenthesized.
   1341   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
   1342     return ExprError();
   1343   LParenLoc = T.getOpenLocation();
   1344 
   1345   ExprResult Result;
   1346 
   1347   // C++0x [expr.typeid]p3:
   1348   //   When typeid is applied to an expression other than an lvalue of a
   1349   //   polymorphic class type [...] The expression is an unevaluated
   1350   //   operand (Clause 5).
   1351   //
   1352   // Note that we can't tell whether the expression is an lvalue of a
   1353   // polymorphic class type until after we've parsed the expression; we
   1354   // speculatively assume the subexpression is unevaluated, and fix it up
   1355   // later.
   1356   //
   1357   // We enter the unevaluated context before trying to determine whether we
   1358   // have a type-id, because the tentative parse logic will try to resolve
   1359   // names, and must treat them as unevaluated.
   1360   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
   1361                                                Sema::ReuseLambdaContextDecl);
   1362 
   1363   if (isTypeIdInParens()) {
   1364     TypeResult Ty = ParseTypeName();
   1365 
   1366     // Match the ')'.
   1367     T.consumeClose();
   1368     RParenLoc = T.getCloseLocation();
   1369     if (Ty.isInvalid() || RParenLoc.isInvalid())
   1370       return ExprError();
   1371 
   1372     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
   1373                                     Ty.get().getAsOpaquePtr(), RParenLoc);
   1374   } else {
   1375     Result = ParseExpression();
   1376 
   1377     // Match the ')'.
   1378     if (Result.isInvalid())
   1379       SkipUntil(tok::r_paren, StopAtSemi);
   1380     else {
   1381       T.consumeClose();
   1382       RParenLoc = T.getCloseLocation();
   1383       if (RParenLoc.isInvalid())
   1384         return ExprError();
   1385 
   1386       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
   1387                                       Result.get(), RParenLoc);
   1388     }
   1389   }
   1390 
   1391   return Result;
   1392 }
   1393 
   1394 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
   1395 ///
   1396 ///         '__uuidof' '(' expression ')'
   1397 ///         '__uuidof' '(' type-id ')'
   1398 ///
   1399 ExprResult Parser::ParseCXXUuidof() {
   1400   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
   1401 
   1402   SourceLocation OpLoc = ConsumeToken();
   1403   BalancedDelimiterTracker T(*this, tok::l_paren);
   1404 
   1405   // __uuidof expressions are always parenthesized.
   1406   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
   1407     return ExprError();
   1408 
   1409   ExprResult Result;
   1410 
   1411   if (isTypeIdInParens()) {
   1412     TypeResult Ty = ParseTypeName();
   1413 
   1414     // Match the ')'.
   1415     T.consumeClose();
   1416 
   1417     if (Ty.isInvalid())
   1418       return ExprError();
   1419 
   1420     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
   1421                                     Ty.get().getAsOpaquePtr(),
   1422                                     T.getCloseLocation());
   1423   } else {
   1424     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
   1425     Result = ParseExpression();
   1426 
   1427     // Match the ')'.
   1428     if (Result.isInvalid())
   1429       SkipUntil(tok::r_paren, StopAtSemi);
   1430     else {
   1431       T.consumeClose();
   1432 
   1433       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
   1434                                       /*isType=*/false,
   1435                                       Result.get(), T.getCloseLocation());
   1436     }
   1437   }
   1438 
   1439   return Result;
   1440 }
   1441 
   1442 /// \brief Parse a C++ pseudo-destructor expression after the base,
   1443 /// . or -> operator, and nested-name-specifier have already been
   1444 /// parsed.
   1445 ///
   1446 ///       postfix-expression: [C++ 5.2]
   1447 ///         postfix-expression . pseudo-destructor-name
   1448 ///         postfix-expression -> pseudo-destructor-name
   1449 ///
   1450 ///       pseudo-destructor-name:
   1451 ///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
   1452 ///         ::[opt] nested-name-specifier template simple-template-id ::
   1453 ///                 ~type-name
   1454 ///         ::[opt] nested-name-specifier[opt] ~type-name
   1455 ///
   1456 ExprResult
   1457 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
   1458                                  tok::TokenKind OpKind,
   1459                                  CXXScopeSpec &SS,
   1460                                  ParsedType ObjectType) {
   1461   // We're parsing either a pseudo-destructor-name or a dependent
   1462   // member access that has the same form as a
   1463   // pseudo-destructor-name. We parse both in the same way and let
   1464   // the action model sort them out.
   1465   //
   1466   // Note that the ::[opt] nested-name-specifier[opt] has already
   1467   // been parsed, and if there was a simple-template-id, it has
   1468   // been coalesced into a template-id annotation token.
   1469   UnqualifiedId FirstTypeName;
   1470   SourceLocation CCLoc;
   1471   if (Tok.is(tok::identifier)) {
   1472     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
   1473     ConsumeToken();
   1474     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
   1475     CCLoc = ConsumeToken();
   1476   } else if (Tok.is(tok::annot_template_id)) {
   1477     // FIXME: retrieve TemplateKWLoc from template-id annotation and
   1478     // store it in the pseudo-dtor node (to be used when instantiating it).
   1479     FirstTypeName.setTemplateId(
   1480                               (TemplateIdAnnotation *)Tok.getAnnotationValue());
   1481     ConsumeToken();
   1482     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
   1483     CCLoc = ConsumeToken();
   1484   } else {
   1485     FirstTypeName.setIdentifier(nullptr, SourceLocation());
   1486   }
   1487 
   1488   // Parse the tilde.
   1489   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
   1490   SourceLocation TildeLoc = ConsumeToken();
   1491 
   1492   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
   1493     DeclSpec DS(AttrFactory);
   1494     ParseDecltypeSpecifier(DS);
   1495     if (DS.getTypeSpecType() == TST_error)
   1496       return ExprError();
   1497     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
   1498                                              TildeLoc, DS);
   1499   }
   1500 
   1501   if (!Tok.is(tok::identifier)) {
   1502     Diag(Tok, diag::err_destructor_tilde_identifier);
   1503     return ExprError();
   1504   }
   1505 
   1506   // Parse the second type.
   1507   UnqualifiedId SecondTypeName;
   1508   IdentifierInfo *Name = Tok.getIdentifierInfo();
   1509   SourceLocation NameLoc = ConsumeToken();
   1510   SecondTypeName.setIdentifier(Name, NameLoc);
   1511 
   1512   // If there is a '<', the second type name is a template-id. Parse
   1513   // it as such.
   1514   if (Tok.is(tok::less) &&
   1515       ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
   1516                                    Name, NameLoc,
   1517                                    false, ObjectType, SecondTypeName,
   1518                                    /*AssumeTemplateName=*/true))
   1519     return ExprError();
   1520 
   1521   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
   1522                                            SS, FirstTypeName, CCLoc, TildeLoc,
   1523                                            SecondTypeName);
   1524 }
   1525 
   1526 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
   1527 ///
   1528 ///       boolean-literal: [C++ 2.13.5]
   1529 ///         'true'
   1530 ///         'false'
   1531 ExprResult Parser::ParseCXXBoolLiteral() {
   1532   tok::TokenKind Kind = Tok.getKind();
   1533   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
   1534 }
   1535 
   1536 /// ParseThrowExpression - This handles the C++ throw expression.
   1537 ///
   1538 ///       throw-expression: [C++ 15]
   1539 ///         'throw' assignment-expression[opt]
   1540 ExprResult Parser::ParseThrowExpression() {
   1541   assert(Tok.is(tok::kw_throw) && "Not throw!");
   1542   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
   1543 
   1544   // If the current token isn't the start of an assignment-expression,
   1545   // then the expression is not present.  This handles things like:
   1546   //   "C ? throw : (void)42", which is crazy but legal.
   1547   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
   1548   case tok::semi:
   1549   case tok::r_paren:
   1550   case tok::r_square:
   1551   case tok::r_brace:
   1552   case tok::colon:
   1553   case tok::comma:
   1554     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
   1555 
   1556   default:
   1557     ExprResult Expr(ParseAssignmentExpression());
   1558     if (Expr.isInvalid()) return Expr;
   1559     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
   1560   }
   1561 }
   1562 
   1563 /// \brief Parse the C++ Coroutines co_yield expression.
   1564 ///
   1565 ///       co_yield-expression:
   1566 ///         'co_yield' assignment-expression[opt]
   1567 ExprResult Parser::ParseCoyieldExpression() {
   1568   assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
   1569 
   1570   SourceLocation Loc = ConsumeToken();
   1571   ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
   1572                                          : ParseAssignmentExpression();
   1573   if (!Expr.isInvalid())
   1574     Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
   1575   return Expr;
   1576 }
   1577 
   1578 /// ParseCXXThis - This handles the C++ 'this' pointer.
   1579 ///
   1580 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
   1581 /// a non-lvalue expression whose value is the address of the object for which
   1582 /// the function is called.
   1583 ExprResult Parser::ParseCXXThis() {
   1584   assert(Tok.is(tok::kw_this) && "Not 'this'!");
   1585   SourceLocation ThisLoc = ConsumeToken();
   1586   return Actions.ActOnCXXThis(ThisLoc);
   1587 }
   1588 
   1589 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
   1590 /// Can be interpreted either as function-style casting ("int(x)")
   1591 /// or class type construction ("ClassType(x,y,z)")
   1592 /// or creation of a value-initialized type ("int()").
   1593 /// See [C++ 5.2.3].
   1594 ///
   1595 ///       postfix-expression: [C++ 5.2p1]
   1596 ///         simple-type-specifier '(' expression-list[opt] ')'
   1597 /// [C++0x] simple-type-specifier braced-init-list
   1598 ///         typename-specifier '(' expression-list[opt] ')'
   1599 /// [C++0x] typename-specifier braced-init-list
   1600 ///
   1601 ExprResult
   1602 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
   1603   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   1604   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
   1605 
   1606   assert((Tok.is(tok::l_paren) ||
   1607           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
   1608          && "Expected '(' or '{'!");
   1609 
   1610   if (Tok.is(tok::l_brace)) {
   1611     ExprResult Init = ParseBraceInitializer();
   1612     if (Init.isInvalid())
   1613       return Init;
   1614     Expr *InitList = Init.get();
   1615     return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
   1616                                              MultiExprArg(&InitList, 1),
   1617                                              SourceLocation());
   1618   } else {
   1619     BalancedDelimiterTracker T(*this, tok::l_paren);
   1620     T.consumeOpen();
   1621 
   1622     ExprVector Exprs;
   1623     CommaLocsTy CommaLocs;
   1624 
   1625     if (Tok.isNot(tok::r_paren)) {
   1626       if (ParseExpressionList(Exprs, CommaLocs, [&] {
   1627             Actions.CodeCompleteConstructor(getCurScope(),
   1628                                       TypeRep.get()->getCanonicalTypeInternal(),
   1629                                             DS.getLocEnd(), Exprs);
   1630          })) {
   1631         SkipUntil(tok::r_paren, StopAtSemi);
   1632         return ExprError();
   1633       }
   1634     }
   1635 
   1636     // Match the ')'.
   1637     T.consumeClose();
   1638 
   1639     // TypeRep could be null, if it references an invalid typedef.
   1640     if (!TypeRep)
   1641       return ExprError();
   1642 
   1643     assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
   1644            "Unexpected number of commas!");
   1645     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
   1646                                              Exprs,
   1647                                              T.getCloseLocation());
   1648   }
   1649 }
   1650 
   1651 /// ParseCXXCondition - if/switch/while condition expression.
   1652 ///
   1653 ///       condition:
   1654 ///         expression
   1655 ///         type-specifier-seq declarator '=' assignment-expression
   1656 /// [C++11] type-specifier-seq declarator '=' initializer-clause
   1657 /// [C++11] type-specifier-seq declarator braced-init-list
   1658 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
   1659 ///             '=' assignment-expression
   1660 ///
   1661 /// \param ExprOut if the condition was parsed as an expression, the parsed
   1662 /// expression.
   1663 ///
   1664 /// \param DeclOut if the condition was parsed as a declaration, the parsed
   1665 /// declaration.
   1666 ///
   1667 /// \param Loc The location of the start of the statement that requires this
   1668 /// condition, e.g., the "for" in a for loop.
   1669 ///
   1670 /// \param ConvertToBoolean Whether the condition expression should be
   1671 /// converted to a boolean value.
   1672 ///
   1673 /// \returns true if there was a parsing, false otherwise.
   1674 bool Parser::ParseCXXCondition(ExprResult &ExprOut,
   1675                                Decl *&DeclOut,
   1676                                SourceLocation Loc,
   1677                                bool ConvertToBoolean) {
   1678   if (Tok.is(tok::code_completion)) {
   1679     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
   1680     cutOffParsing();
   1681     return true;
   1682   }
   1683 
   1684   ParsedAttributesWithRange attrs(AttrFactory);
   1685   MaybeParseCXX11Attributes(attrs);
   1686 
   1687   if (!isCXXConditionDeclaration()) {
   1688     ProhibitAttributes(attrs);
   1689 
   1690     // Parse the expression.
   1691     ExprOut = ParseExpression(); // expression
   1692     DeclOut = nullptr;
   1693     if (ExprOut.isInvalid())
   1694       return true;
   1695 
   1696     // If required, convert to a boolean value.
   1697     if (ConvertToBoolean)
   1698       ExprOut
   1699         = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
   1700     return ExprOut.isInvalid();
   1701   }
   1702 
   1703   // type-specifier-seq
   1704   DeclSpec DS(AttrFactory);
   1705   DS.takeAttributesFrom(attrs);
   1706   ParseSpecifierQualifierList(DS, AS_none, DSC_condition);
   1707 
   1708   // declarator
   1709   Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
   1710   ParseDeclarator(DeclaratorInfo);
   1711 
   1712   // simple-asm-expr[opt]
   1713   if (Tok.is(tok::kw_asm)) {
   1714     SourceLocation Loc;
   1715     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
   1716     if (AsmLabel.isInvalid()) {
   1717       SkipUntil(tok::semi, StopAtSemi);
   1718       return true;
   1719     }
   1720     DeclaratorInfo.setAsmLabel(AsmLabel.get());
   1721     DeclaratorInfo.SetRangeEnd(Loc);
   1722   }
   1723 
   1724   // If attributes are present, parse them.
   1725   MaybeParseGNUAttributes(DeclaratorInfo);
   1726 
   1727   // Type-check the declaration itself.
   1728   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
   1729                                                         DeclaratorInfo);
   1730   DeclOut = Dcl.get();
   1731   ExprOut = ExprError();
   1732 
   1733   // '=' assignment-expression
   1734   // If a '==' or '+=' is found, suggest a fixit to '='.
   1735   bool CopyInitialization = isTokenEqualOrEqualTypo();
   1736   if (CopyInitialization)
   1737     ConsumeToken();
   1738 
   1739   ExprResult InitExpr = ExprError();
   1740   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
   1741     Diag(Tok.getLocation(),
   1742          diag::warn_cxx98_compat_generalized_initializer_lists);
   1743     InitExpr = ParseBraceInitializer();
   1744   } else if (CopyInitialization) {
   1745     InitExpr = ParseAssignmentExpression();
   1746   } else if (Tok.is(tok::l_paren)) {
   1747     // This was probably an attempt to initialize the variable.
   1748     SourceLocation LParen = ConsumeParen(), RParen = LParen;
   1749     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
   1750       RParen = ConsumeParen();
   1751     Diag(DeclOut ? DeclOut->getLocation() : LParen,
   1752          diag::err_expected_init_in_condition_lparen)
   1753       << SourceRange(LParen, RParen);
   1754   } else {
   1755     Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
   1756          diag::err_expected_init_in_condition);
   1757   }
   1758 
   1759   if (!InitExpr.isInvalid())
   1760     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization,
   1761                                  DS.containsPlaceholderType());
   1762   else
   1763     Actions.ActOnInitializerError(DeclOut);
   1764 
   1765   // FIXME: Build a reference to this declaration? Convert it to bool?
   1766   // (This is currently handled by Sema).
   1767 
   1768   Actions.FinalizeDeclaration(DeclOut);
   1769 
   1770   return false;
   1771 }
   1772 
   1773 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
   1774 /// This should only be called when the current token is known to be part of
   1775 /// simple-type-specifier.
   1776 ///
   1777 ///       simple-type-specifier:
   1778 ///         '::'[opt] nested-name-specifier[opt] type-name
   1779 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
   1780 ///         char
   1781 ///         wchar_t
   1782 ///         bool
   1783 ///         short
   1784 ///         int
   1785 ///         long
   1786 ///         signed
   1787 ///         unsigned
   1788 ///         float
   1789 ///         double
   1790 ///         void
   1791 /// [GNU]   typeof-specifier
   1792 /// [C++0x] auto               [TODO]
   1793 ///
   1794 ///       type-name:
   1795 ///         class-name
   1796 ///         enum-name
   1797 ///         typedef-name
   1798 ///
   1799 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
   1800   DS.SetRangeStart(Tok.getLocation());
   1801   const char *PrevSpec;
   1802   unsigned DiagID;
   1803   SourceLocation Loc = Tok.getLocation();
   1804   const clang::PrintingPolicy &Policy =
   1805       Actions.getASTContext().getPrintingPolicy();
   1806 
   1807   switch (Tok.getKind()) {
   1808   case tok::identifier:   // foo::bar
   1809   case tok::coloncolon:   // ::foo::bar
   1810     llvm_unreachable("Annotation token should already be formed!");
   1811   default:
   1812     llvm_unreachable("Not a simple-type-specifier token!");
   1813 
   1814   // type-name
   1815   case tok::annot_typename: {
   1816     if (getTypeAnnotation(Tok))
   1817       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
   1818                          getTypeAnnotation(Tok), Policy);
   1819     else
   1820       DS.SetTypeSpecError();
   1821 
   1822     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   1823     ConsumeToken();
   1824 
   1825     DS.Finish(Actions, Policy);
   1826     return;
   1827   }
   1828 
   1829   // builtin types
   1830   case tok::kw_short:
   1831     DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
   1832     break;
   1833   case tok::kw_long:
   1834     DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
   1835     break;
   1836   case tok::kw___int64:
   1837     DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
   1838     break;
   1839   case tok::kw_signed:
   1840     DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
   1841     break;
   1842   case tok::kw_unsigned:
   1843     DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
   1844     break;
   1845   case tok::kw_void:
   1846     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
   1847     break;
   1848   case tok::kw_char:
   1849     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
   1850     break;
   1851   case tok::kw_int:
   1852     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
   1853     break;
   1854   case tok::kw___int128:
   1855     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
   1856     break;
   1857   case tok::kw_half:
   1858     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
   1859     break;
   1860   case tok::kw_float:
   1861     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
   1862     break;
   1863   case tok::kw_double:
   1864     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
   1865     break;
   1866   case tok::kw_wchar_t:
   1867     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
   1868     break;
   1869   case tok::kw_char16_t:
   1870     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
   1871     break;
   1872   case tok::kw_char32_t:
   1873     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
   1874     break;
   1875   case tok::kw_bool:
   1876     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
   1877     break;
   1878   case tok::annot_decltype:
   1879   case tok::kw_decltype:
   1880     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
   1881     return DS.Finish(Actions, Policy);
   1882 
   1883   // GNU typeof support.
   1884   case tok::kw_typeof:
   1885     ParseTypeofSpecifier(DS);
   1886     DS.Finish(Actions, Policy);
   1887     return;
   1888   }
   1889   if (Tok.is(tok::annot_typename))
   1890     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   1891   else
   1892     DS.SetRangeEnd(Tok.getLocation());
   1893   ConsumeToken();
   1894   DS.Finish(Actions, Policy);
   1895 }
   1896 
   1897 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
   1898 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
   1899 /// e.g., "const short int". Note that the DeclSpec is *not* finished
   1900 /// by parsing the type-specifier-seq, because these sequences are
   1901 /// typically followed by some form of declarator. Returns true and
   1902 /// emits diagnostics if this is not a type-specifier-seq, false
   1903 /// otherwise.
   1904 ///
   1905 ///   type-specifier-seq: [C++ 8.1]
   1906 ///     type-specifier type-specifier-seq[opt]
   1907 ///
   1908 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
   1909   ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
   1910   DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
   1911   return false;
   1912 }
   1913 
   1914 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
   1915 /// some form.
   1916 ///
   1917 /// This routine is invoked when a '<' is encountered after an identifier or
   1918 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
   1919 /// whether the unqualified-id is actually a template-id. This routine will
   1920 /// then parse the template arguments and form the appropriate template-id to
   1921 /// return to the caller.
   1922 ///
   1923 /// \param SS the nested-name-specifier that precedes this template-id, if
   1924 /// we're actually parsing a qualified-id.
   1925 ///
   1926 /// \param Name for constructor and destructor names, this is the actual
   1927 /// identifier that may be a template-name.
   1928 ///
   1929 /// \param NameLoc the location of the class-name in a constructor or
   1930 /// destructor.
   1931 ///
   1932 /// \param EnteringContext whether we're entering the scope of the
   1933 /// nested-name-specifier.
   1934 ///
   1935 /// \param ObjectType if this unqualified-id occurs within a member access
   1936 /// expression, the type of the base object whose member is being accessed.
   1937 ///
   1938 /// \param Id as input, describes the template-name or operator-function-id
   1939 /// that precedes the '<'. If template arguments were parsed successfully,
   1940 /// will be updated with the template-id.
   1941 ///
   1942 /// \param AssumeTemplateId When true, this routine will assume that the name
   1943 /// refers to a template without performing name lookup to verify.
   1944 ///
   1945 /// \returns true if a parse error occurred, false otherwise.
   1946 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
   1947                                           SourceLocation TemplateKWLoc,
   1948                                           IdentifierInfo *Name,
   1949                                           SourceLocation NameLoc,
   1950                                           bool EnteringContext,
   1951                                           ParsedType ObjectType,
   1952                                           UnqualifiedId &Id,
   1953                                           bool AssumeTemplateId) {
   1954   assert((AssumeTemplateId || Tok.is(tok::less)) &&
   1955          "Expected '<' to finish parsing a template-id");
   1956 
   1957   TemplateTy Template;
   1958   TemplateNameKind TNK = TNK_Non_template;
   1959   switch (Id.getKind()) {
   1960   case UnqualifiedId::IK_Identifier:
   1961   case UnqualifiedId::IK_OperatorFunctionId:
   1962   case UnqualifiedId::IK_LiteralOperatorId:
   1963     if (AssumeTemplateId) {
   1964       TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
   1965                                                Id, ObjectType, EnteringContext,
   1966                                                Template);
   1967       if (TNK == TNK_Non_template)
   1968         return true;
   1969     } else {
   1970       bool MemberOfUnknownSpecialization;
   1971       TNK = Actions.isTemplateName(getCurScope(), SS,
   1972                                    TemplateKWLoc.isValid(), Id,
   1973                                    ObjectType, EnteringContext, Template,
   1974                                    MemberOfUnknownSpecialization);
   1975 
   1976       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
   1977           ObjectType && IsTemplateArgumentList()) {
   1978         // We have something like t->getAs<T>(), where getAs is a
   1979         // member of an unknown specialization. However, this will only
   1980         // parse correctly as a template, so suggest the keyword 'template'
   1981         // before 'getAs' and treat this as a dependent template name.
   1982         std::string Name;
   1983         if (Id.getKind() == UnqualifiedId::IK_Identifier)
   1984           Name = Id.Identifier->getName();
   1985         else {
   1986           Name = "operator ";
   1987           if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
   1988             Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
   1989           else
   1990             Name += Id.Identifier->getName();
   1991         }
   1992         Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
   1993           << Name
   1994           << FixItHint::CreateInsertion(Id.StartLocation, "template ");
   1995         TNK = Actions.ActOnDependentTemplateName(getCurScope(),
   1996                                                  SS, TemplateKWLoc, Id,
   1997                                                  ObjectType, EnteringContext,
   1998                                                  Template);
   1999         if (TNK == TNK_Non_template)
   2000           return true;
   2001       }
   2002     }
   2003     break;
   2004 
   2005   case UnqualifiedId::IK_ConstructorName: {
   2006     UnqualifiedId TemplateName;
   2007     bool MemberOfUnknownSpecialization;
   2008     TemplateName.setIdentifier(Name, NameLoc);
   2009     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
   2010                                  TemplateName, ObjectType,
   2011                                  EnteringContext, Template,
   2012                                  MemberOfUnknownSpecialization);
   2013     break;
   2014   }
   2015 
   2016   case UnqualifiedId::IK_DestructorName: {
   2017     UnqualifiedId TemplateName;
   2018     bool MemberOfUnknownSpecialization;
   2019     TemplateName.setIdentifier(Name, NameLoc);
   2020     if (ObjectType) {
   2021       TNK = Actions.ActOnDependentTemplateName(getCurScope(),
   2022                                                SS, TemplateKWLoc, TemplateName,
   2023                                                ObjectType, EnteringContext,
   2024                                                Template);
   2025       if (TNK == TNK_Non_template)
   2026         return true;
   2027     } else {
   2028       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
   2029                                    TemplateName, ObjectType,
   2030                                    EnteringContext, Template,
   2031                                    MemberOfUnknownSpecialization);
   2032 
   2033       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
   2034         Diag(NameLoc, diag::err_destructor_template_id)
   2035           << Name << SS.getRange();
   2036         return true;
   2037       }
   2038     }
   2039     break;
   2040   }
   2041 
   2042   default:
   2043     return false;
   2044   }
   2045 
   2046   if (TNK == TNK_Non_template)
   2047     return false;
   2048 
   2049   // Parse the enclosed template argument list.
   2050   SourceLocation LAngleLoc, RAngleLoc;
   2051   TemplateArgList TemplateArgs;
   2052   if (Tok.is(tok::less) &&
   2053       ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
   2054                                        SS, true, LAngleLoc,
   2055                                        TemplateArgs,
   2056                                        RAngleLoc))
   2057     return true;
   2058 
   2059   if (Id.getKind() == UnqualifiedId::IK_Identifier ||
   2060       Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
   2061       Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
   2062     // Form a parsed representation of the template-id to be stored in the
   2063     // UnqualifiedId.
   2064     TemplateIdAnnotation *TemplateId
   2065       = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
   2066 
   2067     // FIXME: Store name for literal operator too.
   2068     if (Id.getKind() == UnqualifiedId::IK_Identifier) {
   2069       TemplateId->Name = Id.Identifier;
   2070       TemplateId->Operator = OO_None;
   2071       TemplateId->TemplateNameLoc = Id.StartLocation;
   2072     } else {
   2073       TemplateId->Name = nullptr;
   2074       TemplateId->Operator = Id.OperatorFunctionId.Operator;
   2075       TemplateId->TemplateNameLoc = Id.StartLocation;
   2076     }
   2077 
   2078     TemplateId->SS = SS;
   2079     TemplateId->TemplateKWLoc = TemplateKWLoc;
   2080     TemplateId->Template = Template;
   2081     TemplateId->Kind = TNK;
   2082     TemplateId->LAngleLoc = LAngleLoc;
   2083     TemplateId->RAngleLoc = RAngleLoc;
   2084     ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
   2085     for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
   2086          Arg != ArgEnd; ++Arg)
   2087       Args[Arg] = TemplateArgs[Arg];
   2088 
   2089     Id.setTemplateId(TemplateId);
   2090     return false;
   2091   }
   2092 
   2093   // Bundle the template arguments together.
   2094   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
   2095 
   2096   // Constructor and destructor names.
   2097   TypeResult Type
   2098     = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
   2099                                   Template, NameLoc,
   2100                                   LAngleLoc, TemplateArgsPtr, RAngleLoc,
   2101                                   /*IsCtorOrDtorName=*/true);
   2102   if (Type.isInvalid())
   2103     return true;
   2104 
   2105   if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
   2106     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
   2107   else
   2108     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
   2109 
   2110   return false;
   2111 }
   2112 
   2113 /// \brief Parse an operator-function-id or conversion-function-id as part
   2114 /// of a C++ unqualified-id.
   2115 ///
   2116 /// This routine is responsible only for parsing the operator-function-id or
   2117 /// conversion-function-id; it does not handle template arguments in any way.
   2118 ///
   2119 /// \code
   2120 ///       operator-function-id: [C++ 13.5]
   2121 ///         'operator' operator
   2122 ///
   2123 ///       operator: one of
   2124 ///            new   delete  new[]   delete[]
   2125 ///            +     -    *  /    %  ^    &   |   ~
   2126 ///            !     =    <  >    += -=   *=  /=  %=
   2127 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
   2128 ///            <=    >=   && ||   ++ --   ,   ->* ->
   2129 ///            ()    []
   2130 ///
   2131 ///       conversion-function-id: [C++ 12.3.2]
   2132 ///         operator conversion-type-id
   2133 ///
   2134 ///       conversion-type-id:
   2135 ///         type-specifier-seq conversion-declarator[opt]
   2136 ///
   2137 ///       conversion-declarator:
   2138 ///         ptr-operator conversion-declarator[opt]
   2139 /// \endcode
   2140 ///
   2141 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
   2142 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
   2143 ///
   2144 /// \param EnteringContext whether we are entering the scope of the
   2145 /// nested-name-specifier.
   2146 ///
   2147 /// \param ObjectType if this unqualified-id occurs within a member access
   2148 /// expression, the type of the base object whose member is being accessed.
   2149 ///
   2150 /// \param Result on a successful parse, contains the parsed unqualified-id.
   2151 ///
   2152 /// \returns true if parsing fails, false otherwise.
   2153 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
   2154                                         ParsedType ObjectType,
   2155                                         UnqualifiedId &Result) {
   2156   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
   2157 
   2158   // Consume the 'operator' keyword.
   2159   SourceLocation KeywordLoc = ConsumeToken();
   2160 
   2161   // Determine what kind of operator name we have.
   2162   unsigned SymbolIdx = 0;
   2163   SourceLocation SymbolLocations[3];
   2164   OverloadedOperatorKind Op = OO_None;
   2165   switch (Tok.getKind()) {
   2166     case tok::kw_new:
   2167     case tok::kw_delete: {
   2168       bool isNew = Tok.getKind() == tok::kw_new;
   2169       // Consume the 'new' or 'delete'.
   2170       SymbolLocations[SymbolIdx++] = ConsumeToken();
   2171       // Check for array new/delete.
   2172       if (Tok.is(tok::l_square) &&
   2173           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
   2174         // Consume the '[' and ']'.
   2175         BalancedDelimiterTracker T(*this, tok::l_square);
   2176         T.consumeOpen();
   2177         T.consumeClose();
   2178         if (T.getCloseLocation().isInvalid())
   2179           return true;
   2180 
   2181         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
   2182         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
   2183         Op = isNew? OO_Array_New : OO_Array_Delete;
   2184       } else {
   2185         Op = isNew? OO_New : OO_Delete;
   2186       }
   2187       break;
   2188     }
   2189 
   2190 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
   2191     case tok::Token:                                                     \
   2192       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
   2193       Op = OO_##Name;                                                    \
   2194       break;
   2195 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
   2196 #include "clang/Basic/OperatorKinds.def"
   2197 
   2198     case tok::l_paren: {
   2199       // Consume the '(' and ')'.
   2200       BalancedDelimiterTracker T(*this, tok::l_paren);
   2201       T.consumeOpen();
   2202       T.consumeClose();
   2203       if (T.getCloseLocation().isInvalid())
   2204         return true;
   2205 
   2206       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
   2207       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
   2208       Op = OO_Call;
   2209       break;
   2210     }
   2211 
   2212     case tok::l_square: {
   2213       // Consume the '[' and ']'.
   2214       BalancedDelimiterTracker T(*this, tok::l_square);
   2215       T.consumeOpen();
   2216       T.consumeClose();
   2217       if (T.getCloseLocation().isInvalid())
   2218         return true;
   2219 
   2220       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
   2221       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
   2222       Op = OO_Subscript;
   2223       break;
   2224     }
   2225 
   2226     case tok::code_completion: {
   2227       // Code completion for the operator name.
   2228       Actions.CodeCompleteOperatorName(getCurScope());
   2229       cutOffParsing();
   2230       // Don't try to parse any further.
   2231       return true;
   2232     }
   2233 
   2234     default:
   2235       break;
   2236   }
   2237 
   2238   if (Op != OO_None) {
   2239     // We have parsed an operator-function-id.
   2240     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
   2241     return false;
   2242   }
   2243 
   2244   // Parse a literal-operator-id.
   2245   //
   2246   //   literal-operator-id: C++11 [over.literal]
   2247   //     operator string-literal identifier
   2248   //     operator user-defined-string-literal
   2249 
   2250   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
   2251     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
   2252 
   2253     SourceLocation DiagLoc;
   2254     unsigned DiagId = 0;
   2255 
   2256     // We're past translation phase 6, so perform string literal concatenation
   2257     // before checking for "".
   2258     SmallVector<Token, 4> Toks;
   2259     SmallVector<SourceLocation, 4> TokLocs;
   2260     while (isTokenStringLiteral()) {
   2261       if (!Tok.is(tok::string_literal) && !DiagId) {
   2262         // C++11 [over.literal]p1:
   2263         //   The string-literal or user-defined-string-literal in a
   2264         //   literal-operator-id shall have no encoding-prefix [...].
   2265         DiagLoc = Tok.getLocation();
   2266         DiagId = diag::err_literal_operator_string_prefix;
   2267       }
   2268       Toks.push_back(Tok);
   2269       TokLocs.push_back(ConsumeStringToken());
   2270     }
   2271 
   2272     StringLiteralParser Literal(Toks, PP);
   2273     if (Literal.hadError)
   2274       return true;
   2275 
   2276     // Grab the literal operator's suffix, which will be either the next token
   2277     // or a ud-suffix from the string literal.
   2278     IdentifierInfo *II = nullptr;
   2279     SourceLocation SuffixLoc;
   2280     if (!Literal.getUDSuffix().empty()) {
   2281       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
   2282       SuffixLoc =
   2283         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
   2284                                        Literal.getUDSuffixOffset(),
   2285                                        PP.getSourceManager(), getLangOpts());
   2286     } else if (Tok.is(tok::identifier)) {
   2287       II = Tok.getIdentifierInfo();
   2288       SuffixLoc = ConsumeToken();
   2289       TokLocs.push_back(SuffixLoc);
   2290     } else {
   2291       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
   2292       return true;
   2293     }
   2294 
   2295     // The string literal must be empty.
   2296     if (!Literal.GetString().empty() || Literal.Pascal) {
   2297       // C++11 [over.literal]p1:
   2298       //   The string-literal or user-defined-string-literal in a
   2299       //   literal-operator-id shall [...] contain no characters
   2300       //   other than the implicit terminating '\0'.
   2301       DiagLoc = TokLocs.front();
   2302       DiagId = diag::err_literal_operator_string_not_empty;
   2303     }
   2304 
   2305     if (DiagId) {
   2306       // This isn't a valid literal-operator-id, but we think we know
   2307       // what the user meant. Tell them what they should have written.
   2308       SmallString<32> Str;
   2309       Str += "\"\"";
   2310       Str += II->getName();
   2311       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
   2312           SourceRange(TokLocs.front(), TokLocs.back()), Str);
   2313     }
   2314 
   2315     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
   2316 
   2317     return Actions.checkLiteralOperatorId(SS, Result);
   2318   }
   2319 
   2320   // Parse a conversion-function-id.
   2321   //
   2322   //   conversion-function-id: [C++ 12.3.2]
   2323   //     operator conversion-type-id
   2324   //
   2325   //   conversion-type-id:
   2326   //     type-specifier-seq conversion-declarator[opt]
   2327   //
   2328   //   conversion-declarator:
   2329   //     ptr-operator conversion-declarator[opt]
   2330 
   2331   // Parse the type-specifier-seq.
   2332   DeclSpec DS(AttrFactory);
   2333   if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
   2334     return true;
   2335 
   2336   // Parse the conversion-declarator, which is merely a sequence of
   2337   // ptr-operators.
   2338   Declarator D(DS, Declarator::ConversionIdContext);
   2339   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
   2340 
   2341   // Finish up the type.
   2342   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
   2343   if (Ty.isInvalid())
   2344     return true;
   2345 
   2346   // Note that this is a conversion-function-id.
   2347   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
   2348                                  D.getSourceRange().getEnd());
   2349   return false;
   2350 }
   2351 
   2352 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
   2353 /// name of an entity.
   2354 ///
   2355 /// \code
   2356 ///       unqualified-id: [C++ expr.prim.general]
   2357 ///         identifier
   2358 ///         operator-function-id
   2359 ///         conversion-function-id
   2360 /// [C++0x] literal-operator-id [TODO]
   2361 ///         ~ class-name
   2362 ///         template-id
   2363 ///
   2364 /// \endcode
   2365 ///
   2366 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
   2367 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
   2368 ///
   2369 /// \param EnteringContext whether we are entering the scope of the
   2370 /// nested-name-specifier.
   2371 ///
   2372 /// \param AllowDestructorName whether we allow parsing of a destructor name.
   2373 ///
   2374 /// \param AllowConstructorName whether we allow parsing a constructor name.
   2375 ///
   2376 /// \param ObjectType if this unqualified-id occurs within a member access
   2377 /// expression, the type of the base object whose member is being accessed.
   2378 ///
   2379 /// \param Result on a successful parse, contains the parsed unqualified-id.
   2380 ///
   2381 /// \returns true if parsing fails, false otherwise.
   2382 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
   2383                                 bool AllowDestructorName,
   2384                                 bool AllowConstructorName,
   2385                                 ParsedType ObjectType,
   2386                                 SourceLocation& TemplateKWLoc,
   2387                                 UnqualifiedId &Result) {
   2388 
   2389   // Handle 'A::template B'. This is for template-ids which have not
   2390   // already been annotated by ParseOptionalCXXScopeSpecifier().
   2391   bool TemplateSpecified = false;
   2392   if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
   2393       (ObjectType || SS.isSet())) {
   2394     TemplateSpecified = true;
   2395     TemplateKWLoc = ConsumeToken();
   2396   }
   2397 
   2398   // unqualified-id:
   2399   //   identifier
   2400   //   template-id (when it hasn't already been annotated)
   2401   if (Tok.is(tok::identifier)) {
   2402     // Consume the identifier.
   2403     IdentifierInfo *Id = Tok.getIdentifierInfo();
   2404     SourceLocation IdLoc = ConsumeToken();
   2405 
   2406     if (!getLangOpts().CPlusPlus) {
   2407       // If we're not in C++, only identifiers matter. Record the
   2408       // identifier and return.
   2409       Result.setIdentifier(Id, IdLoc);
   2410       return false;
   2411     }
   2412 
   2413     if (AllowConstructorName &&
   2414         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
   2415       // We have parsed a constructor name.
   2416       ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
   2417                                           &SS, false, false,
   2418                                           ParsedType(),
   2419                                           /*IsCtorOrDtorName=*/true,
   2420                                           /*NonTrivialTypeSourceInfo=*/true);
   2421       Result.setConstructorName(Ty, IdLoc, IdLoc);
   2422     } else {
   2423       // We have parsed an identifier.
   2424       Result.setIdentifier(Id, IdLoc);
   2425     }
   2426 
   2427     // If the next token is a '<', we may have a template.
   2428     if (TemplateSpecified || Tok.is(tok::less))
   2429       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
   2430                                           EnteringContext, ObjectType,
   2431                                           Result, TemplateSpecified);
   2432 
   2433     return false;
   2434   }
   2435 
   2436   // unqualified-id:
   2437   //   template-id (already parsed and annotated)
   2438   if (Tok.is(tok::annot_template_id)) {
   2439     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
   2440 
   2441     // If the template-name names the current class, then this is a constructor
   2442     if (AllowConstructorName && TemplateId->Name &&
   2443         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
   2444       if (SS.isSet()) {
   2445         // C++ [class.qual]p2 specifies that a qualified template-name
   2446         // is taken as the constructor name where a constructor can be
   2447         // declared. Thus, the template arguments are extraneous, so
   2448         // complain about them and remove them entirely.
   2449         Diag(TemplateId->TemplateNameLoc,
   2450              diag::err_out_of_line_constructor_template_id)
   2451           << TemplateId->Name
   2452           << FixItHint::CreateRemoval(
   2453                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
   2454         ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
   2455                                             TemplateId->TemplateNameLoc,
   2456                                             getCurScope(),
   2457                                             &SS, false, false,
   2458                                             ParsedType(),
   2459                                             /*IsCtorOrDtorName=*/true,
   2460                                             /*NontrivialTypeSourceInfo=*/true);
   2461         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
   2462                                   TemplateId->RAngleLoc);
   2463         ConsumeToken();
   2464         return false;
   2465       }
   2466 
   2467       Result.setConstructorTemplateId(TemplateId);
   2468       ConsumeToken();
   2469       return false;
   2470     }
   2471 
   2472     // We have already parsed a template-id; consume the annotation token as
   2473     // our unqualified-id.
   2474     Result.setTemplateId(TemplateId);
   2475     TemplateKWLoc = TemplateId->TemplateKWLoc;
   2476     ConsumeToken();
   2477     return false;
   2478   }
   2479 
   2480   // unqualified-id:
   2481   //   operator-function-id
   2482   //   conversion-function-id
   2483   if (Tok.is(tok::kw_operator)) {
   2484     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
   2485       return true;
   2486 
   2487     // If we have an operator-function-id or a literal-operator-id and the next
   2488     // token is a '<', we may have a
   2489     //
   2490     //   template-id:
   2491     //     operator-function-id < template-argument-list[opt] >
   2492     if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
   2493          Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
   2494         (TemplateSpecified || Tok.is(tok::less)))
   2495       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
   2496                                           nullptr, SourceLocation(),
   2497                                           EnteringContext, ObjectType,
   2498                                           Result, TemplateSpecified);
   2499 
   2500     return false;
   2501   }
   2502 
   2503   if (getLangOpts().CPlusPlus &&
   2504       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
   2505     // C++ [expr.unary.op]p10:
   2506     //   There is an ambiguity in the unary-expression ~X(), where X is a
   2507     //   class-name. The ambiguity is resolved in favor of treating ~ as a
   2508     //    unary complement rather than treating ~X as referring to a destructor.
   2509 
   2510     // Parse the '~'.
   2511     SourceLocation TildeLoc = ConsumeToken();
   2512 
   2513     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
   2514       DeclSpec DS(AttrFactory);
   2515       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
   2516       if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
   2517         Result.setDestructorName(TildeLoc, Type, EndLoc);
   2518         return false;
   2519       }
   2520       return true;
   2521     }
   2522 
   2523     // Parse the class-name.
   2524     if (Tok.isNot(tok::identifier)) {
   2525       Diag(Tok, diag::err_destructor_tilde_identifier);
   2526       return true;
   2527     }
   2528 
   2529     // If the user wrote ~T::T, correct it to T::~T.
   2530     DeclaratorScopeObj DeclScopeObj(*this, SS);
   2531     if (!TemplateSpecified && NextToken().is(tok::coloncolon)) {
   2532       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
   2533       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
   2534       // it will confuse this recovery logic.
   2535       ColonProtectionRAIIObject ColonRAII(*this, false);
   2536 
   2537       if (SS.isSet()) {
   2538         AnnotateScopeToken(SS, /*NewAnnotation*/true);
   2539         SS.clear();
   2540       }
   2541       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext))
   2542         return true;
   2543       if (SS.isNotEmpty())
   2544         ObjectType = ParsedType();
   2545       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
   2546           !SS.isSet()) {
   2547         Diag(TildeLoc, diag::err_destructor_tilde_scope);
   2548         return true;
   2549       }
   2550 
   2551       // Recover as if the tilde had been written before the identifier.
   2552       Diag(TildeLoc, diag::err_destructor_tilde_scope)
   2553         << FixItHint::CreateRemoval(TildeLoc)
   2554         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
   2555 
   2556       // Temporarily enter the scope for the rest of this function.
   2557       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
   2558         DeclScopeObj.EnterDeclaratorScope();
   2559     }
   2560 
   2561     // Parse the class-name (or template-name in a simple-template-id).
   2562     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
   2563     SourceLocation ClassNameLoc = ConsumeToken();
   2564 
   2565     if (TemplateSpecified || Tok.is(tok::less)) {
   2566       Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
   2567       return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
   2568                                           ClassName, ClassNameLoc,
   2569                                           EnteringContext, ObjectType,
   2570                                           Result, TemplateSpecified);
   2571     }
   2572 
   2573     // Note that this is a destructor name.
   2574     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
   2575                                               ClassNameLoc, getCurScope(),
   2576                                               SS, ObjectType,
   2577                                               EnteringContext);
   2578     if (!Ty)
   2579       return true;
   2580 
   2581     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
   2582     return false;
   2583   }
   2584 
   2585   Diag(Tok, diag::err_expected_unqualified_id)
   2586     << getLangOpts().CPlusPlus;
   2587   return true;
   2588 }
   2589 
   2590 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
   2591 /// memory in a typesafe manner and call constructors.
   2592 ///
   2593 /// This method is called to parse the new expression after the optional :: has
   2594 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
   2595 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
   2596 ///
   2597 ///        new-expression:
   2598 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
   2599 ///                                     new-initializer[opt]
   2600 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
   2601 ///                                     new-initializer[opt]
   2602 ///
   2603 ///        new-placement:
   2604 ///                   '(' expression-list ')'
   2605 ///
   2606 ///        new-type-id:
   2607 ///                   type-specifier-seq new-declarator[opt]
   2608 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
   2609 ///
   2610 ///        new-declarator:
   2611 ///                   ptr-operator new-declarator[opt]
   2612 ///                   direct-new-declarator
   2613 ///
   2614 ///        new-initializer:
   2615 ///                   '(' expression-list[opt] ')'
   2616 /// [C++0x]           braced-init-list
   2617 ///
   2618 ExprResult
   2619 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
   2620   assert(Tok.is(tok::kw_new) && "expected 'new' token");
   2621   ConsumeToken();   // Consume 'new'
   2622 
   2623   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
   2624   // second form of new-expression. It can't be a new-type-id.
   2625 
   2626   ExprVector PlacementArgs;
   2627   SourceLocation PlacementLParen, PlacementRParen;
   2628 
   2629   SourceRange TypeIdParens;
   2630   DeclSpec DS(AttrFactory);
   2631   Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
   2632   if (Tok.is(tok::l_paren)) {
   2633     // If it turns out to be a placement, we change the type location.
   2634     BalancedDelimiterTracker T(*this, tok::l_paren);
   2635     T.consumeOpen();
   2636     PlacementLParen = T.getOpenLocation();
   2637     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
   2638       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2639       return ExprError();
   2640     }
   2641 
   2642     T.consumeClose();
   2643     PlacementRParen = T.getCloseLocation();
   2644     if (PlacementRParen.isInvalid()) {
   2645       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2646       return ExprError();
   2647     }
   2648 
   2649     if (PlacementArgs.empty()) {
   2650       // Reset the placement locations. There was no placement.
   2651       TypeIdParens = T.getRange();
   2652       PlacementLParen = PlacementRParen = SourceLocation();
   2653     } else {
   2654       // We still need the type.
   2655       if (Tok.is(tok::l_paren)) {
   2656         BalancedDelimiterTracker T(*this, tok::l_paren);
   2657         T.consumeOpen();
   2658         MaybeParseGNUAttributes(DeclaratorInfo);
   2659         ParseSpecifierQualifierList(DS);
   2660         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
   2661         ParseDeclarator(DeclaratorInfo);
   2662         T.consumeClose();
   2663         TypeIdParens = T.getRange();
   2664       } else {
   2665         MaybeParseGNUAttributes(DeclaratorInfo);
   2666         if (ParseCXXTypeSpecifierSeq(DS))
   2667           DeclaratorInfo.setInvalidType(true);
   2668         else {
   2669           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
   2670           ParseDeclaratorInternal(DeclaratorInfo,
   2671                                   &Parser::ParseDirectNewDeclarator);
   2672         }
   2673       }
   2674     }
   2675   } else {
   2676     // A new-type-id is a simplified type-id, where essentially the
   2677     // direct-declarator is replaced by a direct-new-declarator.
   2678     MaybeParseGNUAttributes(DeclaratorInfo);
   2679     if (ParseCXXTypeSpecifierSeq(DS))
   2680       DeclaratorInfo.setInvalidType(true);
   2681     else {
   2682       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
   2683       ParseDeclaratorInternal(DeclaratorInfo,
   2684                               &Parser::ParseDirectNewDeclarator);
   2685     }
   2686   }
   2687   if (DeclaratorInfo.isInvalidType()) {
   2688     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2689     return ExprError();
   2690   }
   2691 
   2692   ExprResult Initializer;
   2693 
   2694   if (Tok.is(tok::l_paren)) {
   2695     SourceLocation ConstructorLParen, ConstructorRParen;
   2696     ExprVector ConstructorArgs;
   2697     BalancedDelimiterTracker T(*this, tok::l_paren);
   2698     T.consumeOpen();
   2699     ConstructorLParen = T.getOpenLocation();
   2700     if (Tok.isNot(tok::r_paren)) {
   2701       CommaLocsTy CommaLocs;
   2702       if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
   2703             ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(),
   2704                                                        DeclaratorInfo).get();
   2705             Actions.CodeCompleteConstructor(getCurScope(),
   2706                                       TypeRep.get()->getCanonicalTypeInternal(),
   2707                                             DeclaratorInfo.getLocEnd(),
   2708                                             ConstructorArgs);
   2709       })) {
   2710         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2711         return ExprError();
   2712       }
   2713     }
   2714     T.consumeClose();
   2715     ConstructorRParen = T.getCloseLocation();
   2716     if (ConstructorRParen.isInvalid()) {
   2717       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
   2718       return ExprError();
   2719     }
   2720     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
   2721                                              ConstructorRParen,
   2722                                              ConstructorArgs);
   2723   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
   2724     Diag(Tok.getLocation(),
   2725          diag::warn_cxx98_compat_generalized_initializer_lists);
   2726     Initializer = ParseBraceInitializer();
   2727   }
   2728   if (Initializer.isInvalid())
   2729     return Initializer;
   2730 
   2731   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
   2732                              PlacementArgs, PlacementRParen,
   2733                              TypeIdParens, DeclaratorInfo, Initializer.get());
   2734 }
   2735 
   2736 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
   2737 /// passed to ParseDeclaratorInternal.
   2738 ///
   2739 ///        direct-new-declarator:
   2740 ///                   '[' expression ']'
   2741 ///                   direct-new-declarator '[' constant-expression ']'
   2742 ///
   2743 void Parser::ParseDirectNewDeclarator(Declarator &D) {
   2744   // Parse the array dimensions.
   2745   bool first = true;
   2746   while (Tok.is(tok::l_square)) {
   2747     // An array-size expression can't start with a lambda.
   2748     if (CheckProhibitedCXX11Attribute())
   2749       continue;
   2750 
   2751     BalancedDelimiterTracker T(*this, tok::l_square);
   2752     T.consumeOpen();
   2753 
   2754     ExprResult Size(first ? ParseExpression()
   2755                                 : ParseConstantExpression());
   2756     if (Size.isInvalid()) {
   2757       // Recover
   2758       SkipUntil(tok::r_square, StopAtSemi);
   2759       return;
   2760     }
   2761     first = false;
   2762 
   2763     T.consumeClose();
   2764 
   2765     // Attributes here appertain to the array type. C++11 [expr.new]p5.
   2766     ParsedAttributes Attrs(AttrFactory);
   2767     MaybeParseCXX11Attributes(Attrs);
   2768 
   2769     D.AddTypeInfo(DeclaratorChunk::getArray(0,
   2770                                             /*static=*/false, /*star=*/false,
   2771                                             Size.get(),
   2772                                             T.getOpenLocation(),
   2773                                             T.getCloseLocation()),
   2774                   Attrs, T.getCloseLocation());
   2775 
   2776     if (T.getCloseLocation().isInvalid())
   2777       return;
   2778   }
   2779 }
   2780 
   2781 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
   2782 /// This ambiguity appears in the syntax of the C++ new operator.
   2783 ///
   2784 ///        new-expression:
   2785 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
   2786 ///                                     new-initializer[opt]
   2787 ///
   2788 ///        new-placement:
   2789 ///                   '(' expression-list ')'
   2790 ///
   2791 bool Parser::ParseExpressionListOrTypeId(
   2792                                    SmallVectorImpl<Expr*> &PlacementArgs,
   2793                                          Declarator &D) {
   2794   // The '(' was already consumed.
   2795   if (isTypeIdInParens()) {
   2796     ParseSpecifierQualifierList(D.getMutableDeclSpec());
   2797     D.SetSourceRange(D.getDeclSpec().getSourceRange());
   2798     ParseDeclarator(D);
   2799     return D.isInvalidType();
   2800   }
   2801 
   2802   // It's not a type, it has to be an expression list.
   2803   // Discard the comma locations - ActOnCXXNew has enough parameters.
   2804   CommaLocsTy CommaLocs;
   2805   return ParseExpressionList(PlacementArgs, CommaLocs);
   2806 }
   2807 
   2808 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
   2809 /// to free memory allocated by new.
   2810 ///
   2811 /// This method is called to parse the 'delete' expression after the optional
   2812 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
   2813 /// and "Start" is its location.  Otherwise, "Start" is the location of the
   2814 /// 'delete' token.
   2815 ///
   2816 ///        delete-expression:
   2817 ///                   '::'[opt] 'delete' cast-expression
   2818 ///                   '::'[opt] 'delete' '[' ']' cast-expression
   2819 ExprResult
   2820 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
   2821   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
   2822   ConsumeToken(); // Consume 'delete'
   2823 
   2824   // Array delete?
   2825   bool ArrayDelete = false;
   2826   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
   2827     // C++11 [expr.delete]p1:
   2828     //   Whenever the delete keyword is followed by empty square brackets, it
   2829     //   shall be interpreted as [array delete].
   2830     //   [Footnote: A lambda expression with a lambda-introducer that consists
   2831     //              of empty square brackets can follow the delete keyword if
   2832     //              the lambda expression is enclosed in parentheses.]
   2833     // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
   2834     //        lambda-introducer.
   2835     ArrayDelete = true;
   2836     BalancedDelimiterTracker T(*this, tok::l_square);
   2837 
   2838     T.consumeOpen();
   2839     T.consumeClose();
   2840     if (T.getCloseLocation().isInvalid())
   2841       return ExprError();
   2842   }
   2843 
   2844   ExprResult Operand(ParseCastExpression(false));
   2845   if (Operand.isInvalid())
   2846     return Operand;
   2847 
   2848   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
   2849 }
   2850 
   2851 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
   2852   switch (kind) {
   2853   default: llvm_unreachable("Not a known type trait");
   2854 #define TYPE_TRAIT_1(Spelling, Name, Key) \
   2855 case tok::kw_ ## Spelling: return UTT_ ## Name;
   2856 #define TYPE_TRAIT_2(Spelling, Name, Key) \
   2857 case tok::kw_ ## Spelling: return BTT_ ## Name;
   2858 #include "clang/Basic/TokenKinds.def"
   2859 #define TYPE_TRAIT_N(Spelling, Name, Key) \
   2860   case tok::kw_ ## Spelling: return TT_ ## Name;
   2861 #include "clang/Basic/TokenKinds.def"
   2862   }
   2863 }
   2864 
   2865 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
   2866   switch(kind) {
   2867   default: llvm_unreachable("Not a known binary type trait");
   2868   case tok::kw___array_rank:                 return ATT_ArrayRank;
   2869   case tok::kw___array_extent:               return ATT_ArrayExtent;
   2870   }
   2871 }
   2872 
   2873 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
   2874   switch(kind) {
   2875   default: llvm_unreachable("Not a known unary expression trait.");
   2876   case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
   2877   case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
   2878   }
   2879 }
   2880 
   2881 static unsigned TypeTraitArity(tok::TokenKind kind) {
   2882   switch (kind) {
   2883     default: llvm_unreachable("Not a known type trait");
   2884 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
   2885 #include "clang/Basic/TokenKinds.def"
   2886   }
   2887 }
   2888 
   2889 /// \brief Parse the built-in type-trait pseudo-functions that allow
   2890 /// implementation of the TR1/C++11 type traits templates.
   2891 ///
   2892 ///       primary-expression:
   2893 ///          unary-type-trait '(' type-id ')'
   2894 ///          binary-type-trait '(' type-id ',' type-id ')'
   2895 ///          type-trait '(' type-id-seq ')'
   2896 ///
   2897 ///       type-id-seq:
   2898 ///          type-id ...[opt] type-id-seq[opt]
   2899 ///
   2900 ExprResult Parser::ParseTypeTrait() {
   2901   tok::TokenKind Kind = Tok.getKind();
   2902   unsigned Arity = TypeTraitArity(Kind);
   2903 
   2904   SourceLocation Loc = ConsumeToken();
   2905 
   2906   BalancedDelimiterTracker Parens(*this, tok::l_paren);
   2907   if (Parens.expectAndConsume())
   2908     return ExprError();
   2909 
   2910   SmallVector<ParsedType, 2> Args;
   2911   do {
   2912     // Parse the next type.
   2913     TypeResult Ty = ParseTypeName();
   2914     if (Ty.isInvalid()) {
   2915       Parens.skipToEnd();
   2916       return ExprError();
   2917     }
   2918 
   2919     // Parse the ellipsis, if present.
   2920     if (Tok.is(tok::ellipsis)) {
   2921       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
   2922       if (Ty.isInvalid()) {
   2923         Parens.skipToEnd();
   2924         return ExprError();
   2925       }
   2926     }
   2927 
   2928     // Add this type to the list of arguments.
   2929     Args.push_back(Ty.get());
   2930   } while (TryConsumeToken(tok::comma));
   2931 
   2932   if (Parens.consumeClose())
   2933     return ExprError();
   2934 
   2935   SourceLocation EndLoc = Parens.getCloseLocation();
   2936 
   2937   if (Arity && Args.size() != Arity) {
   2938     Diag(EndLoc, diag::err_type_trait_arity)
   2939       << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
   2940     return ExprError();
   2941   }
   2942 
   2943   if (!Arity && Args.empty()) {
   2944     Diag(EndLoc, diag::err_type_trait_arity)
   2945       << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
   2946     return ExprError();
   2947   }
   2948 
   2949   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
   2950 }
   2951 
   2952 /// ParseArrayTypeTrait - Parse the built-in array type-trait
   2953 /// pseudo-functions.
   2954 ///
   2955 ///       primary-expression:
   2956 /// [Embarcadero]     '__array_rank' '(' type-id ')'
   2957 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
   2958 ///
   2959 ExprResult Parser::ParseArrayTypeTrait() {
   2960   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
   2961   SourceLocation Loc = ConsumeToken();
   2962 
   2963   BalancedDelimiterTracker T(*this, tok::l_paren);
   2964   if (T.expectAndConsume())
   2965     return ExprError();
   2966 
   2967   TypeResult Ty = ParseTypeName();
   2968   if (Ty.isInvalid()) {
   2969     SkipUntil(tok::comma, StopAtSemi);
   2970     SkipUntil(tok::r_paren, StopAtSemi);
   2971     return ExprError();
   2972   }
   2973 
   2974   switch (ATT) {
   2975   case ATT_ArrayRank: {
   2976     T.consumeClose();
   2977     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
   2978                                        T.getCloseLocation());
   2979   }
   2980   case ATT_ArrayExtent: {
   2981     if (ExpectAndConsume(tok::comma)) {
   2982       SkipUntil(tok::r_paren, StopAtSemi);
   2983       return ExprError();
   2984     }
   2985 
   2986     ExprResult DimExpr = ParseExpression();
   2987     T.consumeClose();
   2988 
   2989     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
   2990                                        T.getCloseLocation());
   2991   }
   2992   }
   2993   llvm_unreachable("Invalid ArrayTypeTrait!");
   2994 }
   2995 
   2996 /// ParseExpressionTrait - Parse built-in expression-trait
   2997 /// pseudo-functions like __is_lvalue_expr( xxx ).
   2998 ///
   2999 ///       primary-expression:
   3000 /// [Embarcadero]     expression-trait '(' expression ')'
   3001 ///
   3002 ExprResult Parser::ParseExpressionTrait() {
   3003   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
   3004   SourceLocation Loc = ConsumeToken();
   3005 
   3006   BalancedDelimiterTracker T(*this, tok::l_paren);
   3007   if (T.expectAndConsume())
   3008     return ExprError();
   3009 
   3010   ExprResult Expr = ParseExpression();
   3011 
   3012   T.consumeClose();
   3013 
   3014   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
   3015                                       T.getCloseLocation());
   3016 }
   3017 
   3018 
   3019 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
   3020 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
   3021 /// based on the context past the parens.
   3022 ExprResult
   3023 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
   3024                                          ParsedType &CastTy,
   3025                                          BalancedDelimiterTracker &Tracker,
   3026                                          ColonProtectionRAIIObject &ColonProt) {
   3027   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
   3028   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
   3029   assert(isTypeIdInParens() && "Not a type-id!");
   3030 
   3031   ExprResult Result(true);
   3032   CastTy = ParsedType();
   3033 
   3034   // We need to disambiguate a very ugly part of the C++ syntax:
   3035   //
   3036   // (T())x;  - type-id
   3037   // (T())*x; - type-id
   3038   // (T())/x; - expression
   3039   // (T());   - expression
   3040   //
   3041   // The bad news is that we cannot use the specialized tentative parser, since
   3042   // it can only verify that the thing inside the parens can be parsed as
   3043   // type-id, it is not useful for determining the context past the parens.
   3044   //
   3045   // The good news is that the parser can disambiguate this part without
   3046   // making any unnecessary Action calls.
   3047   //
   3048   // It uses a scheme similar to parsing inline methods. The parenthesized
   3049   // tokens are cached, the context that follows is determined (possibly by
   3050   // parsing a cast-expression), and then we re-introduce the cached tokens
   3051   // into the token stream and parse them appropriately.
   3052 
   3053   ParenParseOption ParseAs;
   3054   CachedTokens Toks;
   3055 
   3056   // Store the tokens of the parentheses. We will parse them after we determine
   3057   // the context that follows them.
   3058   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
   3059     // We didn't find the ')' we expected.
   3060     Tracker.consumeClose();
   3061     return ExprError();
   3062   }
   3063 
   3064   if (Tok.is(tok::l_brace)) {
   3065     ParseAs = CompoundLiteral;
   3066   } else {
   3067     bool NotCastExpr;
   3068     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
   3069       NotCastExpr = true;
   3070     } else {
   3071       // Try parsing the cast-expression that may follow.
   3072       // If it is not a cast-expression, NotCastExpr will be true and no token
   3073       // will be consumed.
   3074       ColonProt.restore();
   3075       Result = ParseCastExpression(false/*isUnaryExpression*/,
   3076                                    false/*isAddressofOperand*/,
   3077                                    NotCastExpr,
   3078                                    // type-id has priority.
   3079                                    IsTypeCast);
   3080     }
   3081 
   3082     // If we parsed a cast-expression, it's really a type-id, otherwise it's
   3083     // an expression.
   3084     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
   3085   }
   3086 
   3087   // The current token should go after the cached tokens.
   3088   Toks.push_back(Tok);
   3089   // Re-enter the stored parenthesized tokens into the token stream, so we may
   3090   // parse them now.
   3091   PP.EnterTokenStream(Toks.data(), Toks.size(),
   3092                       true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
   3093   // Drop the current token and bring the first cached one. It's the same token
   3094   // as when we entered this function.
   3095   ConsumeAnyToken();
   3096 
   3097   if (ParseAs >= CompoundLiteral) {
   3098     // Parse the type declarator.
   3099     DeclSpec DS(AttrFactory);
   3100     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
   3101     {
   3102       ColonProtectionRAIIObject InnerColonProtection(*this);
   3103       ParseSpecifierQualifierList(DS);
   3104       ParseDeclarator(DeclaratorInfo);
   3105     }
   3106 
   3107     // Match the ')'.
   3108     Tracker.consumeClose();
   3109     ColonProt.restore();
   3110 
   3111     if (ParseAs == CompoundLiteral) {
   3112       ExprType = CompoundLiteral;
   3113       if (DeclaratorInfo.isInvalidType())
   3114         return ExprError();
   3115 
   3116       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
   3117       return ParseCompoundLiteralExpression(Ty.get(),
   3118                                             Tracker.getOpenLocation(),
   3119                                             Tracker.getCloseLocation());
   3120     }
   3121 
   3122     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
   3123     assert(ParseAs == CastExpr);
   3124 
   3125     if (DeclaratorInfo.isInvalidType())
   3126       return ExprError();
   3127 
   3128     // Result is what ParseCastExpression returned earlier.
   3129     if (!Result.isInvalid())
   3130       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
   3131                                     DeclaratorInfo, CastTy,
   3132                                     Tracker.getCloseLocation(), Result.get());
   3133     return Result;
   3134   }
   3135 
   3136   // Not a compound literal, and not followed by a cast-expression.
   3137   assert(ParseAs == SimpleExpr);
   3138 
   3139   ExprType = SimpleExpr;
   3140   Result = ParseExpression();
   3141   if (!Result.isInvalid() && Tok.is(tok::r_paren))
   3142     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
   3143                                     Tok.getLocation(), Result.get());
   3144 
   3145   // Match the ')'.
   3146   if (Result.isInvalid()) {
   3147     SkipUntil(tok::r_paren, StopAtSemi);
   3148     return ExprError();
   3149   }
   3150 
   3151   Tracker.consumeClose();
   3152   return Result;
   3153 }
   3154