Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for the loop memory dependence framework that
     11 // was originally developed for the Loop Vectorizer.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
     16 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
     17 
     18 #include "llvm/ADT/EquivalenceClasses.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Analysis/AliasSetTracker.h"
     23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     24 #include "llvm/IR/ValueHandle.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 
     28 namespace llvm {
     29 
     30 class Value;
     31 class DataLayout;
     32 class ScalarEvolution;
     33 class Loop;
     34 class SCEV;
     35 class SCEVUnionPredicate;
     36 class LoopAccessInfo;
     37 
     38 /// Optimization analysis message produced during vectorization. Messages inform
     39 /// the user why vectorization did not occur.
     40 class LoopAccessReport {
     41   std::string Message;
     42   const Instruction *Instr;
     43 
     44 protected:
     45   LoopAccessReport(const Twine &Message, const Instruction *I)
     46       : Message(Message.str()), Instr(I) {}
     47 
     48 public:
     49   LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {}
     50 
     51   template <typename A> LoopAccessReport &operator<<(const A &Value) {
     52     raw_string_ostream Out(Message);
     53     Out << Value;
     54     return *this;
     55   }
     56 
     57   const Instruction *getInstr() const { return Instr; }
     58 
     59   std::string &str() { return Message; }
     60   const std::string &str() const { return Message; }
     61   operator Twine() { return Message; }
     62 
     63   /// \brief Emit an analysis note for \p PassName with the debug location from
     64   /// the instruction in \p Message if available.  Otherwise use the location of
     65   /// \p TheLoop.
     66   static void emitAnalysis(const LoopAccessReport &Message,
     67                            const Function *TheFunction,
     68                            const Loop *TheLoop,
     69                            const char *PassName);
     70 };
     71 
     72 /// \brief Collection of parameters shared beetween the Loop Vectorizer and the
     73 /// Loop Access Analysis.
     74 struct VectorizerParams {
     75   /// \brief Maximum SIMD width.
     76   static const unsigned MaxVectorWidth;
     77 
     78   /// \brief VF as overridden by the user.
     79   static unsigned VectorizationFactor;
     80   /// \brief Interleave factor as overridden by the user.
     81   static unsigned VectorizationInterleave;
     82   /// \brief True if force-vector-interleave was specified by the user.
     83   static bool isInterleaveForced();
     84 
     85   /// \\brief When performing memory disambiguation checks at runtime do not
     86   /// make more than this number of comparisons.
     87   static unsigned RuntimeMemoryCheckThreshold;
     88 };
     89 
     90 /// \brief Checks memory dependences among accesses to the same underlying
     91 /// object to determine whether there vectorization is legal or not (and at
     92 /// which vectorization factor).
     93 ///
     94 /// Note: This class will compute a conservative dependence for access to
     95 /// different underlying pointers. Clients, such as the loop vectorizer, will
     96 /// sometimes deal these potential dependencies by emitting runtime checks.
     97 ///
     98 /// We use the ScalarEvolution framework to symbolically evalutate access
     99 /// functions pairs. Since we currently don't restructure the loop we can rely
    100 /// on the program order of memory accesses to determine their safety.
    101 /// At the moment we will only deem accesses as safe for:
    102 ///  * A negative constant distance assuming program order.
    103 ///
    104 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
    105 ///            a[i] = tmp;                y = a[i];
    106 ///
    107 ///   The latter case is safe because later checks guarantuee that there can't
    108 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
    109 ///   the same variable: a header phi can only be an induction or a reduction, a
    110 ///   reduction can't have a memory sink, an induction can't have a memory
    111 ///   source). This is important and must not be violated (or we have to
    112 ///   resort to checking for cycles through memory).
    113 ///
    114 ///  * A positive constant distance assuming program order that is bigger
    115 ///    than the biggest memory access.
    116 ///
    117 ///     tmp = a[i]        OR              b[i] = x
    118 ///     a[i+2] = tmp                      y = b[i+2];
    119 ///
    120 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
    121 ///
    122 ///  * Zero distances and all accesses have the same size.
    123 ///
    124 class MemoryDepChecker {
    125 public:
    126   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
    127   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
    128   /// \brief Set of potential dependent memory accesses.
    129   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
    130 
    131   /// \brief Dependece between memory access instructions.
    132   struct Dependence {
    133     /// \brief The type of the dependence.
    134     enum DepType {
    135       // No dependence.
    136       NoDep,
    137       // We couldn't determine the direction or the distance.
    138       Unknown,
    139       // Lexically forward.
    140       //
    141       // FIXME: If we only have loop-independent forward dependences (e.g. a
    142       // read and write of A[i]), LAA will locally deem the dependence "safe"
    143       // without querying the MemoryDepChecker.  Therefore we can miss
    144       // enumerating loop-independent forward dependences in
    145       // getDependences.  Note that as soon as there are different
    146       // indices used to access the same array, the MemoryDepChecker *is*
    147       // queried and the dependence list is complete.
    148       Forward,
    149       // Forward, but if vectorized, is likely to prevent store-to-load
    150       // forwarding.
    151       ForwardButPreventsForwarding,
    152       // Lexically backward.
    153       Backward,
    154       // Backward, but the distance allows a vectorization factor of
    155       // MaxSafeDepDistBytes.
    156       BackwardVectorizable,
    157       // Same, but may prevent store-to-load forwarding.
    158       BackwardVectorizableButPreventsForwarding
    159     };
    160 
    161     /// \brief String version of the types.
    162     static const char *DepName[];
    163 
    164     /// \brief Index of the source of the dependence in the InstMap vector.
    165     unsigned Source;
    166     /// \brief Index of the destination of the dependence in the InstMap vector.
    167     unsigned Destination;
    168     /// \brief The type of the dependence.
    169     DepType Type;
    170 
    171     Dependence(unsigned Source, unsigned Destination, DepType Type)
    172         : Source(Source), Destination(Destination), Type(Type) {}
    173 
    174     /// \brief Return the source instruction of the dependence.
    175     Instruction *getSource(const LoopAccessInfo &LAI) const;
    176     /// \brief Return the destination instruction of the dependence.
    177     Instruction *getDestination(const LoopAccessInfo &LAI) const;
    178 
    179     /// \brief Dependence types that don't prevent vectorization.
    180     static bool isSafeForVectorization(DepType Type);
    181 
    182     /// \brief Lexically forward dependence.
    183     bool isForward() const;
    184     /// \brief Lexically backward dependence.
    185     bool isBackward() const;
    186 
    187     /// \brief May be a lexically backward dependence type (includes Unknown).
    188     bool isPossiblyBackward() const;
    189 
    190     /// \brief Print the dependence.  \p Instr is used to map the instruction
    191     /// indices to instructions.
    192     void print(raw_ostream &OS, unsigned Depth,
    193                const SmallVectorImpl<Instruction *> &Instrs) const;
    194   };
    195 
    196   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
    197       : PSE(PSE), InnermostLoop(L), AccessIdx(0),
    198         ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
    199         RecordDependences(true) {}
    200 
    201   /// \brief Register the location (instructions are given increasing numbers)
    202   /// of a write access.
    203   void addAccess(StoreInst *SI) {
    204     Value *Ptr = SI->getPointerOperand();
    205     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
    206     InstMap.push_back(SI);
    207     ++AccessIdx;
    208   }
    209 
    210   /// \brief Register the location (instructions are given increasing numbers)
    211   /// of a write access.
    212   void addAccess(LoadInst *LI) {
    213     Value *Ptr = LI->getPointerOperand();
    214     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
    215     InstMap.push_back(LI);
    216     ++AccessIdx;
    217   }
    218 
    219   /// \brief Check whether the dependencies between the accesses are safe.
    220   ///
    221   /// Only checks sets with elements in \p CheckDeps.
    222   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps,
    223                    const ValueToValueMap &Strides);
    224 
    225   /// \brief No memory dependence was encountered that would inhibit
    226   /// vectorization.
    227   bool isSafeForVectorization() const { return SafeForVectorization; }
    228 
    229   /// \brief The maximum number of bytes of a vector register we can vectorize
    230   /// the accesses safely with.
    231   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
    232 
    233   /// \brief In same cases when the dependency check fails we can still
    234   /// vectorize the loop with a dynamic array access check.
    235   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
    236 
    237   /// \brief Returns the memory dependences.  If null is returned we exceeded
    238   /// the MaxDependences threshold and this information is not
    239   /// available.
    240   const SmallVectorImpl<Dependence> *getDependences() const {
    241     return RecordDependences ? &Dependences : nullptr;
    242   }
    243 
    244   void clearDependences() { Dependences.clear(); }
    245 
    246   /// \brief The vector of memory access instructions.  The indices are used as
    247   /// instruction identifiers in the Dependence class.
    248   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
    249     return InstMap;
    250   }
    251 
    252   /// \brief Generate a mapping between the memory instructions and their
    253   /// indices according to program order.
    254   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
    255     DenseMap<Instruction *, unsigned> OrderMap;
    256 
    257     for (unsigned I = 0; I < InstMap.size(); ++I)
    258       OrderMap[InstMap[I]] = I;
    259 
    260     return OrderMap;
    261   }
    262 
    263   /// \brief Find the set of instructions that read or write via \p Ptr.
    264   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
    265                                                          bool isWrite) const;
    266 
    267 private:
    268   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
    269   /// applies dynamic knowledge to simplify SCEV expressions and convert them
    270   /// to a more usable form. We need this in case assumptions about SCEV
    271   /// expressions need to be made in order to avoid unknown dependences. For
    272   /// example we might assume a unit stride for a pointer in order to prove
    273   /// that a memory access is strided and doesn't wrap.
    274   PredicatedScalarEvolution &PSE;
    275   const Loop *InnermostLoop;
    276 
    277   /// \brief Maps access locations (ptr, read/write) to program order.
    278   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
    279 
    280   /// \brief Memory access instructions in program order.
    281   SmallVector<Instruction *, 16> InstMap;
    282 
    283   /// \brief The program order index to be used for the next instruction.
    284   unsigned AccessIdx;
    285 
    286   // We can access this many bytes in parallel safely.
    287   unsigned MaxSafeDepDistBytes;
    288 
    289   /// \brief If we see a non-constant dependence distance we can still try to
    290   /// vectorize this loop with runtime checks.
    291   bool ShouldRetryWithRuntimeCheck;
    292 
    293   /// \brief No memory dependence was encountered that would inhibit
    294   /// vectorization.
    295   bool SafeForVectorization;
    296 
    297   //// \brief True if Dependences reflects the dependences in the
    298   //// loop.  If false we exceeded MaxDependences and
    299   //// Dependences is invalid.
    300   bool RecordDependences;
    301 
    302   /// \brief Memory dependences collected during the analysis.  Only valid if
    303   /// RecordDependences is true.
    304   SmallVector<Dependence, 8> Dependences;
    305 
    306   /// \brief Check whether there is a plausible dependence between the two
    307   /// accesses.
    308   ///
    309   /// Access \p A must happen before \p B in program order. The two indices
    310   /// identify the index into the program order map.
    311   ///
    312   /// This function checks  whether there is a plausible dependence (or the
    313   /// absence of such can't be proved) between the two accesses. If there is a
    314   /// plausible dependence but the dependence distance is bigger than one
    315   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
    316   /// distance is smaller than any other distance encountered so far).
    317   /// Otherwise, this function returns true signaling a possible dependence.
    318   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
    319                                   const MemAccessInfo &B, unsigned BIdx,
    320                                   const ValueToValueMap &Strides);
    321 
    322   /// \brief Check whether the data dependence could prevent store-load
    323   /// forwarding.
    324   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
    325 };
    326 
    327 /// \brief Holds information about the memory runtime legality checks to verify
    328 /// that a group of pointers do not overlap.
    329 class RuntimePointerChecking {
    330 public:
    331   struct PointerInfo {
    332     /// Holds the pointer value that we need to check.
    333     TrackingVH<Value> PointerValue;
    334     /// Holds the pointer value at the beginning of the loop.
    335     const SCEV *Start;
    336     /// Holds the pointer value at the end of the loop.
    337     const SCEV *End;
    338     /// Holds the information if this pointer is used for writing to memory.
    339     bool IsWritePtr;
    340     /// Holds the id of the set of pointers that could be dependent because of a
    341     /// shared underlying object.
    342     unsigned DependencySetId;
    343     /// Holds the id of the disjoint alias set to which this pointer belongs.
    344     unsigned AliasSetId;
    345     /// SCEV for the access.
    346     const SCEV *Expr;
    347 
    348     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
    349                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
    350                 const SCEV *Expr)
    351         : PointerValue(PointerValue), Start(Start), End(End),
    352           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
    353           AliasSetId(AliasSetId), Expr(Expr) {}
    354   };
    355 
    356   RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
    357 
    358   /// Reset the state of the pointer runtime information.
    359   void reset() {
    360     Need = false;
    361     Pointers.clear();
    362     Checks.clear();
    363   }
    364 
    365   /// Insert a pointer and calculate the start and end SCEVs.
    366   /// \p We need Preds in order to compute the SCEV expression of the pointer
    367   /// according to the assumptions that we've made during the analysis.
    368   /// The method might also version the pointer stride according to \p Strides,
    369   /// and change \p Preds.
    370   void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
    371               unsigned ASId, const ValueToValueMap &Strides,
    372               PredicatedScalarEvolution &PSE);
    373 
    374   /// \brief No run-time memory checking is necessary.
    375   bool empty() const { return Pointers.empty(); }
    376 
    377   /// A grouping of pointers. A single memcheck is required between
    378   /// two groups.
    379   struct CheckingPtrGroup {
    380     /// \brief Create a new pointer checking group containing a single
    381     /// pointer, with index \p Index in RtCheck.
    382     CheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
    383         : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
    384           Low(RtCheck.Pointers[Index].Start) {
    385       Members.push_back(Index);
    386     }
    387 
    388     /// \brief Tries to add the pointer recorded in RtCheck at index
    389     /// \p Index to this pointer checking group. We can only add a pointer
    390     /// to a checking group if we will still be able to get
    391     /// the upper and lower bounds of the check. Returns true in case
    392     /// of success, false otherwise.
    393     bool addPointer(unsigned Index);
    394 
    395     /// Constitutes the context of this pointer checking group. For each
    396     /// pointer that is a member of this group we will retain the index
    397     /// at which it appears in RtCheck.
    398     RuntimePointerChecking &RtCheck;
    399     /// The SCEV expression which represents the upper bound of all the
    400     /// pointers in this group.
    401     const SCEV *High;
    402     /// The SCEV expression which represents the lower bound of all the
    403     /// pointers in this group.
    404     const SCEV *Low;
    405     /// Indices of all the pointers that constitute this grouping.
    406     SmallVector<unsigned, 2> Members;
    407   };
    408 
    409   /// \brief A memcheck which made up of a pair of grouped pointers.
    410   ///
    411   /// These *have* to be const for now, since checks are generated from
    412   /// CheckingPtrGroups in LAI::addRuntimeChecks which is a const member
    413   /// function.  FIXME: once check-generation is moved inside this class (after
    414   /// the PtrPartition hack is removed), we could drop const.
    415   typedef std::pair<const CheckingPtrGroup *, const CheckingPtrGroup *>
    416       PointerCheck;
    417 
    418   /// \brief Generate the checks and store it.  This also performs the grouping
    419   /// of pointers to reduce the number of memchecks necessary.
    420   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
    421                       bool UseDependencies);
    422 
    423   /// \brief Returns the checks that generateChecks created.
    424   const SmallVector<PointerCheck, 4> &getChecks() const { return Checks; }
    425 
    426   /// \brief Decide if we need to add a check between two groups of pointers,
    427   /// according to needsChecking.
    428   bool needsChecking(const CheckingPtrGroup &M,
    429                      const CheckingPtrGroup &N) const;
    430 
    431   /// \brief Returns the number of run-time checks required according to
    432   /// needsChecking.
    433   unsigned getNumberOfChecks() const { return Checks.size(); }
    434 
    435   /// \brief Print the list run-time memory checks necessary.
    436   void print(raw_ostream &OS, unsigned Depth = 0) const;
    437 
    438   /// Print \p Checks.
    439   void printChecks(raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
    440                    unsigned Depth = 0) const;
    441 
    442   /// This flag indicates if we need to add the runtime check.
    443   bool Need;
    444 
    445   /// Information about the pointers that may require checking.
    446   SmallVector<PointerInfo, 2> Pointers;
    447 
    448   /// Holds a partitioning of pointers into "check groups".
    449   SmallVector<CheckingPtrGroup, 2> CheckingGroups;
    450 
    451   /// \brief Check if pointers are in the same partition
    452   ///
    453   /// \p PtrToPartition contains the partition number for pointers (-1 if the
    454   /// pointer belongs to multiple partitions).
    455   static bool
    456   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
    457                              unsigned PtrIdx1, unsigned PtrIdx2);
    458 
    459   /// \brief Decide whether we need to issue a run-time check for pointer at
    460   /// index \p I and \p J to prove their independence.
    461   bool needsChecking(unsigned I, unsigned J) const;
    462 
    463   /// \brief Return PointerInfo for pointer at index \p PtrIdx.
    464   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
    465     return Pointers[PtrIdx];
    466   }
    467 
    468 private:
    469   /// \brief Groups pointers such that a single memcheck is required
    470   /// between two different groups. This will clear the CheckingGroups vector
    471   /// and re-compute it. We will only group dependecies if \p UseDependencies
    472   /// is true, otherwise we will create a separate group for each pointer.
    473   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
    474                    bool UseDependencies);
    475 
    476   /// Generate the checks and return them.
    477   SmallVector<PointerCheck, 4>
    478   generateChecks() const;
    479 
    480   /// Holds a pointer to the ScalarEvolution analysis.
    481   ScalarEvolution *SE;
    482 
    483   /// \brief Set of run-time checks required to establish independence of
    484   /// otherwise may-aliasing pointers in the loop.
    485   SmallVector<PointerCheck, 4> Checks;
    486 };
    487 
    488 /// \brief Drive the analysis of memory accesses in the loop
    489 ///
    490 /// This class is responsible for analyzing the memory accesses of a loop.  It
    491 /// collects the accesses and then its main helper the AccessAnalysis class
    492 /// finds and categorizes the dependences in buildDependenceSets.
    493 ///
    494 /// For memory dependences that can be analyzed at compile time, it determines
    495 /// whether the dependence is part of cycle inhibiting vectorization.  This work
    496 /// is delegated to the MemoryDepChecker class.
    497 ///
    498 /// For memory dependences that cannot be determined at compile time, it
    499 /// generates run-time checks to prove independence.  This is done by
    500 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
    501 /// RuntimePointerCheck class.
    502 ///
    503 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
    504 /// ScalarEvolution, we will generate run-time checks by emitting a
    505 /// SCEVUnionPredicate.
    506 ///
    507 /// Checks for both memory dependences and the SCEV predicates contained in the
    508 /// PSE must be emitted in order for the results of this analysis to be valid.
    509 class LoopAccessInfo {
    510 public:
    511   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout &DL,
    512                  const TargetLibraryInfo *TLI, AliasAnalysis *AA,
    513                  DominatorTree *DT, LoopInfo *LI,
    514                  const ValueToValueMap &Strides);
    515 
    516   /// Return true we can analyze the memory accesses in the loop and there are
    517   /// no memory dependence cycles.
    518   bool canVectorizeMemory() const { return CanVecMem; }
    519 
    520   const RuntimePointerChecking *getRuntimePointerChecking() const {
    521     return &PtrRtChecking;
    522   }
    523 
    524   /// \brief Number of memchecks required to prove independence of otherwise
    525   /// may-alias pointers.
    526   unsigned getNumRuntimePointerChecks() const {
    527     return PtrRtChecking.getNumberOfChecks();
    528   }
    529 
    530   /// Return true if the block BB needs to be predicated in order for the loop
    531   /// to be vectorized.
    532   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
    533                                     DominatorTree *DT);
    534 
    535   /// Returns true if the value V is uniform within the loop.
    536   bool isUniform(Value *V) const;
    537 
    538   unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
    539   unsigned getNumStores() const { return NumStores; }
    540   unsigned getNumLoads() const { return NumLoads;}
    541 
    542   /// \brief Add code that checks at runtime if the accessed arrays overlap.
    543   ///
    544   /// Returns a pair of instructions where the first element is the first
    545   /// instruction generated in possibly a sequence of instructions and the
    546   /// second value is the final comparator value or NULL if no check is needed.
    547   std::pair<Instruction *, Instruction *>
    548   addRuntimeChecks(Instruction *Loc) const;
    549 
    550   /// \brief Generete the instructions for the checks in \p PointerChecks.
    551   ///
    552   /// Returns a pair of instructions where the first element is the first
    553   /// instruction generated in possibly a sequence of instructions and the
    554   /// second value is the final comparator value or NULL if no check is needed.
    555   std::pair<Instruction *, Instruction *>
    556   addRuntimeChecks(Instruction *Loc,
    557                    const SmallVectorImpl<RuntimePointerChecking::PointerCheck>
    558                        &PointerChecks) const;
    559 
    560   /// \brief The diagnostics report generated for the analysis.  E.g. why we
    561   /// couldn't analyze the loop.
    562   const Optional<LoopAccessReport> &getReport() const { return Report; }
    563 
    564   /// \brief the Memory Dependence Checker which can determine the
    565   /// loop-independent and loop-carried dependences between memory accesses.
    566   const MemoryDepChecker &getDepChecker() const { return DepChecker; }
    567 
    568   /// \brief Return the list of instructions that use \p Ptr to read or write
    569   /// memory.
    570   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
    571                                                          bool isWrite) const {
    572     return DepChecker.getInstructionsForAccess(Ptr, isWrite);
    573   }
    574 
    575   /// \brief Print the information about the memory accesses in the loop.
    576   void print(raw_ostream &OS, unsigned Depth = 0) const;
    577 
    578   /// \brief Used to ensure that if the analysis was run with speculating the
    579   /// value of symbolic strides, the client queries it with the same assumption.
    580   /// Only used in DEBUG build but we don't want NDEBUG-dependent ABI.
    581   unsigned NumSymbolicStrides;
    582 
    583   /// \brief Checks existence of store to invariant address inside loop.
    584   /// If the loop has any store to invariant address, then it returns true,
    585   /// else returns false.
    586   bool hasStoreToLoopInvariantAddress() const {
    587     return StoreToLoopInvariantAddress;
    588   }
    589 
    590   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
    591   /// them to a more usable form.  All SCEV expressions during the analysis
    592   /// should be re-written (and therefore simplified) according to PSE.
    593   /// A user of LoopAccessAnalysis will need to emit the runtime checks
    594   /// associated with this predicate.
    595   PredicatedScalarEvolution PSE;
    596 
    597 private:
    598   /// \brief Analyze the loop.  Substitute symbolic strides using Strides.
    599   void analyzeLoop(const ValueToValueMap &Strides);
    600 
    601   /// \brief Check if the structure of the loop allows it to be analyzed by this
    602   /// pass.
    603   bool canAnalyzeLoop();
    604 
    605   void emitAnalysis(LoopAccessReport &Message);
    606 
    607   /// We need to check that all of the pointers in this list are disjoint
    608   /// at runtime.
    609   RuntimePointerChecking PtrRtChecking;
    610 
    611   /// \brief the Memory Dependence Checker which can determine the
    612   /// loop-independent and loop-carried dependences between memory accesses.
    613   MemoryDepChecker DepChecker;
    614 
    615   Loop *TheLoop;
    616   const DataLayout &DL;
    617   const TargetLibraryInfo *TLI;
    618   AliasAnalysis *AA;
    619   DominatorTree *DT;
    620   LoopInfo *LI;
    621 
    622   unsigned NumLoads;
    623   unsigned NumStores;
    624 
    625   unsigned MaxSafeDepDistBytes;
    626 
    627   /// \brief Cache the result of analyzeLoop.
    628   bool CanVecMem;
    629 
    630   /// \brief Indicator for storing to uniform addresses.
    631   /// If a loop has write to a loop invariant address then it should be true.
    632   bool StoreToLoopInvariantAddress;
    633 
    634   /// \brief The diagnostics report generated for the analysis.  E.g. why we
    635   /// couldn't analyze the loop.
    636   Optional<LoopAccessReport> Report;
    637 };
    638 
    639 Value *stripIntegerCast(Value *V);
    640 
    641 ///\brief Return the SCEV corresponding to a pointer with the symbolic stride
    642 /// replaced with constant one, assuming \p Preds is true.
    643 ///
    644 /// If necessary this method will version the stride of the pointer according
    645 /// to \p PtrToStride and therefore add a new predicate to \p Preds.
    646 ///
    647 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
    648 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
    649 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
    650 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
    651                                       const ValueToValueMap &PtrToStride,
    652                                       Value *Ptr, Value *OrigPtr = nullptr);
    653 
    654 /// \brief Check the stride of the pointer and ensure that it does not wrap in
    655 /// the address space, assuming \p Preds is true.
    656 ///
    657 /// If necessary this method will version the stride of the pointer according
    658 /// to \p PtrToStride and therefore add a new predicate to \p Preds.
    659 int isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
    660                  const ValueToValueMap &StridesMap);
    661 
    662 /// \brief This analysis provides dependence information for the memory accesses
    663 /// of a loop.
    664 ///
    665 /// It runs the analysis for a loop on demand.  This can be initiated by
    666 /// querying the loop access info via LAA::getInfo.  getInfo return a
    667 /// LoopAccessInfo object.  See this class for the specifics of what information
    668 /// is provided.
    669 class LoopAccessAnalysis : public FunctionPass {
    670 public:
    671   static char ID;
    672 
    673   LoopAccessAnalysis() : FunctionPass(ID) {
    674     initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry());
    675   }
    676 
    677   bool runOnFunction(Function &F) override;
    678 
    679   void getAnalysisUsage(AnalysisUsage &AU) const override;
    680 
    681   /// \brief Query the result of the loop access information for the loop \p L.
    682   ///
    683   /// If the client speculates (and then issues run-time checks) for the values
    684   /// of symbolic strides, \p Strides provides the mapping (see
    685   /// replaceSymbolicStrideSCEV).  If there is no cached result available run
    686   /// the analysis.
    687   const LoopAccessInfo &getInfo(Loop *L, const ValueToValueMap &Strides);
    688 
    689   void releaseMemory() override {
    690     // Invalidate the cache when the pass is freed.
    691     LoopAccessInfoMap.clear();
    692   }
    693 
    694   /// \brief Print the result of the analysis when invoked with -analyze.
    695   void print(raw_ostream &OS, const Module *M = nullptr) const override;
    696 
    697 private:
    698   /// \brief The cache.
    699   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
    700 
    701   // The used analysis passes.
    702   ScalarEvolution *SE;
    703   const TargetLibraryInfo *TLI;
    704   AliasAnalysis *AA;
    705   DominatorTree *DT;
    706   LoopInfo *LI;
    707 };
    708 
    709 inline Instruction *MemoryDepChecker::Dependence::getSource(
    710     const LoopAccessInfo &LAI) const {
    711   return LAI.getDepChecker().getMemoryInstructions()[Source];
    712 }
    713 
    714 inline Instruction *MemoryDepChecker::Dependence::getDestination(
    715     const LoopAccessInfo &LAI) const {
    716   return LAI.getDepChecker().getMemoryInstructions()[Destination];
    717 }
    718 
    719 } // End llvm namespace
    720 
    721 #endif
    722