Home | History | Annotate | Download | only in ast
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/ast/scopes.h"
      6 
      7 #include "src/accessors.h"
      8 #include "src/ast/scopeinfo.h"
      9 #include "src/bootstrapper.h"
     10 #include "src/messages.h"
     11 #include "src/parsing/parser.h"  // for ParseInfo
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // ----------------------------------------------------------------------------
     17 // Implementation of LocalsMap
     18 //
     19 // Note: We are storing the handle locations as key values in the hash map.
     20 //       When inserting a new variable via Declare(), we rely on the fact that
     21 //       the handle location remains alive for the duration of that variable
     22 //       use. Because a Variable holding a handle with the same location exists
     23 //       this is ensured.
     24 
     25 VariableMap::VariableMap(Zone* zone)
     26     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
     27       zone_(zone) {}
     28 VariableMap::~VariableMap() {}
     29 
     30 Variable* VariableMap::Declare(Scope* scope, const AstRawString* name,
     31                                VariableMode mode, Variable::Kind kind,
     32                                InitializationFlag initialization_flag,
     33                                MaybeAssignedFlag maybe_assigned_flag) {
     34   // AstRawStrings are unambiguous, i.e., the same string is always represented
     35   // by the same AstRawString*.
     36   // FIXME(marja): fix the type of Lookup.
     37   Entry* p =
     38       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
     39                                   ZoneAllocationPolicy(zone()));
     40   if (p->value == NULL) {
     41     // The variable has not been declared yet -> insert it.
     42     DCHECK(p->key == name);
     43     p->value = new (zone()) Variable(scope, name, mode, kind,
     44                                      initialization_flag, maybe_assigned_flag);
     45   }
     46   return reinterpret_cast<Variable*>(p->value);
     47 }
     48 
     49 
     50 Variable* VariableMap::Lookup(const AstRawString* name) {
     51   Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash());
     52   if (p != NULL) {
     53     DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
     54     DCHECK(p->value != NULL);
     55     return reinterpret_cast<Variable*>(p->value);
     56   }
     57   return NULL;
     58 }
     59 
     60 
     61 SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone)
     62     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
     63       zone_(zone) {}
     64 SloppyBlockFunctionMap::~SloppyBlockFunctionMap() {}
     65 
     66 
     67 void SloppyBlockFunctionMap::Declare(const AstRawString* name,
     68                                      SloppyBlockFunctionStatement* stmt) {
     69   // AstRawStrings are unambiguous, i.e., the same string is always represented
     70   // by the same AstRawString*.
     71   Entry* p =
     72       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
     73                                   ZoneAllocationPolicy(zone_));
     74   if (p->value == nullptr) {
     75     p->value = new (zone_->New(sizeof(Vector))) Vector(zone_);
     76   }
     77   Vector* delegates = static_cast<Vector*>(p->value);
     78   delegates->push_back(stmt);
     79 }
     80 
     81 
     82 // ----------------------------------------------------------------------------
     83 // Implementation of Scope
     84 
     85 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
     86              AstValueFactory* ast_value_factory, FunctionKind function_kind)
     87     : inner_scopes_(4, zone),
     88       variables_(zone),
     89       temps_(4, zone),
     90       params_(4, zone),
     91       unresolved_(16, zone),
     92       decls_(4, zone),
     93       module_descriptor_(
     94           scope_type == MODULE_SCOPE ? ModuleDescriptor::New(zone) : NULL),
     95       sloppy_block_function_map_(zone),
     96       already_resolved_(false),
     97       ast_value_factory_(ast_value_factory),
     98       zone_(zone) {
     99   SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null(),
    100               function_kind);
    101   // The outermost scope must be a script scope.
    102   DCHECK(scope_type == SCRIPT_SCOPE || outer_scope != NULL);
    103 }
    104 
    105 Scope::Scope(Zone* zone, Scope* inner_scope, ScopeType scope_type,
    106              Handle<ScopeInfo> scope_info, AstValueFactory* value_factory)
    107     : inner_scopes_(4, zone),
    108       variables_(zone),
    109       temps_(4, zone),
    110       params_(4, zone),
    111       unresolved_(16, zone),
    112       decls_(4, zone),
    113       module_descriptor_(NULL),
    114       sloppy_block_function_map_(zone),
    115       already_resolved_(true),
    116       ast_value_factory_(value_factory),
    117       zone_(zone) {
    118   SetDefaults(scope_type, NULL, scope_info);
    119   if (!scope_info.is_null()) {
    120     num_heap_slots_ = scope_info_->ContextLength();
    121   }
    122   // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
    123   num_heap_slots_ = Max(num_heap_slots_,
    124                         static_cast<int>(Context::MIN_CONTEXT_SLOTS));
    125   AddInnerScope(inner_scope);
    126 }
    127 
    128 Scope::Scope(Zone* zone, Scope* inner_scope,
    129              const AstRawString* catch_variable_name,
    130              AstValueFactory* value_factory)
    131     : inner_scopes_(1, zone),
    132       variables_(zone),
    133       temps_(0, zone),
    134       params_(0, zone),
    135       unresolved_(0, zone),
    136       decls_(0, zone),
    137       module_descriptor_(NULL),
    138       sloppy_block_function_map_(zone),
    139       already_resolved_(true),
    140       ast_value_factory_(value_factory),
    141       zone_(zone) {
    142   SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
    143   AddInnerScope(inner_scope);
    144   ++num_var_or_const_;
    145   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
    146   Variable* variable = variables_.Declare(this,
    147                                           catch_variable_name,
    148                                           VAR,
    149                                           Variable::NORMAL,
    150                                           kCreatedInitialized);
    151   AllocateHeapSlot(variable);
    152 }
    153 
    154 
    155 void Scope::SetDefaults(ScopeType scope_type, Scope* outer_scope,
    156                         Handle<ScopeInfo> scope_info,
    157                         FunctionKind function_kind) {
    158   outer_scope_ = outer_scope;
    159   scope_type_ = scope_type;
    160   is_declaration_scope_ =
    161       is_eval_scope() || is_function_scope() ||
    162       is_module_scope() || is_script_scope();
    163   function_kind_ = function_kind;
    164   scope_name_ = ast_value_factory_->empty_string();
    165   dynamics_ = nullptr;
    166   receiver_ = nullptr;
    167   new_target_ = nullptr;
    168   function_ = nullptr;
    169   arguments_ = nullptr;
    170   this_function_ = nullptr;
    171   scope_inside_with_ = false;
    172   scope_calls_eval_ = false;
    173   scope_uses_arguments_ = false;
    174   scope_uses_super_property_ = false;
    175   asm_module_ = false;
    176   asm_function_ = outer_scope != NULL && outer_scope->asm_module_;
    177   // Inherit the language mode from the parent scope.
    178   language_mode_ =
    179       is_module_scope()
    180           ? STRICT
    181           : (outer_scope != NULL ? outer_scope->language_mode_ : SLOPPY);
    182   outer_scope_calls_sloppy_eval_ = false;
    183   inner_scope_calls_eval_ = false;
    184   scope_nonlinear_ = false;
    185   force_eager_compilation_ = false;
    186   force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
    187       ? outer_scope->has_forced_context_allocation() : false;
    188   num_var_or_const_ = 0;
    189   num_stack_slots_ = 0;
    190   num_heap_slots_ = 0;
    191   num_global_slots_ = 0;
    192   arity_ = 0;
    193   has_simple_parameters_ = true;
    194   rest_parameter_ = NULL;
    195   rest_index_ = -1;
    196   scope_info_ = scope_info;
    197   start_position_ = RelocInfo::kNoPosition;
    198   end_position_ = RelocInfo::kNoPosition;
    199   is_hidden_ = false;
    200   if (!scope_info.is_null()) {
    201     scope_calls_eval_ = scope_info->CallsEval();
    202     language_mode_ = scope_info->language_mode();
    203     is_declaration_scope_ = scope_info->is_declaration_scope();
    204     function_kind_ = scope_info->function_kind();
    205   }
    206 }
    207 
    208 
    209 Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
    210                                     Context* context, Scope* script_scope) {
    211   // Reconstruct the outer scope chain from a closure's context chain.
    212   Scope* current_scope = NULL;
    213   Scope* innermost_scope = NULL;
    214   while (!context->IsNativeContext()) {
    215     if (context->IsWithContext() || context->IsDebugEvaluateContext()) {
    216       // For scope analysis, debug-evaluate is equivalent to a with scope.
    217       Scope* with_scope = new (zone)
    218           Scope(zone, current_scope, WITH_SCOPE, Handle<ScopeInfo>::null(),
    219                 script_scope->ast_value_factory_);
    220       current_scope = with_scope;
    221       // All the inner scopes are inside a with.
    222       for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
    223         s->scope_inside_with_ = true;
    224       }
    225     } else if (context->IsScriptContext()) {
    226       ScopeInfo* scope_info = context->scope_info();
    227       current_scope = new (zone) Scope(zone, current_scope, SCRIPT_SCOPE,
    228                                        Handle<ScopeInfo>(scope_info),
    229                                        script_scope->ast_value_factory_);
    230     } else if (context->IsModuleContext()) {
    231       ScopeInfo* scope_info = context->module()->scope_info();
    232       current_scope = new (zone) Scope(zone, current_scope, MODULE_SCOPE,
    233                                        Handle<ScopeInfo>(scope_info),
    234                                        script_scope->ast_value_factory_);
    235     } else if (context->IsFunctionContext()) {
    236       ScopeInfo* scope_info = context->closure()->shared()->scope_info();
    237       current_scope = new (zone) Scope(zone, current_scope, FUNCTION_SCOPE,
    238                                        Handle<ScopeInfo>(scope_info),
    239                                        script_scope->ast_value_factory_);
    240       if (scope_info->IsAsmFunction()) current_scope->asm_function_ = true;
    241       if (scope_info->IsAsmModule()) current_scope->asm_module_ = true;
    242     } else if (context->IsBlockContext()) {
    243       ScopeInfo* scope_info = context->scope_info();
    244       current_scope = new (zone)
    245           Scope(zone, current_scope, BLOCK_SCOPE, Handle<ScopeInfo>(scope_info),
    246                 script_scope->ast_value_factory_);
    247     } else {
    248       DCHECK(context->IsCatchContext());
    249       String* name = context->catch_name();
    250       current_scope = new (zone) Scope(
    251           zone, current_scope,
    252           script_scope->ast_value_factory_->GetString(Handle<String>(name)),
    253           script_scope->ast_value_factory_);
    254     }
    255     if (innermost_scope == NULL) innermost_scope = current_scope;
    256     context = context->previous();
    257   }
    258 
    259   script_scope->AddInnerScope(current_scope);
    260   script_scope->PropagateScopeInfo(false);
    261   return (innermost_scope == NULL) ? script_scope : innermost_scope;
    262 }
    263 
    264 
    265 bool Scope::Analyze(ParseInfo* info) {
    266   DCHECK(info->literal() != NULL);
    267   DCHECK(info->scope() == NULL);
    268   Scope* scope = info->literal()->scope();
    269   Scope* top = scope;
    270 
    271   // Traverse the scope tree up to the first unresolved scope or the global
    272   // scope and start scope resolution and variable allocation from that scope.
    273   while (!top->is_script_scope() &&
    274          !top->outer_scope()->already_resolved()) {
    275     top = top->outer_scope();
    276   }
    277 
    278   // Allocate the variables.
    279   {
    280     AstNodeFactory ast_node_factory(info->ast_value_factory());
    281     if (!top->AllocateVariables(info, &ast_node_factory)) {
    282       DCHECK(top->pending_error_handler_.has_pending_error());
    283       top->pending_error_handler_.ThrowPendingError(info->isolate(),
    284                                                     info->script());
    285       return false;
    286     }
    287   }
    288 
    289 #ifdef DEBUG
    290   if (info->script_is_native() ? FLAG_print_builtin_scopes
    291                                : FLAG_print_scopes) {
    292     scope->Print();
    293   }
    294   scope->CheckScopePositions();
    295 #endif
    296 
    297   info->set_scope(scope);
    298   return true;
    299 }
    300 
    301 
    302 void Scope::Initialize() {
    303   DCHECK(!already_resolved());
    304 
    305   // Add this scope as a new inner scope of the outer scope.
    306   if (outer_scope_ != NULL) {
    307     outer_scope_->inner_scopes_.Add(this, zone());
    308     scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
    309   } else {
    310     scope_inside_with_ = is_with_scope();
    311   }
    312 
    313   // Declare convenience variables and the receiver.
    314   if (is_declaration_scope() && has_this_declaration()) {
    315     bool subclass_constructor = IsSubclassConstructor(function_kind_);
    316     Variable* var = variables_.Declare(
    317         this, ast_value_factory_->this_string(),
    318         subclass_constructor ? CONST : VAR, Variable::THIS,
    319         subclass_constructor ? kNeedsInitialization : kCreatedInitialized);
    320     receiver_ = var;
    321   }
    322 
    323   if (is_function_scope() && !is_arrow_scope()) {
    324     // Declare 'arguments' variable which exists in all non arrow functions.
    325     // Note that it might never be accessed, in which case it won't be
    326     // allocated during variable allocation.
    327     variables_.Declare(this, ast_value_factory_->arguments_string(), VAR,
    328                        Variable::ARGUMENTS, kCreatedInitialized);
    329 
    330     variables_.Declare(this, ast_value_factory_->new_target_string(), CONST,
    331                        Variable::NORMAL, kCreatedInitialized);
    332 
    333     if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
    334         IsAccessorFunction(function_kind_)) {
    335       variables_.Declare(this, ast_value_factory_->this_function_string(),
    336                          CONST, Variable::NORMAL, kCreatedInitialized);
    337     }
    338   }
    339 }
    340 
    341 
    342 Scope* Scope::FinalizeBlockScope() {
    343   DCHECK(is_block_scope());
    344   DCHECK(temps_.is_empty());
    345   DCHECK(params_.is_empty());
    346 
    347   if (num_var_or_const() > 0 ||
    348       (is_declaration_scope() && calls_sloppy_eval())) {
    349     return this;
    350   }
    351 
    352   // Remove this scope from outer scope.
    353   outer_scope()->RemoveInnerScope(this);
    354 
    355   // Reparent inner scopes.
    356   for (int i = 0; i < inner_scopes_.length(); i++) {
    357     outer_scope()->AddInnerScope(inner_scopes_[i]);
    358   }
    359 
    360   // Move unresolved variables
    361   for (int i = 0; i < unresolved_.length(); i++) {
    362     outer_scope()->unresolved_.Add(unresolved_[i], zone());
    363   }
    364 
    365   PropagateUsageFlagsToScope(outer_scope_);
    366 
    367   return NULL;
    368 }
    369 
    370 
    371 void Scope::ReplaceOuterScope(Scope* outer) {
    372   DCHECK_NOT_NULL(outer);
    373   DCHECK_NOT_NULL(outer_scope_);
    374   DCHECK(!already_resolved());
    375   DCHECK(!outer->already_resolved());
    376   DCHECK(!outer_scope_->already_resolved());
    377   outer_scope_->RemoveInnerScope(this);
    378   outer->AddInnerScope(this);
    379   outer_scope_ = outer;
    380 }
    381 
    382 
    383 void Scope::PropagateUsageFlagsToScope(Scope* other) {
    384   DCHECK_NOT_NULL(other);
    385   DCHECK(!already_resolved());
    386   DCHECK(!other->already_resolved());
    387   if (uses_arguments()) other->RecordArgumentsUsage();
    388   if (uses_super_property()) other->RecordSuperPropertyUsage();
    389   if (calls_eval()) other->RecordEvalCall();
    390 }
    391 
    392 
    393 Variable* Scope::LookupLocal(const AstRawString* name) {
    394   Variable* result = variables_.Lookup(name);
    395   if (result != NULL || scope_info_.is_null()) {
    396     return result;
    397   }
    398   Handle<String> name_handle = name->string();
    399   // The Scope is backed up by ScopeInfo. This means it cannot operate in a
    400   // heap-independent mode, and all strings must be internalized immediately. So
    401   // it's ok to get the Handle<String> here.
    402   // If we have a serialized scope info, we might find the variable there.
    403   // There should be no local slot with the given name.
    404   DCHECK(scope_info_->StackSlotIndex(*name_handle) < 0 || is_block_scope());
    405 
    406   // Check context slot lookup.
    407   VariableMode mode;
    408   VariableLocation location = VariableLocation::CONTEXT;
    409   InitializationFlag init_flag;
    410   MaybeAssignedFlag maybe_assigned_flag;
    411   int index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
    412                                           &init_flag, &maybe_assigned_flag);
    413   if (index < 0) {
    414     location = VariableLocation::GLOBAL;
    415     index = ScopeInfo::ContextGlobalSlotIndex(scope_info_, name_handle, &mode,
    416                                               &init_flag, &maybe_assigned_flag);
    417   }
    418   if (index < 0) {
    419     // Check parameters.
    420     index = scope_info_->ParameterIndex(*name_handle);
    421     if (index < 0) return NULL;
    422 
    423     mode = DYNAMIC;
    424     location = VariableLocation::LOOKUP;
    425     init_flag = kCreatedInitialized;
    426     // Be conservative and flag parameters as maybe assigned. Better information
    427     // would require ScopeInfo to serialize the maybe_assigned bit also for
    428     // parameters.
    429     maybe_assigned_flag = kMaybeAssigned;
    430   } else {
    431     DCHECK(location != VariableLocation::GLOBAL ||
    432            (is_script_scope() && IsDeclaredVariableMode(mode) &&
    433             !IsLexicalVariableMode(mode)));
    434   }
    435 
    436   Variable::Kind kind = Variable::NORMAL;
    437   if (location == VariableLocation::CONTEXT &&
    438       index == scope_info_->ReceiverContextSlotIndex()) {
    439     kind = Variable::THIS;
    440   }
    441   // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and
    442   // ARGUMENTS bindings as their corresponding Variable::Kind.
    443 
    444   Variable* var = variables_.Declare(this, name, mode, kind, init_flag,
    445                                      maybe_assigned_flag);
    446   var->AllocateTo(location, index);
    447   return var;
    448 }
    449 
    450 
    451 Variable* Scope::LookupFunctionVar(const AstRawString* name,
    452                                    AstNodeFactory* factory) {
    453   if (function_ != NULL && function_->proxy()->raw_name() == name) {
    454     return function_->proxy()->var();
    455   } else if (!scope_info_.is_null()) {
    456     // If we are backed by a scope info, try to lookup the variable there.
    457     VariableMode mode;
    458     int index = scope_info_->FunctionContextSlotIndex(*(name->string()), &mode);
    459     if (index < 0) return NULL;
    460     Variable* var = new (zone())
    461         Variable(this, name, mode, Variable::NORMAL, kCreatedInitialized);
    462     VariableProxy* proxy = factory->NewVariableProxy(var);
    463     VariableDeclaration* declaration = factory->NewVariableDeclaration(
    464         proxy, mode, this, RelocInfo::kNoPosition);
    465     DeclareFunctionVar(declaration);
    466     var->AllocateTo(VariableLocation::CONTEXT, index);
    467     return var;
    468   } else {
    469     return NULL;
    470   }
    471 }
    472 
    473 
    474 Variable* Scope::Lookup(const AstRawString* name) {
    475   for (Scope* scope = this;
    476        scope != NULL;
    477        scope = scope->outer_scope()) {
    478     Variable* var = scope->LookupLocal(name);
    479     if (var != NULL) return var;
    480   }
    481   return NULL;
    482 }
    483 
    484 
    485 Variable* Scope::DeclareParameter(
    486     const AstRawString* name, VariableMode mode,
    487     bool is_optional, bool is_rest, bool* is_duplicate) {
    488   DCHECK(!already_resolved());
    489   DCHECK(is_function_scope());
    490   DCHECK(!is_optional || !is_rest);
    491   Variable* var;
    492   if (mode == TEMPORARY) {
    493     var = NewTemporary(name);
    494   } else {
    495     var = variables_.Declare(this, name, mode, Variable::NORMAL,
    496                              kCreatedInitialized);
    497     // TODO(wingo): Avoid O(n^2) check.
    498     *is_duplicate = IsDeclaredParameter(name);
    499   }
    500   if (!is_optional && !is_rest && arity_ == params_.length()) {
    501     ++arity_;
    502   }
    503   if (is_rest) {
    504     DCHECK_NULL(rest_parameter_);
    505     rest_parameter_ = var;
    506     rest_index_ = num_parameters();
    507   }
    508   params_.Add(var, zone());
    509   return var;
    510 }
    511 
    512 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
    513                               InitializationFlag init_flag, Variable::Kind kind,
    514                               MaybeAssignedFlag maybe_assigned_flag) {
    515   DCHECK(!already_resolved());
    516   // This function handles VAR, LET, and CONST modes.  DYNAMIC variables are
    517   // introduced during variable allocation, and TEMPORARY variables are
    518   // allocated via NewTemporary().
    519   DCHECK(IsDeclaredVariableMode(mode));
    520   ++num_var_or_const_;
    521   return variables_.Declare(this, name, mode, kind, init_flag,
    522                             maybe_assigned_flag);
    523 }
    524 
    525 
    526 Variable* Scope::DeclareDynamicGlobal(const AstRawString* name) {
    527   DCHECK(is_script_scope());
    528   return variables_.Declare(this,
    529                             name,
    530                             DYNAMIC_GLOBAL,
    531                             Variable::NORMAL,
    532                             kCreatedInitialized);
    533 }
    534 
    535 
    536 bool Scope::RemoveUnresolved(VariableProxy* var) {
    537   // Most likely (always?) any variable we want to remove
    538   // was just added before, so we search backwards.
    539   for (int i = unresolved_.length(); i-- > 0;) {
    540     if (unresolved_[i] == var) {
    541       unresolved_.Remove(i);
    542       return true;
    543     }
    544   }
    545   return false;
    546 }
    547 
    548 
    549 Variable* Scope::NewTemporary(const AstRawString* name) {
    550   DCHECK(!already_resolved());
    551   Scope* scope = this->ClosureScope();
    552   Variable* var = new(zone()) Variable(scope,
    553                                        name,
    554                                        TEMPORARY,
    555                                        Variable::NORMAL,
    556                                        kCreatedInitialized);
    557   scope->AddTemporary(var);
    558   return var;
    559 }
    560 
    561 int Scope::RemoveTemporary(Variable* var) {
    562   DCHECK_NOT_NULL(var);
    563   // Temporaries are only placed in ClosureScopes.
    564   DCHECK_EQ(ClosureScope(), this);
    565   DCHECK_EQ(var->scope()->ClosureScope(), var->scope());
    566   // If the temporary is not here, return quickly.
    567   if (var->scope() != this) return -1;
    568   // Most likely (always?) any temporary variable we want to remove
    569   // was just added before, so we search backwards.
    570   for (int i = temps_.length(); i-- > 0;) {
    571     if (temps_[i] == var) {
    572       // Don't shrink temps_, as callers of this method expect
    573       // the returned indices to be unique per-scope.
    574       temps_[i] = nullptr;
    575       return i;
    576     }
    577   }
    578   return -1;
    579 }
    580 
    581 
    582 void Scope::AddDeclaration(Declaration* declaration) {
    583   decls_.Add(declaration, zone());
    584 }
    585 
    586 
    587 Declaration* Scope::CheckConflictingVarDeclarations() {
    588   int length = decls_.length();
    589   for (int i = 0; i < length; i++) {
    590     Declaration* decl = decls_[i];
    591     // We don't create a separate scope to hold the function name of a function
    592     // expression, so we have to make sure not to consider it when checking for
    593     // conflicts (since it's conceptually "outside" the declaration scope).
    594     if (is_function_scope() && decl == function()) continue;
    595     if (IsLexicalVariableMode(decl->mode()) && !is_block_scope()) continue;
    596     const AstRawString* name = decl->proxy()->raw_name();
    597 
    598     // Iterate through all scopes until and including the declaration scope.
    599     Scope* previous = NULL;
    600     Scope* current = decl->scope();
    601     // Lexical vs lexical conflicts within the same scope have already been
    602     // captured in Parser::Declare. The only conflicts we still need to check
    603     // are lexical vs VAR, or any declarations within a declaration block scope
    604     // vs lexical declarations in its surrounding (function) scope.
    605     if (IsLexicalVariableMode(decl->mode())) current = current->outer_scope_;
    606     do {
    607       // There is a conflict if there exists a non-VAR binding.
    608       Variable* other_var = current->variables_.Lookup(name);
    609       if (other_var != NULL && IsLexicalVariableMode(other_var->mode())) {
    610         return decl;
    611       }
    612       previous = current;
    613       current = current->outer_scope_;
    614     } while (!previous->is_declaration_scope());
    615   }
    616   return NULL;
    617 }
    618 
    619 
    620 class VarAndOrder {
    621  public:
    622   VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
    623   Variable* var() const { return var_; }
    624   int order() const { return order_; }
    625   static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
    626     return a->order_ - b->order_;
    627   }
    628 
    629  private:
    630   Variable* var_;
    631   int order_;
    632 };
    633 
    634 void Scope::CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
    635                                          ZoneList<Variable*>* context_locals,
    636                                          ZoneList<Variable*>* context_globals) {
    637   DCHECK(stack_locals != NULL);
    638   DCHECK(context_locals != NULL);
    639   DCHECK(context_globals != NULL);
    640 
    641   // Collect temporaries which are always allocated on the stack, unless the
    642   // context as a whole has forced context allocation.
    643   for (int i = 0; i < temps_.length(); i++) {
    644     Variable* var = temps_[i];
    645     if (var == nullptr) continue;
    646     if (var->is_used()) {
    647       if (var->IsContextSlot()) {
    648         DCHECK(has_forced_context_allocation());
    649         context_locals->Add(var, zone());
    650       } else if (var->IsStackLocal()) {
    651         stack_locals->Add(var, zone());
    652       } else {
    653         DCHECK(var->IsParameter());
    654       }
    655     }
    656   }
    657 
    658   // Collect declared local variables.
    659   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
    660   for (VariableMap::Entry* p = variables_.Start();
    661        p != NULL;
    662        p = variables_.Next(p)) {
    663     Variable* var = reinterpret_cast<Variable*>(p->value);
    664     if (var->is_used()) {
    665       vars.Add(VarAndOrder(var, p->order), zone());
    666     }
    667   }
    668   vars.Sort(VarAndOrder::Compare);
    669   int var_count = vars.length();
    670   for (int i = 0; i < var_count; i++) {
    671     Variable* var = vars[i].var();
    672     if (var->IsStackLocal()) {
    673       stack_locals->Add(var, zone());
    674     } else if (var->IsContextSlot()) {
    675       context_locals->Add(var, zone());
    676     } else if (var->IsGlobalSlot()) {
    677       context_globals->Add(var, zone());
    678     }
    679   }
    680 }
    681 
    682 
    683 bool Scope::AllocateVariables(ParseInfo* info, AstNodeFactory* factory) {
    684   // 1) Propagate scope information.
    685   bool outer_scope_calls_sloppy_eval = false;
    686   if (outer_scope_ != NULL) {
    687     outer_scope_calls_sloppy_eval =
    688         outer_scope_->outer_scope_calls_sloppy_eval() |
    689         outer_scope_->calls_sloppy_eval();
    690   }
    691   PropagateScopeInfo(outer_scope_calls_sloppy_eval);
    692 
    693   // 2) Resolve variables.
    694   if (!ResolveVariablesRecursively(info, factory)) return false;
    695 
    696   // 3) Allocate variables.
    697   AllocateVariablesRecursively(info->isolate());
    698 
    699   return true;
    700 }
    701 
    702 
    703 bool Scope::HasTrivialContext() const {
    704   // A function scope has a trivial context if it always is the global
    705   // context. We iteratively scan out the context chain to see if
    706   // there is anything that makes this scope non-trivial; otherwise we
    707   // return true.
    708   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
    709     if (scope->is_eval_scope()) return false;
    710     if (scope->scope_inside_with_) return false;
    711     if (scope->ContextLocalCount() > 0) return false;
    712     if (scope->ContextGlobalCount() > 0) return false;
    713   }
    714   return true;
    715 }
    716 
    717 
    718 bool Scope::HasTrivialOuterContext() const {
    719   Scope* outer = outer_scope_;
    720   if (outer == NULL) return true;
    721   // Note that the outer context may be trivial in general, but the current
    722   // scope may be inside a 'with' statement in which case the outer context
    723   // for this scope is not trivial.
    724   return !scope_inside_with_ && outer->HasTrivialContext();
    725 }
    726 
    727 
    728 bool Scope::AllowsLazyParsing() const {
    729   // If we are inside a block scope, we must parse eagerly to find out how
    730   // to allocate variables on the block scope. At this point, declarations may
    731   // not have yet been parsed.
    732   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
    733     if (scope->is_block_scope()) return false;
    734   }
    735   return AllowsLazyCompilation();
    736 }
    737 
    738 
    739 bool Scope::AllowsLazyCompilation() const { return !force_eager_compilation_; }
    740 
    741 
    742 bool Scope::AllowsLazyCompilationWithoutContext() const {
    743   return !force_eager_compilation_ && HasTrivialOuterContext();
    744 }
    745 
    746 
    747 int Scope::ContextChainLength(Scope* scope) {
    748   int n = 0;
    749   for (Scope* s = this; s != scope; s = s->outer_scope_) {
    750     DCHECK(s != NULL);  // scope must be in the scope chain
    751     if (s->NeedsContext()) n++;
    752   }
    753   return n;
    754 }
    755 
    756 
    757 int Scope::MaxNestedContextChainLength() {
    758   int max_context_chain_length = 0;
    759   for (int i = 0; i < inner_scopes_.length(); i++) {
    760     Scope* scope = inner_scopes_[i];
    761     max_context_chain_length = std::max(scope->MaxNestedContextChainLength(),
    762                                         max_context_chain_length);
    763   }
    764   if (NeedsContext()) {
    765     max_context_chain_length += 1;
    766   }
    767   return max_context_chain_length;
    768 }
    769 
    770 
    771 Scope* Scope::DeclarationScope() {
    772   Scope* scope = this;
    773   while (!scope->is_declaration_scope()) {
    774     scope = scope->outer_scope();
    775   }
    776   return scope;
    777 }
    778 
    779 
    780 Scope* Scope::ClosureScope() {
    781   Scope* scope = this;
    782   while (!scope->is_declaration_scope() || scope->is_block_scope()) {
    783     scope = scope->outer_scope();
    784   }
    785   return scope;
    786 }
    787 
    788 
    789 Scope* Scope::ReceiverScope() {
    790   Scope* scope = this;
    791   while (!scope->is_script_scope() &&
    792          (!scope->is_function_scope() || scope->is_arrow_scope())) {
    793     scope = scope->outer_scope();
    794   }
    795   return scope;
    796 }
    797 
    798 
    799 
    800 Handle<ScopeInfo> Scope::GetScopeInfo(Isolate* isolate) {
    801   if (scope_info_.is_null()) {
    802     scope_info_ = ScopeInfo::Create(isolate, zone(), this);
    803   }
    804   return scope_info_;
    805 }
    806 
    807 Handle<StringSet> Scope::CollectNonLocals(Handle<StringSet> non_locals) {
    808   // Collect non-local variables referenced in the scope.
    809   // TODO(yangguo): store non-local variables explicitly if we can no longer
    810   //                rely on unresolved_ to find them.
    811   for (int i = 0; i < unresolved_.length(); i++) {
    812     VariableProxy* proxy = unresolved_[i];
    813     if (proxy->is_resolved() && proxy->var()->IsStackAllocated()) continue;
    814     Handle<String> name = proxy->name();
    815     non_locals = StringSet::Add(non_locals, name);
    816   }
    817   for (int i = 0; i < inner_scopes_.length(); i++) {
    818     non_locals = inner_scopes_[i]->CollectNonLocals(non_locals);
    819   }
    820   return non_locals;
    821 }
    822 
    823 
    824 #ifdef DEBUG
    825 static const char* Header(ScopeType scope_type, FunctionKind function_kind,
    826                           bool is_declaration_scope) {
    827   switch (scope_type) {
    828     case EVAL_SCOPE: return "eval";
    829     // TODO(adamk): Should we print concise method scopes specially?
    830     case FUNCTION_SCOPE:
    831       if (IsGeneratorFunction(function_kind)) return "function*";
    832       if (IsAsyncFunction(function_kind)) return "async function";
    833       if (IsArrowFunction(function_kind)) return "arrow";
    834       return "function";
    835     case MODULE_SCOPE: return "module";
    836     case SCRIPT_SCOPE: return "global";
    837     case CATCH_SCOPE: return "catch";
    838     case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
    839     case WITH_SCOPE: return "with";
    840   }
    841   UNREACHABLE();
    842   return NULL;
    843 }
    844 
    845 
    846 static void Indent(int n, const char* str) {
    847   PrintF("%*s%s", n, "", str);
    848 }
    849 
    850 
    851 static void PrintName(const AstRawString* name) {
    852   PrintF("%.*s", name->length(), name->raw_data());
    853 }
    854 
    855 
    856 static void PrintLocation(Variable* var) {
    857   switch (var->location()) {
    858     case VariableLocation::UNALLOCATED:
    859       break;
    860     case VariableLocation::PARAMETER:
    861       PrintF("parameter[%d]", var->index());
    862       break;
    863     case VariableLocation::LOCAL:
    864       PrintF("local[%d]", var->index());
    865       break;
    866     case VariableLocation::CONTEXT:
    867       PrintF("context[%d]", var->index());
    868       break;
    869     case VariableLocation::GLOBAL:
    870       PrintF("global[%d]", var->index());
    871       break;
    872     case VariableLocation::LOOKUP:
    873       PrintF("lookup");
    874       break;
    875   }
    876 }
    877 
    878 
    879 static void PrintVar(int indent, Variable* var) {
    880   if (var->is_used() || !var->IsUnallocated()) {
    881     Indent(indent, Variable::Mode2String(var->mode()));
    882     PrintF(" ");
    883     if (var->raw_name()->IsEmpty())
    884       PrintF(".%p", reinterpret_cast<void*>(var));
    885     else
    886       PrintName(var->raw_name());
    887     PrintF(";  // ");
    888     PrintLocation(var);
    889     bool comma = !var->IsUnallocated();
    890     if (var->has_forced_context_allocation()) {
    891       if (comma) PrintF(", ");
    892       PrintF("forced context allocation");
    893       comma = true;
    894     }
    895     if (var->maybe_assigned() == kMaybeAssigned) {
    896       if (comma) PrintF(", ");
    897       PrintF("maybe assigned");
    898     }
    899     PrintF("\n");
    900   }
    901 }
    902 
    903 
    904 static void PrintMap(int indent, VariableMap* map) {
    905   for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
    906     Variable* var = reinterpret_cast<Variable*>(p->value);
    907     if (var == NULL) {
    908       Indent(indent, "<?>\n");
    909     } else {
    910       PrintVar(indent, var);
    911     }
    912   }
    913 }
    914 
    915 
    916 void Scope::Print(int n) {
    917   int n0 = (n > 0 ? n : 0);
    918   int n1 = n0 + 2;  // indentation
    919 
    920   // Print header.
    921   Indent(n0, Header(scope_type_, function_kind_, is_declaration_scope()));
    922   if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
    923     PrintF(" ");
    924     PrintName(scope_name_);
    925   }
    926 
    927   // Print parameters, if any.
    928   if (is_function_scope()) {
    929     PrintF(" (");
    930     for (int i = 0; i < params_.length(); i++) {
    931       if (i > 0) PrintF(", ");
    932       const AstRawString* name = params_[i]->raw_name();
    933       if (name->IsEmpty())
    934         PrintF(".%p", reinterpret_cast<void*>(params_[i]));
    935       else
    936         PrintName(name);
    937     }
    938     PrintF(")");
    939   }
    940 
    941   PrintF(" { // (%d, %d)\n", start_position(), end_position());
    942 
    943   // Function name, if any (named function literals, only).
    944   if (function_ != NULL) {
    945     Indent(n1, "// (local) function name: ");
    946     PrintName(function_->proxy()->raw_name());
    947     PrintF("\n");
    948   }
    949 
    950   // Scope info.
    951   if (HasTrivialOuterContext()) {
    952     Indent(n1, "// scope has trivial outer context\n");
    953   }
    954   if (is_strict(language_mode())) {
    955     Indent(n1, "// strict mode scope\n");
    956   }
    957   if (asm_module_) Indent(n1, "// scope is an asm module\n");
    958   if (asm_function_) Indent(n1, "// scope is an asm function\n");
    959   if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
    960   if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
    961   if (scope_uses_arguments_) Indent(n1, "// scope uses 'arguments'\n");
    962   if (scope_uses_super_property_)
    963     Indent(n1, "// scope uses 'super' property\n");
    964   if (outer_scope_calls_sloppy_eval_) {
    965     Indent(n1, "// outer scope calls 'eval' in sloppy context\n");
    966   }
    967   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
    968   if (num_stack_slots_ > 0) {
    969     Indent(n1, "// ");
    970     PrintF("%d stack slots\n", num_stack_slots_);
    971   }
    972   if (num_heap_slots_ > 0) {
    973     Indent(n1, "// ");
    974     PrintF("%d heap slots (including %d global slots)\n", num_heap_slots_,
    975            num_global_slots_);
    976   }
    977 
    978   // Print locals.
    979   if (function_ != NULL) {
    980     Indent(n1, "// function var:\n");
    981     PrintVar(n1, function_->proxy()->var());
    982   }
    983 
    984   if (temps_.length() > 0) {
    985     bool printed_header = false;
    986     for (int i = 0; i < temps_.length(); i++) {
    987       if (temps_[i] != nullptr) {
    988         if (!printed_header) {
    989           printed_header = true;
    990           Indent(n1, "// temporary vars:\n");
    991         }
    992         PrintVar(n1, temps_[i]);
    993       }
    994     }
    995   }
    996 
    997   if (variables_.Start() != NULL) {
    998     Indent(n1, "// local vars:\n");
    999     PrintMap(n1, &variables_);
   1000   }
   1001 
   1002   if (dynamics_ != NULL) {
   1003     Indent(n1, "// dynamic vars:\n");
   1004     PrintMap(n1, dynamics_->GetMap(DYNAMIC));
   1005     PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
   1006     PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
   1007   }
   1008 
   1009   // Print inner scopes (disable by providing negative n).
   1010   if (n >= 0) {
   1011     for (int i = 0; i < inner_scopes_.length(); i++) {
   1012       PrintF("\n");
   1013       inner_scopes_[i]->Print(n1);
   1014     }
   1015   }
   1016 
   1017   Indent(n0, "}\n");
   1018 }
   1019 
   1020 void Scope::CheckScopePositions() {
   1021   // A scope is allowed to have invalid positions if it is hidden and has no
   1022   // inner scopes
   1023   if (!is_hidden() && inner_scopes_.length() == 0) {
   1024     CHECK_NE(RelocInfo::kNoPosition, start_position());
   1025     CHECK_NE(RelocInfo::kNoPosition, end_position());
   1026   }
   1027   for (Scope* scope : inner_scopes_) scope->CheckScopePositions();
   1028 }
   1029 #endif  // DEBUG
   1030 
   1031 
   1032 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
   1033   if (dynamics_ == NULL) dynamics_ = new (zone()) DynamicScopePart(zone());
   1034   VariableMap* map = dynamics_->GetMap(mode);
   1035   Variable* var = map->Lookup(name);
   1036   if (var == NULL) {
   1037     // Declare a new non-local.
   1038     InitializationFlag init_flag = (mode == VAR)
   1039         ? kCreatedInitialized : kNeedsInitialization;
   1040     var = map->Declare(NULL,
   1041                        name,
   1042                        mode,
   1043                        Variable::NORMAL,
   1044                        init_flag);
   1045     // Allocate it by giving it a dynamic lookup.
   1046     var->AllocateTo(VariableLocation::LOOKUP, -1);
   1047   }
   1048   return var;
   1049 }
   1050 
   1051 
   1052 Variable* Scope::LookupRecursive(VariableProxy* proxy,
   1053                                  BindingKind* binding_kind,
   1054                                  AstNodeFactory* factory) {
   1055   DCHECK(binding_kind != NULL);
   1056   if (already_resolved() && is_with_scope()) {
   1057     // Short-cut: if the scope is deserialized from a scope info, variable
   1058     // allocation is already fixed.  We can simply return with dynamic lookup.
   1059     *binding_kind = DYNAMIC_LOOKUP;
   1060     return NULL;
   1061   }
   1062 
   1063   // Try to find the variable in this scope.
   1064   Variable* var = LookupLocal(proxy->raw_name());
   1065 
   1066   // We found a variable and we are done. (Even if there is an 'eval' in
   1067   // this scope which introduces the same variable again, the resulting
   1068   // variable remains the same.)
   1069   if (var != NULL) {
   1070     *binding_kind = BOUND;
   1071     return var;
   1072   }
   1073 
   1074   // We did not find a variable locally. Check against the function variable,
   1075   // if any. We can do this for all scopes, since the function variable is
   1076   // only present - if at all - for function scopes.
   1077   *binding_kind = UNBOUND;
   1078   var = LookupFunctionVar(proxy->raw_name(), factory);
   1079   if (var != NULL) {
   1080     *binding_kind = BOUND;
   1081   } else if (outer_scope_ != NULL) {
   1082     var = outer_scope_->LookupRecursive(proxy, binding_kind, factory);
   1083     if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
   1084       var->ForceContextAllocation();
   1085     }
   1086   } else {
   1087     DCHECK(is_script_scope());
   1088   }
   1089 
   1090   // "this" can't be shadowed by "eval"-introduced bindings or by "with" scopes.
   1091   // TODO(wingo): There are other variables in this category; add them.
   1092   bool name_can_be_shadowed = var == nullptr || !var->is_this();
   1093 
   1094   if (is_with_scope() && name_can_be_shadowed) {
   1095     DCHECK(!already_resolved());
   1096     // The current scope is a with scope, so the variable binding can not be
   1097     // statically resolved. However, note that it was necessary to do a lookup
   1098     // in the outer scope anyway, because if a binding exists in an outer scope,
   1099     // the associated variable has to be marked as potentially being accessed
   1100     // from inside of an inner with scope (the property may not be in the 'with'
   1101     // object).
   1102     if (var != NULL && proxy->is_assigned()) var->set_maybe_assigned();
   1103     *binding_kind = DYNAMIC_LOOKUP;
   1104     return NULL;
   1105   } else if (calls_sloppy_eval() && is_declaration_scope() &&
   1106              !is_script_scope() && name_can_be_shadowed) {
   1107     // A variable binding may have been found in an outer scope, but the current
   1108     // scope makes a sloppy 'eval' call, so the found variable may not be
   1109     // the correct one (the 'eval' may introduce a binding with the same name).
   1110     // In that case, change the lookup result to reflect this situation.
   1111     // Only scopes that can host var bindings (declaration scopes) need be
   1112     // considered here (this excludes block and catch scopes), and variable
   1113     // lookups at script scope are always dynamic.
   1114     if (*binding_kind == BOUND) {
   1115       *binding_kind = BOUND_EVAL_SHADOWED;
   1116     } else if (*binding_kind == UNBOUND) {
   1117       *binding_kind = UNBOUND_EVAL_SHADOWED;
   1118     }
   1119   }
   1120   return var;
   1121 }
   1122 
   1123 
   1124 bool Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy,
   1125                             AstNodeFactory* factory) {
   1126   DCHECK(info->script_scope()->is_script_scope());
   1127 
   1128   // If the proxy is already resolved there's nothing to do
   1129   // (functions and consts may be resolved by the parser).
   1130   if (proxy->is_resolved()) return true;
   1131 
   1132   // Otherwise, try to resolve the variable.
   1133   BindingKind binding_kind;
   1134   Variable* var = LookupRecursive(proxy, &binding_kind, factory);
   1135 
   1136 #ifdef DEBUG
   1137   if (info->script_is_native()) {
   1138     // To avoid polluting the global object in native scripts
   1139     //  - Variables must not be allocated to the global scope.
   1140     CHECK_NOT_NULL(outer_scope());
   1141     //  - Variables must be bound locally or unallocated.
   1142     if (BOUND != binding_kind) {
   1143       // The following variable name may be minified. If so, disable
   1144       // minification in js2c.py for better output.
   1145       Handle<String> name = proxy->raw_name()->string();
   1146       V8_Fatal(__FILE__, __LINE__, "Unbound variable: '%s' in native script.",
   1147                name->ToCString().get());
   1148     }
   1149     VariableLocation location = var->location();
   1150     CHECK(location == VariableLocation::LOCAL ||
   1151           location == VariableLocation::CONTEXT ||
   1152           location == VariableLocation::PARAMETER ||
   1153           location == VariableLocation::UNALLOCATED);
   1154   }
   1155 #endif
   1156 
   1157   switch (binding_kind) {
   1158     case BOUND:
   1159       break;
   1160 
   1161     case BOUND_EVAL_SHADOWED:
   1162       // We either found a variable binding that might be shadowed by eval  or
   1163       // gave up on it (e.g. by encountering a local with the same in the outer
   1164       // scope which was not promoted to a context, this can happen if we use
   1165       // debugger to evaluate arbitrary expressions at a break point).
   1166       if (var->IsGlobalObjectProperty()) {
   1167         var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
   1168       } else if (var->is_dynamic()) {
   1169         var = NonLocal(proxy->raw_name(), DYNAMIC);
   1170       } else {
   1171         Variable* invalidated = var;
   1172         var = NonLocal(proxy->raw_name(), DYNAMIC_LOCAL);
   1173         var->set_local_if_not_shadowed(invalidated);
   1174       }
   1175       break;
   1176 
   1177     case UNBOUND:
   1178       // No binding has been found. Declare a variable on the global object.
   1179       var = info->script_scope()->DeclareDynamicGlobal(proxy->raw_name());
   1180       break;
   1181 
   1182     case UNBOUND_EVAL_SHADOWED:
   1183       // No binding has been found. But some scope makes a sloppy 'eval' call.
   1184       var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
   1185       break;
   1186 
   1187     case DYNAMIC_LOOKUP:
   1188       // The variable could not be resolved statically.
   1189       var = NonLocal(proxy->raw_name(), DYNAMIC);
   1190       break;
   1191   }
   1192 
   1193   DCHECK(var != NULL);
   1194   if (proxy->is_assigned()) var->set_maybe_assigned();
   1195 
   1196   proxy->BindTo(var);
   1197 
   1198   return true;
   1199 }
   1200 
   1201 
   1202 bool Scope::ResolveVariablesRecursively(ParseInfo* info,
   1203                                         AstNodeFactory* factory) {
   1204   DCHECK(info->script_scope()->is_script_scope());
   1205 
   1206   // Resolve unresolved variables for this scope.
   1207   for (int i = 0; i < unresolved_.length(); i++) {
   1208     if (!ResolveVariable(info, unresolved_[i], factory)) return false;
   1209   }
   1210 
   1211   // Resolve unresolved variables for inner scopes.
   1212   for (int i = 0; i < inner_scopes_.length(); i++) {
   1213     if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
   1214       return false;
   1215   }
   1216 
   1217   return true;
   1218 }
   1219 
   1220 
   1221 void Scope::PropagateScopeInfo(bool outer_scope_calls_sloppy_eval ) {
   1222   if (outer_scope_calls_sloppy_eval) {
   1223     outer_scope_calls_sloppy_eval_ = true;
   1224   }
   1225 
   1226   bool calls_sloppy_eval =
   1227       this->calls_sloppy_eval() || outer_scope_calls_sloppy_eval_;
   1228   for (int i = 0; i < inner_scopes_.length(); i++) {
   1229     Scope* inner = inner_scopes_[i];
   1230     inner->PropagateScopeInfo(calls_sloppy_eval);
   1231     if (inner->scope_calls_eval_ || inner->inner_scope_calls_eval_) {
   1232       inner_scope_calls_eval_ = true;
   1233     }
   1234     if (inner->force_eager_compilation_) {
   1235       force_eager_compilation_ = true;
   1236     }
   1237     if (asm_module_ && inner->scope_type() == FUNCTION_SCOPE) {
   1238       inner->asm_function_ = true;
   1239     }
   1240   }
   1241 }
   1242 
   1243 
   1244 bool Scope::MustAllocate(Variable* var) {
   1245   // Give var a read/write use if there is a chance it might be accessed
   1246   // via an eval() call.  This is only possible if the variable has a
   1247   // visible name.
   1248   if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
   1249       (var->has_forced_context_allocation() || scope_calls_eval_ ||
   1250        inner_scope_calls_eval_ || is_catch_scope() || is_block_scope() ||
   1251        is_module_scope() || is_script_scope())) {
   1252     var->set_is_used();
   1253     if (scope_calls_eval_ || inner_scope_calls_eval_) var->set_maybe_assigned();
   1254   }
   1255   // Global variables do not need to be allocated.
   1256   return !var->IsGlobalObjectProperty() && var->is_used();
   1257 }
   1258 
   1259 
   1260 bool Scope::MustAllocateInContext(Variable* var) {
   1261   // If var is accessed from an inner scope, or if there is a possibility
   1262   // that it might be accessed from the current or an inner scope (through
   1263   // an eval() call or a runtime with lookup), it must be allocated in the
   1264   // context.
   1265   //
   1266   // Exceptions: If the scope as a whole has forced context allocation, all
   1267   // variables will have context allocation, even temporaries.  Otherwise
   1268   // temporary variables are always stack-allocated.  Catch-bound variables are
   1269   // always context-allocated.
   1270   if (has_forced_context_allocation()) return true;
   1271   if (var->mode() == TEMPORARY) return false;
   1272   if (is_catch_scope() || is_module_scope()) return true;
   1273   if (is_script_scope() && IsLexicalVariableMode(var->mode())) return true;
   1274   return var->has_forced_context_allocation() || scope_calls_eval_ ||
   1275          inner_scope_calls_eval_;
   1276 }
   1277 
   1278 
   1279 bool Scope::HasArgumentsParameter(Isolate* isolate) {
   1280   for (int i = 0; i < params_.length(); i++) {
   1281     if (params_[i]->name().is_identical_to(
   1282             isolate->factory()->arguments_string())) {
   1283       return true;
   1284     }
   1285   }
   1286   return false;
   1287 }
   1288 
   1289 
   1290 void Scope::AllocateStackSlot(Variable* var) {
   1291   if (is_block_scope()) {
   1292     outer_scope()->DeclarationScope()->AllocateStackSlot(var);
   1293   } else {
   1294     var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
   1295   }
   1296 }
   1297 
   1298 
   1299 void Scope::AllocateHeapSlot(Variable* var) {
   1300   var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
   1301 }
   1302 
   1303 
   1304 void Scope::AllocateParameterLocals(Isolate* isolate) {
   1305   DCHECK(is_function_scope());
   1306   Variable* arguments = LookupLocal(ast_value_factory_->arguments_string());
   1307   // Functions have 'arguments' declared implicitly in all non arrow functions.
   1308   DCHECK(arguments != nullptr || is_arrow_scope());
   1309 
   1310   bool uses_sloppy_arguments = false;
   1311 
   1312   if (arguments != nullptr && MustAllocate(arguments) &&
   1313       !HasArgumentsParameter(isolate)) {
   1314     // 'arguments' is used. Unless there is also a parameter called
   1315     // 'arguments', we must be conservative and allocate all parameters to
   1316     // the context assuming they will be captured by the arguments object.
   1317     // If we have a parameter named 'arguments', a (new) value is always
   1318     // assigned to it via the function invocation. Then 'arguments' denotes
   1319     // that specific parameter value and cannot be used to access the
   1320     // parameters, which is why we don't need to allocate an arguments
   1321     // object in that case.
   1322 
   1323     // We are using 'arguments'. Tell the code generator that is needs to
   1324     // allocate the arguments object by setting 'arguments_'.
   1325     arguments_ = arguments;
   1326 
   1327     // In strict mode 'arguments' does not alias formal parameters.
   1328     // Therefore in strict mode we allocate parameters as if 'arguments'
   1329     // were not used.
   1330     // If the parameter list is not simple, arguments isn't sloppy either.
   1331     uses_sloppy_arguments =
   1332         is_sloppy(language_mode()) && has_simple_parameters();
   1333   }
   1334 
   1335   if (rest_parameter_ && !MustAllocate(rest_parameter_)) {
   1336     rest_parameter_ = NULL;
   1337   }
   1338 
   1339   // The same parameter may occur multiple times in the parameters_ list.
   1340   // If it does, and if it is not copied into the context object, it must
   1341   // receive the highest parameter index for that parameter; thus iteration
   1342   // order is relevant!
   1343   for (int i = params_.length() - 1; i >= 0; --i) {
   1344     Variable* var = params_[i];
   1345     if (var == rest_parameter_) continue;
   1346 
   1347     DCHECK(var->scope() == this);
   1348     if (uses_sloppy_arguments || has_forced_context_allocation()) {
   1349       // Force context allocation of the parameter.
   1350       var->ForceContextAllocation();
   1351     }
   1352     AllocateParameter(var, i);
   1353   }
   1354 }
   1355 
   1356 
   1357 void Scope::AllocateParameter(Variable* var, int index) {
   1358   if (MustAllocate(var)) {
   1359     if (MustAllocateInContext(var)) {
   1360       DCHECK(var->IsUnallocated() || var->IsContextSlot());
   1361       if (var->IsUnallocated()) {
   1362         AllocateHeapSlot(var);
   1363       }
   1364     } else {
   1365       DCHECK(var->IsUnallocated() || var->IsParameter());
   1366       if (var->IsUnallocated()) {
   1367         var->AllocateTo(VariableLocation::PARAMETER, index);
   1368       }
   1369     }
   1370   } else {
   1371     DCHECK(!var->IsGlobalSlot());
   1372   }
   1373 }
   1374 
   1375 
   1376 void Scope::AllocateReceiver() {
   1377   DCHECK_NOT_NULL(receiver());
   1378   DCHECK_EQ(receiver()->scope(), this);
   1379 
   1380   if (has_forced_context_allocation()) {
   1381     // Force context allocation of the receiver.
   1382     receiver()->ForceContextAllocation();
   1383   }
   1384   AllocateParameter(receiver(), -1);
   1385 }
   1386 
   1387 
   1388 void Scope::AllocateNonParameterLocal(Isolate* isolate, Variable* var) {
   1389   DCHECK(var->scope() == this);
   1390   DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
   1391          !var->IsStackLocal());
   1392   if (var->IsUnallocated() && MustAllocate(var)) {
   1393     if (MustAllocateInContext(var)) {
   1394       AllocateHeapSlot(var);
   1395     } else {
   1396       AllocateStackSlot(var);
   1397     }
   1398   }
   1399 }
   1400 
   1401 
   1402 void Scope::AllocateDeclaredGlobal(Isolate* isolate, Variable* var) {
   1403   DCHECK(var->scope() == this);
   1404   DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
   1405          !var->IsStackLocal());
   1406   if (var->IsUnallocated()) {
   1407     if (var->IsStaticGlobalObjectProperty()) {
   1408       DCHECK_EQ(-1, var->index());
   1409       DCHECK(var->name()->IsString());
   1410       var->AllocateTo(VariableLocation::GLOBAL, num_heap_slots_++);
   1411       num_global_slots_++;
   1412     } else {
   1413       // There must be only DYNAMIC_GLOBAL in the script scope.
   1414       DCHECK(!is_script_scope() || DYNAMIC_GLOBAL == var->mode());
   1415     }
   1416   }
   1417 }
   1418 
   1419 
   1420 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate) {
   1421   // All variables that have no rewrite yet are non-parameter locals.
   1422   for (int i = 0; i < temps_.length(); i++) {
   1423     if (temps_[i] == nullptr) continue;
   1424     AllocateNonParameterLocal(isolate, temps_[i]);
   1425   }
   1426 
   1427   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
   1428   for (VariableMap::Entry* p = variables_.Start();
   1429        p != NULL;
   1430        p = variables_.Next(p)) {
   1431     Variable* var = reinterpret_cast<Variable*>(p->value);
   1432     vars.Add(VarAndOrder(var, p->order), zone());
   1433   }
   1434   vars.Sort(VarAndOrder::Compare);
   1435   int var_count = vars.length();
   1436   for (int i = 0; i < var_count; i++) {
   1437     AllocateNonParameterLocal(isolate, vars[i].var());
   1438   }
   1439 
   1440   if (FLAG_global_var_shortcuts) {
   1441     for (int i = 0; i < var_count; i++) {
   1442       AllocateDeclaredGlobal(isolate, vars[i].var());
   1443     }
   1444   }
   1445 
   1446   // For now, function_ must be allocated at the very end.  If it gets
   1447   // allocated in the context, it must be the last slot in the context,
   1448   // because of the current ScopeInfo implementation (see
   1449   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
   1450   if (function_ != nullptr) {
   1451     AllocateNonParameterLocal(isolate, function_->proxy()->var());
   1452   }
   1453 
   1454   if (rest_parameter_ != nullptr) {
   1455     AllocateNonParameterLocal(isolate, rest_parameter_);
   1456   }
   1457 
   1458   Variable* new_target_var =
   1459       LookupLocal(ast_value_factory_->new_target_string());
   1460   if (new_target_var != nullptr && MustAllocate(new_target_var)) {
   1461     new_target_ = new_target_var;
   1462   }
   1463 
   1464   Variable* this_function_var =
   1465       LookupLocal(ast_value_factory_->this_function_string());
   1466   if (this_function_var != nullptr && MustAllocate(this_function_var)) {
   1467     this_function_ = this_function_var;
   1468   }
   1469 }
   1470 
   1471 
   1472 void Scope::AllocateVariablesRecursively(Isolate* isolate) {
   1473   if (!already_resolved()) {
   1474     num_stack_slots_ = 0;
   1475   }
   1476   // Allocate variables for inner scopes.
   1477   for (int i = 0; i < inner_scopes_.length(); i++) {
   1478     inner_scopes_[i]->AllocateVariablesRecursively(isolate);
   1479   }
   1480 
   1481   // If scope is already resolved, we still need to allocate
   1482   // variables in inner scopes which might not have been resolved yet.
   1483   if (already_resolved()) return;
   1484   // The number of slots required for variables.
   1485   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
   1486 
   1487   // Allocate variables for this scope.
   1488   // Parameters must be allocated first, if any.
   1489   if (is_function_scope()) AllocateParameterLocals(isolate);
   1490   if (has_this_declaration()) AllocateReceiver();
   1491   AllocateNonParameterLocalsAndDeclaredGlobals(isolate);
   1492 
   1493   // Force allocation of a context for this scope if necessary. For a 'with'
   1494   // scope and for a function scope that makes an 'eval' call we need a context,
   1495   // even if no local variables were statically allocated in the scope.
   1496   // Likewise for modules.
   1497   bool must_have_context =
   1498       is_with_scope() || is_module_scope() ||
   1499       (is_function_scope() && calls_sloppy_eval()) ||
   1500       (is_block_scope() && is_declaration_scope() && calls_sloppy_eval());
   1501 
   1502   // If we didn't allocate any locals in the local context, then we only
   1503   // need the minimal number of slots if we must have a context.
   1504   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
   1505     num_heap_slots_ = 0;
   1506   }
   1507 
   1508   // Allocation done.
   1509   DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
   1510 }
   1511 
   1512 
   1513 int Scope::StackLocalCount() const {
   1514   return num_stack_slots() -
   1515       (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
   1516 }
   1517 
   1518 
   1519 int Scope::ContextLocalCount() const {
   1520   if (num_heap_slots() == 0) return 0;
   1521   bool is_function_var_in_context =
   1522       function_ != NULL && function_->proxy()->var()->IsContextSlot();
   1523   return num_heap_slots() - Context::MIN_CONTEXT_SLOTS - num_global_slots() -
   1524          (is_function_var_in_context ? 1 : 0);
   1525 }
   1526 
   1527 
   1528 int Scope::ContextGlobalCount() const { return num_global_slots(); }
   1529 
   1530 }  // namespace internal
   1531 }  // namespace v8
   1532