Home | History | Annotate | Download | only in crankshaft
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/crankshaft/hydrogen-instructions.h"
      6 
      7 #include "src/base/bits.h"
      8 #include "src/base/ieee754.h"
      9 #include "src/base/safe_math.h"
     10 #include "src/crankshaft/hydrogen-infer-representation.h"
     11 #include "src/double.h"
     12 #include "src/elements.h"
     13 #include "src/factory.h"
     14 
     15 #if V8_TARGET_ARCH_IA32
     16 #include "src/crankshaft/ia32/lithium-ia32.h"  // NOLINT
     17 #elif V8_TARGET_ARCH_X64
     18 #include "src/crankshaft/x64/lithium-x64.h"  // NOLINT
     19 #elif V8_TARGET_ARCH_ARM64
     20 #include "src/crankshaft/arm64/lithium-arm64.h"  // NOLINT
     21 #elif V8_TARGET_ARCH_ARM
     22 #include "src/crankshaft/arm/lithium-arm.h"  // NOLINT
     23 #elif V8_TARGET_ARCH_PPC
     24 #include "src/crankshaft/ppc/lithium-ppc.h"  // NOLINT
     25 #elif V8_TARGET_ARCH_MIPS
     26 #include "src/crankshaft/mips/lithium-mips.h"  // NOLINT
     27 #elif V8_TARGET_ARCH_MIPS64
     28 #include "src/crankshaft/mips64/lithium-mips64.h"  // NOLINT
     29 #elif V8_TARGET_ARCH_S390
     30 #include "src/crankshaft/s390/lithium-s390.h"  // NOLINT
     31 #elif V8_TARGET_ARCH_X87
     32 #include "src/crankshaft/x87/lithium-x87.h"  // NOLINT
     33 #else
     34 #error Unsupported target architecture.
     35 #endif
     36 
     37 namespace v8 {
     38 namespace internal {
     39 
     40 #define DEFINE_COMPILE(type)                                         \
     41   LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) {  \
     42     return builder->Do##type(this);                                  \
     43   }
     44 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
     45 #undef DEFINE_COMPILE
     46 
     47 
     48 Isolate* HValue::isolate() const {
     49   DCHECK(block() != NULL);
     50   return block()->isolate();
     51 }
     52 
     53 
     54 void HValue::AssumeRepresentation(Representation r) {
     55   if (CheckFlag(kFlexibleRepresentation)) {
     56     ChangeRepresentation(r);
     57     // The representation of the value is dictated by type feedback and
     58     // will not be changed later.
     59     ClearFlag(kFlexibleRepresentation);
     60   }
     61 }
     62 
     63 
     64 void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
     65   DCHECK(CheckFlag(kFlexibleRepresentation));
     66   Representation new_rep = RepresentationFromInputs();
     67   UpdateRepresentation(new_rep, h_infer, "inputs");
     68   new_rep = RepresentationFromUses();
     69   UpdateRepresentation(new_rep, h_infer, "uses");
     70   if (representation().IsSmi() && HasNonSmiUse()) {
     71     UpdateRepresentation(
     72         Representation::Integer32(), h_infer, "use requirements");
     73   }
     74 }
     75 
     76 
     77 Representation HValue::RepresentationFromUses() {
     78   if (HasNoUses()) return Representation::None();
     79   Representation result = Representation::None();
     80 
     81   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
     82     HValue* use = it.value();
     83     Representation rep = use->observed_input_representation(it.index());
     84     result = result.generalize(rep);
     85 
     86     if (FLAG_trace_representation) {
     87       PrintF("#%d %s is used by #%d %s as %s%s\n",
     88              id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
     89              (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
     90     }
     91   }
     92   if (IsPhi()) {
     93     result = result.generalize(
     94         HPhi::cast(this)->representation_from_indirect_uses());
     95   }
     96 
     97   // External representations are dealt with separately.
     98   return result.IsExternal() ? Representation::None() : result;
     99 }
    100 
    101 
    102 void HValue::UpdateRepresentation(Representation new_rep,
    103                                   HInferRepresentationPhase* h_infer,
    104                                   const char* reason) {
    105   Representation r = representation();
    106   if (new_rep.is_more_general_than(r)) {
    107     if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
    108     if (FLAG_trace_representation) {
    109       PrintF("Changing #%d %s representation %s -> %s based on %s\n",
    110              id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
    111     }
    112     ChangeRepresentation(new_rep);
    113     AddDependantsToWorklist(h_infer);
    114   }
    115 }
    116 
    117 
    118 void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
    119   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
    120     h_infer->AddToWorklist(it.value());
    121   }
    122   for (int i = 0; i < OperandCount(); ++i) {
    123     h_infer->AddToWorklist(OperandAt(i));
    124   }
    125 }
    126 
    127 
    128 static int32_t ConvertAndSetOverflow(Representation r,
    129                                      int64_t result,
    130                                      bool* overflow) {
    131   if (r.IsSmi()) {
    132     if (result > Smi::kMaxValue) {
    133       *overflow = true;
    134       return Smi::kMaxValue;
    135     }
    136     if (result < Smi::kMinValue) {
    137       *overflow = true;
    138       return Smi::kMinValue;
    139     }
    140   } else {
    141     if (result > kMaxInt) {
    142       *overflow = true;
    143       return kMaxInt;
    144     }
    145     if (result < kMinInt) {
    146       *overflow = true;
    147       return kMinInt;
    148     }
    149   }
    150   return static_cast<int32_t>(result);
    151 }
    152 
    153 
    154 static int32_t AddWithoutOverflow(Representation r,
    155                                   int32_t a,
    156                                   int32_t b,
    157                                   bool* overflow) {
    158   int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
    159   return ConvertAndSetOverflow(r, result, overflow);
    160 }
    161 
    162 
    163 static int32_t SubWithoutOverflow(Representation r,
    164                                   int32_t a,
    165                                   int32_t b,
    166                                   bool* overflow) {
    167   int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
    168   return ConvertAndSetOverflow(r, result, overflow);
    169 }
    170 
    171 
    172 static int32_t MulWithoutOverflow(const Representation& r,
    173                                   int32_t a,
    174                                   int32_t b,
    175                                   bool* overflow) {
    176   int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
    177   return ConvertAndSetOverflow(r, result, overflow);
    178 }
    179 
    180 
    181 int32_t Range::Mask() const {
    182   if (lower_ == upper_) return lower_;
    183   if (lower_ >= 0) {
    184     int32_t res = 1;
    185     while (res < upper_) {
    186       res = (res << 1) | 1;
    187     }
    188     return res;
    189   }
    190   return 0xffffffff;
    191 }
    192 
    193 
    194 void Range::AddConstant(int32_t value) {
    195   if (value == 0) return;
    196   bool may_overflow = false;  // Overflow is ignored here.
    197   Representation r = Representation::Integer32();
    198   lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
    199   upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
    200 #ifdef DEBUG
    201   Verify();
    202 #endif
    203 }
    204 
    205 
    206 void Range::Intersect(Range* other) {
    207   upper_ = Min(upper_, other->upper_);
    208   lower_ = Max(lower_, other->lower_);
    209   bool b = CanBeMinusZero() && other->CanBeMinusZero();
    210   set_can_be_minus_zero(b);
    211 }
    212 
    213 
    214 void Range::Union(Range* other) {
    215   upper_ = Max(upper_, other->upper_);
    216   lower_ = Min(lower_, other->lower_);
    217   bool b = CanBeMinusZero() || other->CanBeMinusZero();
    218   set_can_be_minus_zero(b);
    219 }
    220 
    221 
    222 void Range::CombinedMax(Range* other) {
    223   upper_ = Max(upper_, other->upper_);
    224   lower_ = Max(lower_, other->lower_);
    225   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
    226 }
    227 
    228 
    229 void Range::CombinedMin(Range* other) {
    230   upper_ = Min(upper_, other->upper_);
    231   lower_ = Min(lower_, other->lower_);
    232   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
    233 }
    234 
    235 
    236 void Range::Sar(int32_t value) {
    237   int32_t bits = value & 0x1F;
    238   lower_ = lower_ >> bits;
    239   upper_ = upper_ >> bits;
    240   set_can_be_minus_zero(false);
    241 }
    242 
    243 
    244 void Range::Shl(int32_t value) {
    245   int32_t bits = value & 0x1F;
    246   int old_lower = lower_;
    247   int old_upper = upper_;
    248   lower_ = lower_ << bits;
    249   upper_ = upper_ << bits;
    250   if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
    251     upper_ = kMaxInt;
    252     lower_ = kMinInt;
    253   }
    254   set_can_be_minus_zero(false);
    255 }
    256 
    257 
    258 bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
    259   bool may_overflow = false;
    260   lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
    261   upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
    262   KeepOrder();
    263 #ifdef DEBUG
    264   Verify();
    265 #endif
    266   return may_overflow;
    267 }
    268 
    269 
    270 bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
    271   bool may_overflow = false;
    272   lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
    273   upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
    274   KeepOrder();
    275 #ifdef DEBUG
    276   Verify();
    277 #endif
    278   return may_overflow;
    279 }
    280 
    281 
    282 void Range::KeepOrder() {
    283   if (lower_ > upper_) {
    284     int32_t tmp = lower_;
    285     lower_ = upper_;
    286     upper_ = tmp;
    287   }
    288 }
    289 
    290 
    291 #ifdef DEBUG
    292 void Range::Verify() const {
    293   DCHECK(lower_ <= upper_);
    294 }
    295 #endif
    296 
    297 
    298 bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
    299   bool may_overflow = false;
    300   int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
    301   int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
    302   int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
    303   int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
    304   lower_ = Min(Min(v1, v2), Min(v3, v4));
    305   upper_ = Max(Max(v1, v2), Max(v3, v4));
    306 #ifdef DEBUG
    307   Verify();
    308 #endif
    309   return may_overflow;
    310 }
    311 
    312 
    313 bool HValue::IsDefinedAfter(HBasicBlock* other) const {
    314   return block()->block_id() > other->block_id();
    315 }
    316 
    317 
    318 HUseListNode* HUseListNode::tail() {
    319   // Skip and remove dead items in the use list.
    320   while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
    321     tail_ = tail_->tail_;
    322   }
    323   return tail_;
    324 }
    325 
    326 
    327 bool HValue::CheckUsesForFlag(Flag f) const {
    328   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
    329     if (it.value()->IsSimulate()) continue;
    330     if (!it.value()->CheckFlag(f)) return false;
    331   }
    332   return true;
    333 }
    334 
    335 
    336 bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
    337   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
    338     if (it.value()->IsSimulate()) continue;
    339     if (!it.value()->CheckFlag(f)) {
    340       *value = it.value();
    341       return false;
    342     }
    343   }
    344   return true;
    345 }
    346 
    347 
    348 bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
    349   bool return_value = false;
    350   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
    351     if (it.value()->IsSimulate()) continue;
    352     if (!it.value()->CheckFlag(f)) return false;
    353     return_value = true;
    354   }
    355   return return_value;
    356 }
    357 
    358 
    359 HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
    360   Advance();
    361 }
    362 
    363 
    364 void HUseIterator::Advance() {
    365   current_ = next_;
    366   if (current_ != NULL) {
    367     next_ = current_->tail();
    368     value_ = current_->value();
    369     index_ = current_->index();
    370   }
    371 }
    372 
    373 
    374 int HValue::UseCount() const {
    375   int count = 0;
    376   for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
    377   return count;
    378 }
    379 
    380 
    381 HUseListNode* HValue::RemoveUse(HValue* value, int index) {
    382   HUseListNode* previous = NULL;
    383   HUseListNode* current = use_list_;
    384   while (current != NULL) {
    385     if (current->value() == value && current->index() == index) {
    386       if (previous == NULL) {
    387         use_list_ = current->tail();
    388       } else {
    389         previous->set_tail(current->tail());
    390       }
    391       break;
    392     }
    393 
    394     previous = current;
    395     current = current->tail();
    396   }
    397 
    398 #ifdef DEBUG
    399   // Do not reuse use list nodes in debug mode, zap them.
    400   if (current != NULL) {
    401     HUseListNode* temp =
    402         new(block()->zone())
    403         HUseListNode(current->value(), current->index(), NULL);
    404     current->Zap();
    405     current = temp;
    406   }
    407 #endif
    408   return current;
    409 }
    410 
    411 
    412 bool HValue::Equals(HValue* other) {
    413   if (other->opcode() != opcode()) return false;
    414   if (!other->representation().Equals(representation())) return false;
    415   if (!other->type_.Equals(type_)) return false;
    416   if (other->flags() != flags()) return false;
    417   if (OperandCount() != other->OperandCount()) return false;
    418   for (int i = 0; i < OperandCount(); ++i) {
    419     if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
    420   }
    421   bool result = DataEquals(other);
    422   DCHECK(!result || Hashcode() == other->Hashcode());
    423   return result;
    424 }
    425 
    426 
    427 intptr_t HValue::Hashcode() {
    428   intptr_t result = opcode();
    429   int count = OperandCount();
    430   for (int i = 0; i < count; ++i) {
    431     result = result * 19 + OperandAt(i)->id() + (result >> 7);
    432   }
    433   return result;
    434 }
    435 
    436 
    437 const char* HValue::Mnemonic() const {
    438   switch (opcode()) {
    439 #define MAKE_CASE(type) case k##type: return #type;
    440     HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
    441 #undef MAKE_CASE
    442     case kPhi: return "Phi";
    443     default: return "";
    444   }
    445 }
    446 
    447 
    448 bool HValue::CanReplaceWithDummyUses() {
    449   return FLAG_unreachable_code_elimination &&
    450       !(block()->IsReachable() ||
    451         IsBlockEntry() ||
    452         IsControlInstruction() ||
    453         IsArgumentsObject() ||
    454         IsCapturedObject() ||
    455         IsSimulate() ||
    456         IsEnterInlined() ||
    457         IsLeaveInlined());
    458 }
    459 
    460 
    461 bool HValue::IsInteger32Constant() {
    462   return IsConstant() && HConstant::cast(this)->HasInteger32Value();
    463 }
    464 
    465 
    466 int32_t HValue::GetInteger32Constant() {
    467   return HConstant::cast(this)->Integer32Value();
    468 }
    469 
    470 
    471 bool HValue::EqualsInteger32Constant(int32_t value) {
    472   return IsInteger32Constant() && GetInteger32Constant() == value;
    473 }
    474 
    475 
    476 void HValue::SetOperandAt(int index, HValue* value) {
    477   RegisterUse(index, value);
    478   InternalSetOperandAt(index, value);
    479 }
    480 
    481 
    482 void HValue::DeleteAndReplaceWith(HValue* other) {
    483   // We replace all uses first, so Delete can assert that there are none.
    484   if (other != NULL) ReplaceAllUsesWith(other);
    485   Kill();
    486   DeleteFromGraph();
    487 }
    488 
    489 
    490 void HValue::ReplaceAllUsesWith(HValue* other) {
    491   while (use_list_ != NULL) {
    492     HUseListNode* list_node = use_list_;
    493     HValue* value = list_node->value();
    494     DCHECK(!value->block()->IsStartBlock());
    495     value->InternalSetOperandAt(list_node->index(), other);
    496     use_list_ = list_node->tail();
    497     list_node->set_tail(other->use_list_);
    498     other->use_list_ = list_node;
    499   }
    500 }
    501 
    502 
    503 void HValue::Kill() {
    504   // Instead of going through the entire use list of each operand, we only
    505   // check the first item in each use list and rely on the tail() method to
    506   // skip dead items, removing them lazily next time we traverse the list.
    507   SetFlag(kIsDead);
    508   for (int i = 0; i < OperandCount(); ++i) {
    509     HValue* operand = OperandAt(i);
    510     if (operand == NULL) continue;
    511     HUseListNode* first = operand->use_list_;
    512     if (first != NULL && first->value()->CheckFlag(kIsDead)) {
    513       operand->use_list_ = first->tail();
    514     }
    515   }
    516 }
    517 
    518 
    519 void HValue::SetBlock(HBasicBlock* block) {
    520   DCHECK(block_ == NULL || block == NULL);
    521   block_ = block;
    522   if (id_ == kNoNumber && block != NULL) {
    523     id_ = block->graph()->GetNextValueID(this);
    524   }
    525 }
    526 
    527 
    528 std::ostream& operator<<(std::ostream& os, const HValue& v) {
    529   return v.PrintTo(os);
    530 }
    531 
    532 
    533 std::ostream& operator<<(std::ostream& os, const TypeOf& t) {
    534   if (t.value->representation().IsTagged() &&
    535       !t.value->type().Equals(HType::Tagged()))
    536     return os;
    537   return os << " type:" << t.value->type();
    538 }
    539 
    540 
    541 std::ostream& operator<<(std::ostream& os, const ChangesOf& c) {
    542   GVNFlagSet changes_flags = c.value->ChangesFlags();
    543   if (changes_flags.IsEmpty()) return os;
    544   os << " changes[";
    545   if (changes_flags == c.value->AllSideEffectsFlagSet()) {
    546     os << "*";
    547   } else {
    548     bool add_comma = false;
    549 #define PRINT_DO(Type)                   \
    550   if (changes_flags.Contains(k##Type)) { \
    551     if (add_comma) os << ",";            \
    552     add_comma = true;                    \
    553     os << #Type;                         \
    554   }
    555     GVN_TRACKED_FLAG_LIST(PRINT_DO);
    556     GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
    557 #undef PRINT_DO
    558   }
    559   return os << "]";
    560 }
    561 
    562 
    563 bool HValue::HasMonomorphicJSObjectType() {
    564   return !GetMonomorphicJSObjectMap().is_null();
    565 }
    566 
    567 
    568 bool HValue::UpdateInferredType() {
    569   HType type = CalculateInferredType();
    570   bool result = (!type.Equals(type_));
    571   type_ = type;
    572   return result;
    573 }
    574 
    575 
    576 void HValue::RegisterUse(int index, HValue* new_value) {
    577   HValue* old_value = OperandAt(index);
    578   if (old_value == new_value) return;
    579 
    580   HUseListNode* removed = NULL;
    581   if (old_value != NULL) {
    582     removed = old_value->RemoveUse(this, index);
    583   }
    584 
    585   if (new_value != NULL) {
    586     if (removed == NULL) {
    587       new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
    588           this, index, new_value->use_list_);
    589     } else {
    590       removed->set_tail(new_value->use_list_);
    591       new_value->use_list_ = removed;
    592     }
    593   }
    594 }
    595 
    596 
    597 void HValue::AddNewRange(Range* r, Zone* zone) {
    598   if (!HasRange()) ComputeInitialRange(zone);
    599   if (!HasRange()) range_ = new(zone) Range();
    600   DCHECK(HasRange());
    601   r->StackUpon(range_);
    602   range_ = r;
    603 }
    604 
    605 
    606 void HValue::RemoveLastAddedRange() {
    607   DCHECK(HasRange());
    608   DCHECK(range_->next() != NULL);
    609   range_ = range_->next();
    610 }
    611 
    612 
    613 void HValue::ComputeInitialRange(Zone* zone) {
    614   DCHECK(!HasRange());
    615   range_ = InferRange(zone);
    616   DCHECK(HasRange());
    617 }
    618 
    619 
    620 std::ostream& HInstruction::PrintTo(std::ostream& os) const {  // NOLINT
    621   os << Mnemonic() << " ";
    622   PrintDataTo(os) << ChangesOf(this) << TypeOf(this);
    623   if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]";
    624   if (CheckFlag(HValue::kIsDead)) os << " [dead]";
    625   return os;
    626 }
    627 
    628 
    629 std::ostream& HInstruction::PrintDataTo(std::ostream& os) const {  // NOLINT
    630   for (int i = 0; i < OperandCount(); ++i) {
    631     if (i > 0) os << " ";
    632     os << NameOf(OperandAt(i));
    633   }
    634   return os;
    635 }
    636 
    637 
    638 void HInstruction::Unlink() {
    639   DCHECK(IsLinked());
    640   DCHECK(!IsControlInstruction());  // Must never move control instructions.
    641   DCHECK(!IsBlockEntry());  // Doesn't make sense to delete these.
    642   DCHECK(previous_ != NULL);
    643   previous_->next_ = next_;
    644   if (next_ == NULL) {
    645     DCHECK(block()->last() == this);
    646     block()->set_last(previous_);
    647   } else {
    648     next_->previous_ = previous_;
    649   }
    650   clear_block();
    651 }
    652 
    653 
    654 void HInstruction::InsertBefore(HInstruction* next) {
    655   DCHECK(!IsLinked());
    656   DCHECK(!next->IsBlockEntry());
    657   DCHECK(!IsControlInstruction());
    658   DCHECK(!next->block()->IsStartBlock());
    659   DCHECK(next->previous_ != NULL);
    660   HInstruction* prev = next->previous();
    661   prev->next_ = this;
    662   next->previous_ = this;
    663   next_ = next;
    664   previous_ = prev;
    665   SetBlock(next->block());
    666   if (!has_position() && next->has_position()) {
    667     set_position(next->position());
    668   }
    669 }
    670 
    671 
    672 void HInstruction::InsertAfter(HInstruction* previous) {
    673   DCHECK(!IsLinked());
    674   DCHECK(!previous->IsControlInstruction());
    675   DCHECK(!IsControlInstruction() || previous->next_ == NULL);
    676   HBasicBlock* block = previous->block();
    677   // Never insert anything except constants into the start block after finishing
    678   // it.
    679   if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
    680     DCHECK(block->end()->SecondSuccessor() == NULL);
    681     InsertAfter(block->end()->FirstSuccessor()->first());
    682     return;
    683   }
    684 
    685   // If we're inserting after an instruction with side-effects that is
    686   // followed by a simulate instruction, we need to insert after the
    687   // simulate instruction instead.
    688   HInstruction* next = previous->next_;
    689   if (previous->HasObservableSideEffects() && next != NULL) {
    690     DCHECK(next->IsSimulate());
    691     previous = next;
    692     next = previous->next_;
    693   }
    694 
    695   previous_ = previous;
    696   next_ = next;
    697   SetBlock(block);
    698   previous->next_ = this;
    699   if (next != NULL) next->previous_ = this;
    700   if (block->last() == previous) {
    701     block->set_last(this);
    702   }
    703   if (!has_position() && previous->has_position()) {
    704     set_position(previous->position());
    705   }
    706 }
    707 
    708 
    709 bool HInstruction::Dominates(HInstruction* other) {
    710   if (block() != other->block()) {
    711     return block()->Dominates(other->block());
    712   }
    713   // Both instructions are in the same basic block. This instruction
    714   // should precede the other one in order to dominate it.
    715   for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
    716     if (instr == other) {
    717       return true;
    718     }
    719   }
    720   return false;
    721 }
    722 
    723 
    724 #ifdef DEBUG
    725 void HInstruction::Verify() {
    726   // Verify that input operands are defined before use.
    727   HBasicBlock* cur_block = block();
    728   for (int i = 0; i < OperandCount(); ++i) {
    729     HValue* other_operand = OperandAt(i);
    730     if (other_operand == NULL) continue;
    731     HBasicBlock* other_block = other_operand->block();
    732     if (cur_block == other_block) {
    733       if (!other_operand->IsPhi()) {
    734         HInstruction* cur = this->previous();
    735         while (cur != NULL) {
    736           if (cur == other_operand) break;
    737           cur = cur->previous();
    738         }
    739         // Must reach other operand in the same block!
    740         DCHECK(cur == other_operand);
    741       }
    742     } else {
    743       // If the following assert fires, you may have forgotten an
    744       // AddInstruction.
    745       DCHECK(other_block->Dominates(cur_block));
    746     }
    747   }
    748 
    749   // Verify that instructions that may have side-effects are followed
    750   // by a simulate instruction.
    751   if (HasObservableSideEffects() && !IsOsrEntry()) {
    752     DCHECK(next()->IsSimulate());
    753   }
    754 
    755   // Verify that instructions that can be eliminated by GVN have overridden
    756   // HValue::DataEquals.  The default implementation is UNREACHABLE.  We
    757   // don't actually care whether DataEquals returns true or false here.
    758   if (CheckFlag(kUseGVN)) DataEquals(this);
    759 
    760   // Verify that all uses are in the graph.
    761   for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
    762     if (use.value()->IsInstruction()) {
    763       DCHECK(HInstruction::cast(use.value())->IsLinked());
    764     }
    765   }
    766 }
    767 #endif
    768 
    769 
    770 bool HInstruction::CanDeoptimize() {
    771   switch (opcode()) {
    772     case HValue::kAbnormalExit:
    773     case HValue::kAccessArgumentsAt:
    774     case HValue::kAllocate:
    775     case HValue::kArgumentsElements:
    776     case HValue::kArgumentsLength:
    777     case HValue::kArgumentsObject:
    778     case HValue::kBlockEntry:
    779     case HValue::kCallNewArray:
    780     case HValue::kCapturedObject:
    781     case HValue::kClassOfTestAndBranch:
    782     case HValue::kCompareGeneric:
    783     case HValue::kCompareHoleAndBranch:
    784     case HValue::kCompareMap:
    785     case HValue::kCompareNumericAndBranch:
    786     case HValue::kCompareObjectEqAndBranch:
    787     case HValue::kConstant:
    788     case HValue::kContext:
    789     case HValue::kDebugBreak:
    790     case HValue::kDeclareGlobals:
    791     case HValue::kDoubleBits:
    792     case HValue::kDummyUse:
    793     case HValue::kEnterInlined:
    794     case HValue::kEnvironmentMarker:
    795     case HValue::kForceRepresentation:
    796     case HValue::kGetCachedArrayIndex:
    797     case HValue::kGoto:
    798     case HValue::kHasCachedArrayIndexAndBranch:
    799     case HValue::kHasInstanceTypeAndBranch:
    800     case HValue::kInnerAllocatedObject:
    801     case HValue::kIsSmiAndBranch:
    802     case HValue::kIsStringAndBranch:
    803     case HValue::kIsUndetectableAndBranch:
    804     case HValue::kLeaveInlined:
    805     case HValue::kLoadFieldByIndex:
    806     case HValue::kLoadGlobalGeneric:
    807     case HValue::kLoadNamedField:
    808     case HValue::kLoadNamedGeneric:
    809     case HValue::kLoadRoot:
    810     case HValue::kMathMinMax:
    811     case HValue::kParameter:
    812     case HValue::kPhi:
    813     case HValue::kPushArguments:
    814     case HValue::kReturn:
    815     case HValue::kSeqStringGetChar:
    816     case HValue::kStoreCodeEntry:
    817     case HValue::kStoreKeyed:
    818     case HValue::kStoreNamedField:
    819     case HValue::kStoreNamedGeneric:
    820     case HValue::kStringCharCodeAt:
    821     case HValue::kStringCharFromCode:
    822     case HValue::kThisFunction:
    823     case HValue::kTypeofIsAndBranch:
    824     case HValue::kUnknownOSRValue:
    825     case HValue::kUseConst:
    826       return false;
    827 
    828     case HValue::kAdd:
    829     case HValue::kApplyArguments:
    830     case HValue::kBitwise:
    831     case HValue::kBoundsCheck:
    832     case HValue::kBranch:
    833     case HValue::kCallRuntime:
    834     case HValue::kCallWithDescriptor:
    835     case HValue::kChange:
    836     case HValue::kCheckArrayBufferNotNeutered:
    837     case HValue::kCheckHeapObject:
    838     case HValue::kCheckInstanceType:
    839     case HValue::kCheckMapValue:
    840     case HValue::kCheckMaps:
    841     case HValue::kCheckSmi:
    842     case HValue::kCheckValue:
    843     case HValue::kClampToUint8:
    844     case HValue::kDeoptimize:
    845     case HValue::kDiv:
    846     case HValue::kForInCacheArray:
    847     case HValue::kForInPrepareMap:
    848     case HValue::kHasInPrototypeChainAndBranch:
    849     case HValue::kInvokeFunction:
    850     case HValue::kLoadContextSlot:
    851     case HValue::kLoadFunctionPrototype:
    852     case HValue::kLoadKeyed:
    853     case HValue::kLoadKeyedGeneric:
    854     case HValue::kMathFloorOfDiv:
    855     case HValue::kMaybeGrowElements:
    856     case HValue::kMod:
    857     case HValue::kMul:
    858     case HValue::kOsrEntry:
    859     case HValue::kPower:
    860     case HValue::kPrologue:
    861     case HValue::kRor:
    862     case HValue::kSar:
    863     case HValue::kSeqStringSetChar:
    864     case HValue::kShl:
    865     case HValue::kShr:
    866     case HValue::kSimulate:
    867     case HValue::kStackCheck:
    868     case HValue::kStoreContextSlot:
    869     case HValue::kStoreKeyedGeneric:
    870     case HValue::kStringAdd:
    871     case HValue::kStringCompareAndBranch:
    872     case HValue::kSub:
    873     case HValue::kTransitionElementsKind:
    874     case HValue::kTrapAllocationMemento:
    875     case HValue::kTypeof:
    876     case HValue::kUnaryMathOperation:
    877     case HValue::kWrapReceiver:
    878       return true;
    879   }
    880   UNREACHABLE();
    881   return true;
    882 }
    883 
    884 
    885 std::ostream& operator<<(std::ostream& os, const NameOf& v) {
    886   return os << v.value->representation().Mnemonic() << v.value->id();
    887 }
    888 
    889 std::ostream& HDummyUse::PrintDataTo(std::ostream& os) const {  // NOLINT
    890   return os << NameOf(value());
    891 }
    892 
    893 
    894 std::ostream& HEnvironmentMarker::PrintDataTo(
    895     std::ostream& os) const {  // NOLINT
    896   return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index()
    897             << "]";
    898 }
    899 
    900 
    901 std::ostream& HUnaryCall::PrintDataTo(std::ostream& os) const {  // NOLINT
    902   return os << NameOf(value()) << " #" << argument_count();
    903 }
    904 
    905 
    906 std::ostream& HBinaryCall::PrintDataTo(std::ostream& os) const {  // NOLINT
    907   return os << NameOf(first()) << " " << NameOf(second()) << " #"
    908             << argument_count();
    909 }
    910 
    911 std::ostream& HInvokeFunction::PrintTo(std::ostream& os) const {  // NOLINT
    912   if (tail_call_mode() == TailCallMode::kAllow) os << "Tail";
    913   return HBinaryCall::PrintTo(os);
    914 }
    915 
    916 std::ostream& HInvokeFunction::PrintDataTo(std::ostream& os) const {  // NOLINT
    917   HBinaryCall::PrintDataTo(os);
    918   if (syntactic_tail_call_mode() == TailCallMode::kAllow) {
    919     os << ", JSTailCall";
    920   }
    921   return os;
    922 }
    923 
    924 std::ostream& HBoundsCheck::PrintDataTo(std::ostream& os) const {  // NOLINT
    925   os << NameOf(index()) << " " << NameOf(length());
    926   if (base() != NULL && (offset() != 0 || scale() != 0)) {
    927     os << " base: ((";
    928     if (base() != index()) {
    929       os << NameOf(index());
    930     } else {
    931       os << "index";
    932     }
    933     os << " + " << offset() << ") >> " << scale() << ")";
    934   }
    935   if (skip_check()) os << " [DISABLED]";
    936   return os;
    937 }
    938 
    939 
    940 void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
    941   DCHECK(CheckFlag(kFlexibleRepresentation));
    942   HValue* actual_index = index()->ActualValue();
    943   HValue* actual_length = length()->ActualValue();
    944   Representation index_rep = actual_index->representation();
    945   Representation length_rep = actual_length->representation();
    946   if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
    947     index_rep = Representation::Smi();
    948   }
    949   if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
    950     length_rep = Representation::Smi();
    951   }
    952   Representation r = index_rep.generalize(length_rep);
    953   if (r.is_more_general_than(Representation::Integer32())) {
    954     r = Representation::Integer32();
    955   }
    956   UpdateRepresentation(r, h_infer, "boundscheck");
    957 }
    958 
    959 
    960 Range* HBoundsCheck::InferRange(Zone* zone) {
    961   Representation r = representation();
    962   if (r.IsSmiOrInteger32() && length()->HasRange()) {
    963     int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
    964     int lower = 0;
    965 
    966     Range* result = new(zone) Range(lower, upper);
    967     if (index()->HasRange()) {
    968       result->Intersect(index()->range());
    969     }
    970 
    971     // In case of Smi representation, clamp result to Smi::kMaxValue.
    972     if (r.IsSmi()) result->ClampToSmi();
    973     return result;
    974   }
    975   return HValue::InferRange(zone);
    976 }
    977 
    978 
    979 std::ostream& HCallWithDescriptor::PrintDataTo(
    980     std::ostream& os) const {  // NOLINT
    981   for (int i = 0; i < OperandCount(); i++) {
    982     os << NameOf(OperandAt(i)) << " ";
    983   }
    984   os << "#" << argument_count();
    985   if (syntactic_tail_call_mode() == TailCallMode::kAllow) {
    986     os << ", JSTailCall";
    987   }
    988   return os;
    989 }
    990 
    991 
    992 std::ostream& HCallNewArray::PrintDataTo(std::ostream& os) const {  // NOLINT
    993   os << ElementsKindToString(elements_kind()) << " ";
    994   return HBinaryCall::PrintDataTo(os);
    995 }
    996 
    997 
    998 std::ostream& HCallRuntime::PrintDataTo(std::ostream& os) const {  // NOLINT
    999   os << function()->name << " ";
   1000   if (save_doubles() == kSaveFPRegs) os << "[save doubles] ";
   1001   return os << "#" << argument_count();
   1002 }
   1003 
   1004 
   1005 std::ostream& HClassOfTestAndBranch::PrintDataTo(
   1006     std::ostream& os) const {  // NOLINT
   1007   return os << "class_of_test(" << NameOf(value()) << ", \""
   1008             << class_name()->ToCString().get() << "\")";
   1009 }
   1010 
   1011 
   1012 std::ostream& HWrapReceiver::PrintDataTo(std::ostream& os) const {  // NOLINT
   1013   return os << NameOf(receiver()) << " " << NameOf(function());
   1014 }
   1015 
   1016 
   1017 std::ostream& HAccessArgumentsAt::PrintDataTo(
   1018     std::ostream& os) const {  // NOLINT
   1019   return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length "
   1020             << NameOf(length());
   1021 }
   1022 
   1023 
   1024 std::ostream& HControlInstruction::PrintDataTo(
   1025     std::ostream& os) const {  // NOLINT
   1026   os << " goto (";
   1027   bool first_block = true;
   1028   for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
   1029     if (!first_block) os << ", ";
   1030     os << *it.Current();
   1031     first_block = false;
   1032   }
   1033   return os << ")";
   1034 }
   1035 
   1036 
   1037 std::ostream& HUnaryControlInstruction::PrintDataTo(
   1038     std::ostream& os) const {  // NOLINT
   1039   os << NameOf(value());
   1040   return HControlInstruction::PrintDataTo(os);
   1041 }
   1042 
   1043 
   1044 std::ostream& HReturn::PrintDataTo(std::ostream& os) const {  // NOLINT
   1045   return os << NameOf(value()) << " (pop " << NameOf(parameter_count())
   1046             << " values)";
   1047 }
   1048 
   1049 
   1050 Representation HBranch::observed_input_representation(int index) {
   1051   if (expected_input_types_.Contains(ToBooleanICStub::NULL_TYPE) ||
   1052       expected_input_types_.Contains(ToBooleanICStub::SPEC_OBJECT) ||
   1053       expected_input_types_.Contains(ToBooleanICStub::STRING) ||
   1054       expected_input_types_.Contains(ToBooleanICStub::SYMBOL) ||
   1055       expected_input_types_.Contains(ToBooleanICStub::SIMD_VALUE)) {
   1056     return Representation::Tagged();
   1057   }
   1058   if (expected_input_types_.Contains(ToBooleanICStub::UNDEFINED)) {
   1059     if (expected_input_types_.Contains(ToBooleanICStub::HEAP_NUMBER)) {
   1060       return Representation::Double();
   1061     }
   1062     return Representation::Tagged();
   1063   }
   1064   if (expected_input_types_.Contains(ToBooleanICStub::HEAP_NUMBER)) {
   1065     return Representation::Double();
   1066   }
   1067   if (expected_input_types_.Contains(ToBooleanICStub::SMI)) {
   1068     return Representation::Smi();
   1069   }
   1070   return Representation::None();
   1071 }
   1072 
   1073 
   1074 bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
   1075   HValue* value = this->value();
   1076   if (value->EmitAtUses()) {
   1077     DCHECK(value->IsConstant());
   1078     DCHECK(!value->representation().IsDouble());
   1079     *block = HConstant::cast(value)->BooleanValue()
   1080         ? FirstSuccessor()
   1081         : SecondSuccessor();
   1082     return true;
   1083   }
   1084   *block = NULL;
   1085   return false;
   1086 }
   1087 
   1088 
   1089 std::ostream& HBranch::PrintDataTo(std::ostream& os) const {  // NOLINT
   1090   return HUnaryControlInstruction::PrintDataTo(os) << " "
   1091                                                    << expected_input_types();
   1092 }
   1093 
   1094 
   1095 std::ostream& HCompareMap::PrintDataTo(std::ostream& os) const {  // NOLINT
   1096   os << NameOf(value()) << " (" << *map().handle() << ")";
   1097   HControlInstruction::PrintDataTo(os);
   1098   if (known_successor_index() == 0) {
   1099     os << " [true]";
   1100   } else if (known_successor_index() == 1) {
   1101     os << " [false]";
   1102   }
   1103   return os;
   1104 }
   1105 
   1106 
   1107 const char* HUnaryMathOperation::OpName() const {
   1108   switch (op()) {
   1109     case kMathFloor:
   1110       return "floor";
   1111     case kMathFround:
   1112       return "fround";
   1113     case kMathRound:
   1114       return "round";
   1115     case kMathAbs:
   1116       return "abs";
   1117     case kMathCos:
   1118       return "cos";
   1119     case kMathLog:
   1120       return "log";
   1121     case kMathExp:
   1122       return "exp";
   1123     case kMathSin:
   1124       return "sin";
   1125     case kMathSqrt:
   1126       return "sqrt";
   1127     case kMathPowHalf:
   1128       return "pow-half";
   1129     case kMathClz32:
   1130       return "clz32";
   1131     default:
   1132       UNREACHABLE();
   1133       return NULL;
   1134   }
   1135 }
   1136 
   1137 
   1138 Range* HUnaryMathOperation::InferRange(Zone* zone) {
   1139   Representation r = representation();
   1140   if (op() == kMathClz32) return new(zone) Range(0, 32);
   1141   if (r.IsSmiOrInteger32() && value()->HasRange()) {
   1142     if (op() == kMathAbs) {
   1143       int upper = value()->range()->upper();
   1144       int lower = value()->range()->lower();
   1145       bool spans_zero = value()->range()->CanBeZero();
   1146       // Math.abs(kMinInt) overflows its representation, on which the
   1147       // instruction deopts. Hence clamp it to kMaxInt.
   1148       int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
   1149       int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
   1150       Range* result =
   1151           new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
   1152                           Max(abs_lower, abs_upper));
   1153       // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
   1154       // Smi::kMaxValue.
   1155       if (r.IsSmi()) result->ClampToSmi();
   1156       return result;
   1157     }
   1158   }
   1159   return HValue::InferRange(zone);
   1160 }
   1161 
   1162 
   1163 std::ostream& HUnaryMathOperation::PrintDataTo(
   1164     std::ostream& os) const {  // NOLINT
   1165   return os << OpName() << " " << NameOf(value());
   1166 }
   1167 
   1168 
   1169 std::ostream& HUnaryOperation::PrintDataTo(std::ostream& os) const {  // NOLINT
   1170   return os << NameOf(value());
   1171 }
   1172 
   1173 
   1174 std::ostream& HHasInstanceTypeAndBranch::PrintDataTo(
   1175     std::ostream& os) const {  // NOLINT
   1176   os << NameOf(value());
   1177   switch (from_) {
   1178     case FIRST_JS_RECEIVER_TYPE:
   1179       if (to_ == LAST_TYPE) os << " spec_object";
   1180       break;
   1181     case JS_REGEXP_TYPE:
   1182       if (to_ == JS_REGEXP_TYPE) os << " reg_exp";
   1183       break;
   1184     case JS_ARRAY_TYPE:
   1185       if (to_ == JS_ARRAY_TYPE) os << " array";
   1186       break;
   1187     case JS_FUNCTION_TYPE:
   1188       if (to_ == JS_FUNCTION_TYPE) os << " function";
   1189       break;
   1190     default:
   1191       break;
   1192   }
   1193   return os;
   1194 }
   1195 
   1196 
   1197 std::ostream& HTypeofIsAndBranch::PrintDataTo(
   1198     std::ostream& os) const {  // NOLINT
   1199   os << NameOf(value()) << " == " << type_literal()->ToCString().get();
   1200   return HControlInstruction::PrintDataTo(os);
   1201 }
   1202 
   1203 
   1204 namespace {
   1205 
   1206 String* TypeOfString(HConstant* constant, Isolate* isolate) {
   1207   Heap* heap = isolate->heap();
   1208   if (constant->HasNumberValue()) return heap->number_string();
   1209   if (constant->HasStringValue()) return heap->string_string();
   1210   switch (constant->GetInstanceType()) {
   1211     case ODDBALL_TYPE: {
   1212       Unique<Object> unique = constant->GetUnique();
   1213       if (unique.IsKnownGlobal(heap->true_value()) ||
   1214           unique.IsKnownGlobal(heap->false_value())) {
   1215         return heap->boolean_string();
   1216       }
   1217       if (unique.IsKnownGlobal(heap->null_value())) {
   1218         return heap->object_string();
   1219       }
   1220       DCHECK(unique.IsKnownGlobal(heap->undefined_value()));
   1221       return heap->undefined_string();
   1222     }
   1223     case SYMBOL_TYPE:
   1224       return heap->symbol_string();
   1225     case SIMD128_VALUE_TYPE: {
   1226       Unique<Map> map = constant->ObjectMap();
   1227 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
   1228   if (map.IsKnownGlobal(heap->type##_map())) {                \
   1229     return heap->type##_string();                             \
   1230   }
   1231       SIMD128_TYPES(SIMD128_TYPE)
   1232 #undef SIMD128_TYPE
   1233       UNREACHABLE();
   1234       return nullptr;
   1235     }
   1236     default:
   1237       if (constant->IsUndetectable()) return heap->undefined_string();
   1238       if (constant->IsCallable()) return heap->function_string();
   1239       return heap->object_string();
   1240   }
   1241 }
   1242 
   1243 }  // namespace
   1244 
   1245 
   1246 bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   1247   if (FLAG_fold_constants && value()->IsConstant()) {
   1248     HConstant* constant = HConstant::cast(value());
   1249     String* type_string = TypeOfString(constant, isolate());
   1250     bool same_type = type_literal_.IsKnownGlobal(type_string);
   1251     *block = same_type ? FirstSuccessor() : SecondSuccessor();
   1252     return true;
   1253   } else if (value()->representation().IsSpecialization()) {
   1254     bool number_type =
   1255         type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
   1256     *block = number_type ? FirstSuccessor() : SecondSuccessor();
   1257     return true;
   1258   }
   1259   *block = NULL;
   1260   return false;
   1261 }
   1262 
   1263 
   1264 std::ostream& HCheckMapValue::PrintDataTo(std::ostream& os) const {  // NOLINT
   1265   return os << NameOf(value()) << " " << NameOf(map());
   1266 }
   1267 
   1268 
   1269 HValue* HCheckMapValue::Canonicalize() {
   1270   if (map()->IsConstant()) {
   1271     HConstant* c_map = HConstant::cast(map());
   1272     return HCheckMaps::CreateAndInsertAfter(
   1273         block()->graph()->zone(), value(), c_map->MapValue(),
   1274         c_map->HasStableMapValue(), this);
   1275   }
   1276   return this;
   1277 }
   1278 
   1279 
   1280 std::ostream& HForInPrepareMap::PrintDataTo(std::ostream& os) const {  // NOLINT
   1281   return os << NameOf(enumerable());
   1282 }
   1283 
   1284 
   1285 std::ostream& HForInCacheArray::PrintDataTo(std::ostream& os) const {  // NOLINT
   1286   return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_
   1287             << "]";
   1288 }
   1289 
   1290 
   1291 std::ostream& HLoadFieldByIndex::PrintDataTo(
   1292     std::ostream& os) const {  // NOLINT
   1293   return os << NameOf(object()) << " " << NameOf(index());
   1294 }
   1295 
   1296 
   1297 static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
   1298   if (!l->EqualsInteger32Constant(~0)) return false;
   1299   *negated = r;
   1300   return true;
   1301 }
   1302 
   1303 
   1304 static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
   1305   if (!instr->IsBitwise()) return false;
   1306   HBitwise* b = HBitwise::cast(instr);
   1307   return (b->op() == Token::BIT_XOR) &&
   1308       (MatchLeftIsOnes(b->left(), b->right(), negated) ||
   1309        MatchLeftIsOnes(b->right(), b->left(), negated));
   1310 }
   1311 
   1312 
   1313 static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
   1314   HValue* negated;
   1315   return MatchNegationViaXor(instr, &negated) &&
   1316       MatchNegationViaXor(negated, arg);
   1317 }
   1318 
   1319 
   1320 HValue* HBitwise::Canonicalize() {
   1321   if (!representation().IsSmiOrInteger32()) return this;
   1322   // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
   1323   int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
   1324   if (left()->EqualsInteger32Constant(nop_constant) &&
   1325       !right()->CheckFlag(kUint32)) {
   1326     return right();
   1327   }
   1328   if (right()->EqualsInteger32Constant(nop_constant) &&
   1329       !left()->CheckFlag(kUint32)) {
   1330     return left();
   1331   }
   1332   // Optimize double negation, a common pattern used for ToInt32(x).
   1333   HValue* arg;
   1334   if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
   1335     return arg;
   1336   }
   1337   return this;
   1338 }
   1339 
   1340 
   1341 // static
   1342 HInstruction* HAdd::New(Isolate* isolate, Zone* zone, HValue* context,
   1343                         HValue* left, HValue* right,
   1344                         ExternalAddType external_add_type) {
   1345   // For everything else, you should use the other factory method without
   1346   // ExternalAddType.
   1347   DCHECK_EQ(external_add_type, AddOfExternalAndTagged);
   1348   return new (zone) HAdd(context, left, right, external_add_type);
   1349 }
   1350 
   1351 
   1352 Representation HAdd::RepresentationFromInputs() {
   1353   Representation left_rep = left()->representation();
   1354   if (left_rep.IsExternal()) {
   1355     return Representation::External();
   1356   }
   1357   return HArithmeticBinaryOperation::RepresentationFromInputs();
   1358 }
   1359 
   1360 
   1361 Representation HAdd::RequiredInputRepresentation(int index) {
   1362   if (index == 2) {
   1363     Representation left_rep = left()->representation();
   1364     if (left_rep.IsExternal()) {
   1365       if (external_add_type_ == AddOfExternalAndTagged) {
   1366         return Representation::Tagged();
   1367       } else {
   1368         return Representation::Integer32();
   1369       }
   1370     }
   1371   }
   1372   return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
   1373 }
   1374 
   1375 
   1376 static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
   1377   return arg1->representation().IsSpecialization() &&
   1378     arg2->EqualsInteger32Constant(identity);
   1379 }
   1380 
   1381 
   1382 HValue* HAdd::Canonicalize() {
   1383   // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
   1384   if (IsIdentityOperation(left(), right(), 0) &&
   1385       !left()->representation().IsDouble()) {  // Left could be -0.
   1386     return left();
   1387   }
   1388   if (IsIdentityOperation(right(), left(), 0) &&
   1389       !left()->representation().IsDouble()) {  // Right could be -0.
   1390     return right();
   1391   }
   1392   return this;
   1393 }
   1394 
   1395 
   1396 HValue* HSub::Canonicalize() {
   1397   if (IsIdentityOperation(left(), right(), 0)) return left();
   1398   return this;
   1399 }
   1400 
   1401 
   1402 HValue* HMul::Canonicalize() {
   1403   if (IsIdentityOperation(left(), right(), 1)) return left();
   1404   if (IsIdentityOperation(right(), left(), 1)) return right();
   1405   return this;
   1406 }
   1407 
   1408 
   1409 bool HMul::MulMinusOne() {
   1410   if (left()->EqualsInteger32Constant(-1) ||
   1411       right()->EqualsInteger32Constant(-1)) {
   1412     return true;
   1413   }
   1414 
   1415   return false;
   1416 }
   1417 
   1418 
   1419 HValue* HMod::Canonicalize() {
   1420   return this;
   1421 }
   1422 
   1423 
   1424 HValue* HDiv::Canonicalize() {
   1425   if (IsIdentityOperation(left(), right(), 1)) return left();
   1426   return this;
   1427 }
   1428 
   1429 
   1430 HValue* HChange::Canonicalize() {
   1431   return (from().Equals(to())) ? value() : this;
   1432 }
   1433 
   1434 
   1435 HValue* HWrapReceiver::Canonicalize() {
   1436   if (HasNoUses()) return NULL;
   1437   if (receiver()->type().IsJSReceiver()) {
   1438     return receiver();
   1439   }
   1440   return this;
   1441 }
   1442 
   1443 
   1444 std::ostream& HTypeof::PrintDataTo(std::ostream& os) const {  // NOLINT
   1445   return os << NameOf(value());
   1446 }
   1447 
   1448 
   1449 HInstruction* HForceRepresentation::New(Isolate* isolate, Zone* zone,
   1450                                         HValue* context, HValue* value,
   1451                                         Representation representation) {
   1452   if (FLAG_fold_constants && value->IsConstant()) {
   1453     HConstant* c = HConstant::cast(value);
   1454     c = c->CopyToRepresentation(representation, zone);
   1455     if (c != NULL) return c;
   1456   }
   1457   return new(zone) HForceRepresentation(value, representation);
   1458 }
   1459 
   1460 
   1461 std::ostream& HForceRepresentation::PrintDataTo(
   1462     std::ostream& os) const {  // NOLINT
   1463   return os << representation().Mnemonic() << " " << NameOf(value());
   1464 }
   1465 
   1466 
   1467 std::ostream& HChange::PrintDataTo(std::ostream& os) const {  // NOLINT
   1468   HUnaryOperation::PrintDataTo(os);
   1469   os << " " << from().Mnemonic() << " to " << to().Mnemonic();
   1470 
   1471   if (CanTruncateToSmi()) os << " truncating-smi";
   1472   if (CanTruncateToInt32()) os << " truncating-int32";
   1473   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
   1474   if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan";
   1475   return os;
   1476 }
   1477 
   1478 
   1479 HValue* HUnaryMathOperation::Canonicalize() {
   1480   if (op() == kMathRound || op() == kMathFloor) {
   1481     HValue* val = value();
   1482     if (val->IsChange()) val = HChange::cast(val)->value();
   1483     if (val->representation().IsSmiOrInteger32()) {
   1484       if (val->representation().Equals(representation())) return val;
   1485       return Prepend(new(block()->zone()) HChange(
   1486           val, representation(), false, false));
   1487     }
   1488   }
   1489   if (op() == kMathFloor && representation().IsSmiOrInteger32() &&
   1490       value()->IsDiv() && value()->HasOneUse()) {
   1491     HDiv* hdiv = HDiv::cast(value());
   1492 
   1493     HValue* left = hdiv->left();
   1494     if (left->representation().IsInteger32() && !left->CheckFlag(kUint32)) {
   1495       // A value with an integer representation does not need to be transformed.
   1496     } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32() &&
   1497                !HChange::cast(left)->value()->CheckFlag(kUint32)) {
   1498       // A change from an integer32 can be replaced by the integer32 value.
   1499       left = HChange::cast(left)->value();
   1500     } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
   1501       left = Prepend(new(block()->zone()) HChange(
   1502           left, Representation::Integer32(), false, false));
   1503     } else {
   1504       return this;
   1505     }
   1506 
   1507     HValue* right = hdiv->right();
   1508     if (right->IsInteger32Constant()) {
   1509       right = Prepend(HConstant::cast(right)->CopyToRepresentation(
   1510           Representation::Integer32(), right->block()->zone()));
   1511     } else if (right->representation().IsInteger32() &&
   1512                !right->CheckFlag(kUint32)) {
   1513       // A value with an integer representation does not need to be transformed.
   1514     } else if (right->IsChange() &&
   1515                HChange::cast(right)->from().IsInteger32() &&
   1516                !HChange::cast(right)->value()->CheckFlag(kUint32)) {
   1517       // A change from an integer32 can be replaced by the integer32 value.
   1518       right = HChange::cast(right)->value();
   1519     } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
   1520       right = Prepend(new(block()->zone()) HChange(
   1521           right, Representation::Integer32(), false, false));
   1522     } else {
   1523       return this;
   1524     }
   1525 
   1526     return Prepend(HMathFloorOfDiv::New(
   1527         block()->graph()->isolate(), block()->zone(), context(), left, right));
   1528   }
   1529   return this;
   1530 }
   1531 
   1532 
   1533 HValue* HCheckInstanceType::Canonicalize() {
   1534   if ((check_ == IS_JS_RECEIVER && value()->type().IsJSReceiver()) ||
   1535       (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
   1536       (check_ == IS_STRING && value()->type().IsString())) {
   1537     return value();
   1538   }
   1539 
   1540   if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
   1541     if (HConstant::cast(value())->HasInternalizedStringValue()) {
   1542       return value();
   1543     }
   1544   }
   1545   return this;
   1546 }
   1547 
   1548 
   1549 void HCheckInstanceType::GetCheckInterval(InstanceType* first,
   1550                                           InstanceType* last) {
   1551   DCHECK(is_interval_check());
   1552   switch (check_) {
   1553     case IS_JS_RECEIVER:
   1554       *first = FIRST_JS_RECEIVER_TYPE;
   1555       *last = LAST_JS_RECEIVER_TYPE;
   1556       return;
   1557     case IS_JS_ARRAY:
   1558       *first = *last = JS_ARRAY_TYPE;
   1559       return;
   1560     case IS_JS_FUNCTION:
   1561       *first = *last = JS_FUNCTION_TYPE;
   1562       return;
   1563     case IS_JS_DATE:
   1564       *first = *last = JS_DATE_TYPE;
   1565       return;
   1566     default:
   1567       UNREACHABLE();
   1568   }
   1569 }
   1570 
   1571 
   1572 void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
   1573   DCHECK(!is_interval_check());
   1574   switch (check_) {
   1575     case IS_STRING:
   1576       *mask = kIsNotStringMask;
   1577       *tag = kStringTag;
   1578       return;
   1579     case IS_INTERNALIZED_STRING:
   1580       *mask = kIsNotStringMask | kIsNotInternalizedMask;
   1581       *tag = kInternalizedTag;
   1582       return;
   1583     default:
   1584       UNREACHABLE();
   1585   }
   1586 }
   1587 
   1588 
   1589 std::ostream& HCheckMaps::PrintDataTo(std::ostream& os) const {  // NOLINT
   1590   os << NameOf(value()) << " [" << *maps()->at(0).handle();
   1591   for (int i = 1; i < maps()->size(); ++i) {
   1592     os << "," << *maps()->at(i).handle();
   1593   }
   1594   os << "]";
   1595   if (IsStabilityCheck()) os << "(stability-check)";
   1596   return os;
   1597 }
   1598 
   1599 
   1600 HValue* HCheckMaps::Canonicalize() {
   1601   if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
   1602     HConstant* c_value = HConstant::cast(value());
   1603     if (c_value->HasObjectMap()) {
   1604       for (int i = 0; i < maps()->size(); ++i) {
   1605         if (c_value->ObjectMap() == maps()->at(i)) {
   1606           if (maps()->size() > 1) {
   1607             set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
   1608                     maps()->at(i), block()->graph()->zone()));
   1609           }
   1610           MarkAsStabilityCheck();
   1611           break;
   1612         }
   1613       }
   1614     }
   1615   }
   1616   return this;
   1617 }
   1618 
   1619 
   1620 std::ostream& HCheckValue::PrintDataTo(std::ostream& os) const {  // NOLINT
   1621   return os << NameOf(value()) << " " << Brief(*object().handle());
   1622 }
   1623 
   1624 
   1625 HValue* HCheckValue::Canonicalize() {
   1626   return (value()->IsConstant() &&
   1627           HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
   1628 }
   1629 
   1630 
   1631 const char* HCheckInstanceType::GetCheckName() const {
   1632   switch (check_) {
   1633     case IS_JS_RECEIVER: return "object";
   1634     case IS_JS_ARRAY: return "array";
   1635     case IS_JS_FUNCTION:
   1636       return "function";
   1637     case IS_JS_DATE:
   1638       return "date";
   1639     case IS_STRING: return "string";
   1640     case IS_INTERNALIZED_STRING: return "internalized_string";
   1641   }
   1642   UNREACHABLE();
   1643   return "";
   1644 }
   1645 
   1646 
   1647 std::ostream& HCheckInstanceType::PrintDataTo(
   1648     std::ostream& os) const {  // NOLINT
   1649   os << GetCheckName() << " ";
   1650   return HUnaryOperation::PrintDataTo(os);
   1651 }
   1652 
   1653 
   1654 std::ostream& HUnknownOSRValue::PrintDataTo(std::ostream& os) const {  // NOLINT
   1655   const char* type = "expression";
   1656   if (environment_->is_local_index(index_)) type = "local";
   1657   if (environment_->is_special_index(index_)) type = "special";
   1658   if (environment_->is_parameter_index(index_)) type = "parameter";
   1659   return os << type << " @ " << index_;
   1660 }
   1661 
   1662 
   1663 Range* HValue::InferRange(Zone* zone) {
   1664   Range* result;
   1665   if (representation().IsSmi() || type().IsSmi()) {
   1666     result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
   1667     result->set_can_be_minus_zero(false);
   1668   } else {
   1669     result = new(zone) Range();
   1670     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
   1671     // TODO(jkummerow): The range cannot be minus zero when the upper type
   1672     // bound is Integer32.
   1673   }
   1674   return result;
   1675 }
   1676 
   1677 
   1678 Range* HChange::InferRange(Zone* zone) {
   1679   Range* input_range = value()->range();
   1680   if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
   1681       (to().IsSmi() ||
   1682        (to().IsTagged() &&
   1683         input_range != NULL &&
   1684         input_range->IsInSmiRange()))) {
   1685     set_type(HType::Smi());
   1686     ClearChangesFlag(kNewSpacePromotion);
   1687   }
   1688   if (to().IsSmiOrTagged() &&
   1689       input_range != NULL &&
   1690       input_range->IsInSmiRange() &&
   1691       (!SmiValuesAre32Bits() ||
   1692        !value()->CheckFlag(HValue::kUint32) ||
   1693        input_range->upper() != kMaxInt)) {
   1694     // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
   1695     // interval, so we treat kMaxInt as a sentinel for this entire interval.
   1696     ClearFlag(kCanOverflow);
   1697   }
   1698   Range* result = (input_range != NULL)
   1699       ? input_range->Copy(zone)
   1700       : HValue::InferRange(zone);
   1701   result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
   1702                                 !(CheckFlag(kAllUsesTruncatingToInt32) ||
   1703                                   CheckFlag(kAllUsesTruncatingToSmi)));
   1704   if (to().IsSmi()) result->ClampToSmi();
   1705   return result;
   1706 }
   1707 
   1708 
   1709 Range* HConstant::InferRange(Zone* zone) {
   1710   if (HasInteger32Value()) {
   1711     Range* result = new(zone) Range(int32_value_, int32_value_);
   1712     result->set_can_be_minus_zero(false);
   1713     return result;
   1714   }
   1715   return HValue::InferRange(zone);
   1716 }
   1717 
   1718 
   1719 SourcePosition HPhi::position() const { return block()->first()->position(); }
   1720 
   1721 
   1722 Range* HPhi::InferRange(Zone* zone) {
   1723   Representation r = representation();
   1724   if (r.IsSmiOrInteger32()) {
   1725     if (block()->IsLoopHeader()) {
   1726       Range* range = r.IsSmi()
   1727           ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
   1728           : new(zone) Range(kMinInt, kMaxInt);
   1729       return range;
   1730     } else {
   1731       Range* range = OperandAt(0)->range()->Copy(zone);
   1732       for (int i = 1; i < OperandCount(); ++i) {
   1733         range->Union(OperandAt(i)->range());
   1734       }
   1735       return range;
   1736     }
   1737   } else {
   1738     return HValue::InferRange(zone);
   1739   }
   1740 }
   1741 
   1742 
   1743 Range* HAdd::InferRange(Zone* zone) {
   1744   Representation r = representation();
   1745   if (r.IsSmiOrInteger32()) {
   1746     Range* a = left()->range();
   1747     Range* b = right()->range();
   1748     Range* res = a->Copy(zone);
   1749     if (!res->AddAndCheckOverflow(r, b) ||
   1750         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
   1751         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
   1752       ClearFlag(kCanOverflow);
   1753     }
   1754     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
   1755                                !CheckFlag(kAllUsesTruncatingToInt32) &&
   1756                                a->CanBeMinusZero() && b->CanBeMinusZero());
   1757     return res;
   1758   } else {
   1759     return HValue::InferRange(zone);
   1760   }
   1761 }
   1762 
   1763 
   1764 Range* HSub::InferRange(Zone* zone) {
   1765   Representation r = representation();
   1766   if (r.IsSmiOrInteger32()) {
   1767     Range* a = left()->range();
   1768     Range* b = right()->range();
   1769     Range* res = a->Copy(zone);
   1770     if (!res->SubAndCheckOverflow(r, b) ||
   1771         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
   1772         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
   1773       ClearFlag(kCanOverflow);
   1774     }
   1775     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
   1776                                !CheckFlag(kAllUsesTruncatingToInt32) &&
   1777                                a->CanBeMinusZero() && b->CanBeZero());
   1778     return res;
   1779   } else {
   1780     return HValue::InferRange(zone);
   1781   }
   1782 }
   1783 
   1784 
   1785 Range* HMul::InferRange(Zone* zone) {
   1786   Representation r = representation();
   1787   if (r.IsSmiOrInteger32()) {
   1788     Range* a = left()->range();
   1789     Range* b = right()->range();
   1790     Range* res = a->Copy(zone);
   1791     if (!res->MulAndCheckOverflow(r, b) ||
   1792         (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
   1793          (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
   1794          MulMinusOne())) {
   1795       // Truncated int multiplication is too precise and therefore not the
   1796       // same as converting to Double and back.
   1797       // Handle truncated integer multiplication by -1 special.
   1798       ClearFlag(kCanOverflow);
   1799     }
   1800     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
   1801                                !CheckFlag(kAllUsesTruncatingToInt32) &&
   1802                                ((a->CanBeZero() && b->CanBeNegative()) ||
   1803                                 (a->CanBeNegative() && b->CanBeZero())));
   1804     return res;
   1805   } else {
   1806     return HValue::InferRange(zone);
   1807   }
   1808 }
   1809 
   1810 
   1811 Range* HDiv::InferRange(Zone* zone) {
   1812   if (representation().IsInteger32()) {
   1813     Range* a = left()->range();
   1814     Range* b = right()->range();
   1815     Range* result = new(zone) Range();
   1816     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
   1817                                   (a->CanBeMinusZero() ||
   1818                                    (a->CanBeZero() && b->CanBeNegative())));
   1819     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
   1820       ClearFlag(kCanOverflow);
   1821     }
   1822 
   1823     if (!b->CanBeZero()) {
   1824       ClearFlag(kCanBeDivByZero);
   1825     }
   1826     return result;
   1827   } else {
   1828     return HValue::InferRange(zone);
   1829   }
   1830 }
   1831 
   1832 
   1833 Range* HMathFloorOfDiv::InferRange(Zone* zone) {
   1834   if (representation().IsInteger32()) {
   1835     Range* a = left()->range();
   1836     Range* b = right()->range();
   1837     Range* result = new(zone) Range();
   1838     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
   1839                                   (a->CanBeMinusZero() ||
   1840                                    (a->CanBeZero() && b->CanBeNegative())));
   1841     if (!a->Includes(kMinInt)) {
   1842       ClearFlag(kLeftCanBeMinInt);
   1843     }
   1844 
   1845     if (!a->CanBeNegative()) {
   1846       ClearFlag(HValue::kLeftCanBeNegative);
   1847     }
   1848 
   1849     if (!a->CanBePositive()) {
   1850       ClearFlag(HValue::kLeftCanBePositive);
   1851     }
   1852 
   1853     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
   1854       ClearFlag(kCanOverflow);
   1855     }
   1856 
   1857     if (!b->CanBeZero()) {
   1858       ClearFlag(kCanBeDivByZero);
   1859     }
   1860     return result;
   1861   } else {
   1862     return HValue::InferRange(zone);
   1863   }
   1864 }
   1865 
   1866 
   1867 // Returns the absolute value of its argument minus one, avoiding undefined
   1868 // behavior at kMinInt.
   1869 static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); }
   1870 
   1871 
   1872 Range* HMod::InferRange(Zone* zone) {
   1873   if (representation().IsInteger32()) {
   1874     Range* a = left()->range();
   1875     Range* b = right()->range();
   1876 
   1877     // The magnitude of the modulus is bounded by the right operand.
   1878     int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper()));
   1879 
   1880     // The result of the modulo operation has the sign of its left operand.
   1881     bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
   1882     Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
   1883                                     a->CanBePositive() ? positive_bound : 0);
   1884 
   1885     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
   1886                                   left_can_be_negative);
   1887 
   1888     if (!a->CanBeNegative()) {
   1889       ClearFlag(HValue::kLeftCanBeNegative);
   1890     }
   1891 
   1892     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
   1893       ClearFlag(HValue::kCanOverflow);
   1894     }
   1895 
   1896     if (!b->CanBeZero()) {
   1897       ClearFlag(HValue::kCanBeDivByZero);
   1898     }
   1899     return result;
   1900   } else {
   1901     return HValue::InferRange(zone);
   1902   }
   1903 }
   1904 
   1905 
   1906 Range* HMathMinMax::InferRange(Zone* zone) {
   1907   if (representation().IsSmiOrInteger32()) {
   1908     Range* a = left()->range();
   1909     Range* b = right()->range();
   1910     Range* res = a->Copy(zone);
   1911     if (operation_ == kMathMax) {
   1912       res->CombinedMax(b);
   1913     } else {
   1914       DCHECK(operation_ == kMathMin);
   1915       res->CombinedMin(b);
   1916     }
   1917     return res;
   1918   } else {
   1919     return HValue::InferRange(zone);
   1920   }
   1921 }
   1922 
   1923 
   1924 void HPushArguments::AddInput(HValue* value) {
   1925   inputs_.Add(NULL, value->block()->zone());
   1926   SetOperandAt(OperandCount() - 1, value);
   1927 }
   1928 
   1929 
   1930 std::ostream& HPhi::PrintTo(std::ostream& os) const {  // NOLINT
   1931   os << "[";
   1932   for (int i = 0; i < OperandCount(); ++i) {
   1933     os << " " << NameOf(OperandAt(i)) << " ";
   1934   }
   1935   return os << " uses" << UseCount()
   1936             << representation_from_indirect_uses().Mnemonic() << " "
   1937             << TypeOf(this) << "]";
   1938 }
   1939 
   1940 
   1941 void HPhi::AddInput(HValue* value) {
   1942   inputs_.Add(NULL, value->block()->zone());
   1943   SetOperandAt(OperandCount() - 1, value);
   1944   // Mark phis that may have 'arguments' directly or indirectly as an operand.
   1945   if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
   1946     SetFlag(kIsArguments);
   1947   }
   1948 }
   1949 
   1950 
   1951 bool HPhi::HasRealUses() {
   1952   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   1953     if (!it.value()->IsPhi()) return true;
   1954   }
   1955   return false;
   1956 }
   1957 
   1958 
   1959 HValue* HPhi::GetRedundantReplacement() {
   1960   HValue* candidate = NULL;
   1961   int count = OperandCount();
   1962   int position = 0;
   1963   while (position < count && candidate == NULL) {
   1964     HValue* current = OperandAt(position++);
   1965     if (current != this) candidate = current;
   1966   }
   1967   while (position < count) {
   1968     HValue* current = OperandAt(position++);
   1969     if (current != this && current != candidate) return NULL;
   1970   }
   1971   DCHECK(candidate != this);
   1972   return candidate;
   1973 }
   1974 
   1975 
   1976 void HPhi::DeleteFromGraph() {
   1977   DCHECK(block() != NULL);
   1978   block()->RemovePhi(this);
   1979   DCHECK(block() == NULL);
   1980 }
   1981 
   1982 
   1983 void HPhi::InitRealUses(int phi_id) {
   1984   // Initialize real uses.
   1985   phi_id_ = phi_id;
   1986   // Compute a conservative approximation of truncating uses before inferring
   1987   // representations. The proper, exact computation will be done later, when
   1988   // inserting representation changes.
   1989   SetFlag(kTruncatingToSmi);
   1990   SetFlag(kTruncatingToInt32);
   1991   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   1992     HValue* value = it.value();
   1993     if (!value->IsPhi()) {
   1994       Representation rep = value->observed_input_representation(it.index());
   1995       representation_from_non_phi_uses_ =
   1996           representation_from_non_phi_uses().generalize(rep);
   1997       if (rep.IsSmi() || rep.IsInteger32() || rep.IsDouble()) {
   1998         has_type_feedback_from_uses_ = true;
   1999       }
   2000 
   2001       if (FLAG_trace_representation) {
   2002         PrintF("#%d Phi is used by real #%d %s as %s\n",
   2003                id(), value->id(), value->Mnemonic(), rep.Mnemonic());
   2004       }
   2005       if (!value->IsSimulate()) {
   2006         if (!value->CheckFlag(kTruncatingToSmi)) {
   2007           ClearFlag(kTruncatingToSmi);
   2008         }
   2009         if (!value->CheckFlag(kTruncatingToInt32)) {
   2010           ClearFlag(kTruncatingToInt32);
   2011         }
   2012       }
   2013     }
   2014   }
   2015 }
   2016 
   2017 
   2018 void HPhi::AddNonPhiUsesFrom(HPhi* other) {
   2019   if (FLAG_trace_representation) {
   2020     PrintF(
   2021         "generalizing use representation '%s' of #%d Phi "
   2022         "with uses of #%d Phi '%s'\n",
   2023         representation_from_indirect_uses().Mnemonic(), id(), other->id(),
   2024         other->representation_from_non_phi_uses().Mnemonic());
   2025   }
   2026 
   2027   representation_from_indirect_uses_ =
   2028       representation_from_indirect_uses().generalize(
   2029           other->representation_from_non_phi_uses());
   2030 }
   2031 
   2032 
   2033 void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
   2034   while (!list->is_empty()) {
   2035     HSimulate* from = list->RemoveLast();
   2036     ZoneList<HValue*>* from_values = &from->values_;
   2037     for (int i = 0; i < from_values->length(); ++i) {
   2038       if (from->HasAssignedIndexAt(i)) {
   2039         int index = from->GetAssignedIndexAt(i);
   2040         if (HasValueForIndex(index)) continue;
   2041         AddAssignedValue(index, from_values->at(i));
   2042       } else {
   2043         if (pop_count_ > 0) {
   2044           pop_count_--;
   2045         } else {
   2046           AddPushedValue(from_values->at(i));
   2047         }
   2048       }
   2049     }
   2050     pop_count_ += from->pop_count_;
   2051     from->DeleteAndReplaceWith(NULL);
   2052   }
   2053 }
   2054 
   2055 
   2056 std::ostream& HSimulate::PrintDataTo(std::ostream& os) const {  // NOLINT
   2057   os << "id=" << ast_id().ToInt();
   2058   if (pop_count_ > 0) os << " pop " << pop_count_;
   2059   if (values_.length() > 0) {
   2060     if (pop_count_ > 0) os << " /";
   2061     for (int i = values_.length() - 1; i >= 0; --i) {
   2062       if (HasAssignedIndexAt(i)) {
   2063         os << " var[" << GetAssignedIndexAt(i) << "] = ";
   2064       } else {
   2065         os << " push ";
   2066       }
   2067       os << NameOf(values_[i]);
   2068       if (i > 0) os << ",";
   2069     }
   2070   }
   2071   return os;
   2072 }
   2073 
   2074 
   2075 void HSimulate::ReplayEnvironment(HEnvironment* env) {
   2076   if (is_done_with_replay()) return;
   2077   DCHECK(env != NULL);
   2078   env->set_ast_id(ast_id());
   2079   env->Drop(pop_count());
   2080   for (int i = values()->length() - 1; i >= 0; --i) {
   2081     HValue* value = values()->at(i);
   2082     if (HasAssignedIndexAt(i)) {
   2083       env->Bind(GetAssignedIndexAt(i), value);
   2084     } else {
   2085       env->Push(value);
   2086     }
   2087   }
   2088   set_done_with_replay();
   2089 }
   2090 
   2091 
   2092 static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
   2093                                     HCapturedObject* other) {
   2094   for (int i = 0; i < values->length(); ++i) {
   2095     HValue* value = values->at(i);
   2096     if (value->IsCapturedObject()) {
   2097       if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
   2098         values->at(i) = other;
   2099       } else {
   2100         ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
   2101       }
   2102     }
   2103   }
   2104 }
   2105 
   2106 
   2107 // Replay captured objects by replacing all captured objects with the
   2108 // same capture id in the current and all outer environments.
   2109 void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
   2110   DCHECK(env != NULL);
   2111   while (env != NULL) {
   2112     ReplayEnvironmentNested(env->values(), this);
   2113     env = env->outer();
   2114   }
   2115 }
   2116 
   2117 
   2118 std::ostream& HCapturedObject::PrintDataTo(std::ostream& os) const {  // NOLINT
   2119   os << "#" << capture_id() << " ";
   2120   return HDematerializedObject::PrintDataTo(os);
   2121 }
   2122 
   2123 
   2124 void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
   2125                                          Zone* zone) {
   2126   DCHECK(return_target->IsInlineReturnTarget());
   2127   return_targets_.Add(return_target, zone);
   2128 }
   2129 
   2130 
   2131 std::ostream& HEnterInlined::PrintDataTo(std::ostream& os) const {  // NOLINT
   2132   os << function()->debug_name()->ToCString().get();
   2133   if (syntactic_tail_call_mode() == TailCallMode::kAllow) {
   2134     os << ", JSTailCall";
   2135   }
   2136   return os;
   2137 }
   2138 
   2139 
   2140 static bool IsInteger32(double value) {
   2141   if (value >= std::numeric_limits<int32_t>::min() &&
   2142       value <= std::numeric_limits<int32_t>::max()) {
   2143     double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
   2144     return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value);
   2145   }
   2146   return false;
   2147 }
   2148 
   2149 
   2150 HConstant::HConstant(Special special)
   2151     : HTemplateInstruction<0>(HType::TaggedNumber()),
   2152       object_(Handle<Object>::null()),
   2153       object_map_(Handle<Map>::null()),
   2154       bit_field_(HasDoubleValueField::encode(true) |
   2155                  InstanceTypeField::encode(kUnknownInstanceType)),
   2156       int32_value_(0) {
   2157   DCHECK_EQ(kHoleNaN, special);
   2158   std::memcpy(&double_value_, &kHoleNanInt64, sizeof(double_value_));
   2159   Initialize(Representation::Double());
   2160 }
   2161 
   2162 
   2163 HConstant::HConstant(Handle<Object> object, Representation r)
   2164     : HTemplateInstruction<0>(HType::FromValue(object)),
   2165       object_(Unique<Object>::CreateUninitialized(object)),
   2166       object_map_(Handle<Map>::null()),
   2167       bit_field_(
   2168           HasStableMapValueField::encode(false) |
   2169           HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
   2170           HasDoubleValueField::encode(false) |
   2171           HasExternalReferenceValueField::encode(false) |
   2172           IsNotInNewSpaceField::encode(true) |
   2173           BooleanValueField::encode(object->BooleanValue()) |
   2174           IsUndetectableField::encode(false) | IsCallableField::encode(false) |
   2175           InstanceTypeField::encode(kUnknownInstanceType)) {
   2176   if (object->IsHeapObject()) {
   2177     Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
   2178     Isolate* isolate = heap_object->GetIsolate();
   2179     Handle<Map> map(heap_object->map(), isolate);
   2180     bit_field_ = IsNotInNewSpaceField::update(
   2181         bit_field_, !isolate->heap()->InNewSpace(*object));
   2182     bit_field_ = InstanceTypeField::update(bit_field_, map->instance_type());
   2183     bit_field_ =
   2184         IsUndetectableField::update(bit_field_, map->is_undetectable());
   2185     bit_field_ = IsCallableField::update(bit_field_, map->is_callable());
   2186     if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
   2187     bit_field_ = HasStableMapValueField::update(
   2188         bit_field_,
   2189         HasMapValue() && Handle<Map>::cast(heap_object)->is_stable());
   2190   }
   2191   if (object->IsNumber()) {
   2192     double n = object->Number();
   2193     bool has_int32_value = IsInteger32(n);
   2194     bit_field_ = HasInt32ValueField::update(bit_field_, has_int32_value);
   2195     int32_value_ = DoubleToInt32(n);
   2196     bit_field_ = HasSmiValueField::update(
   2197         bit_field_, has_int32_value && Smi::IsValid(int32_value_));
   2198     double_value_ = n;
   2199     bit_field_ = HasDoubleValueField::update(bit_field_, true);
   2200   }
   2201 
   2202   Initialize(r);
   2203 }
   2204 
   2205 
   2206 HConstant::HConstant(Unique<Object> object, Unique<Map> object_map,
   2207                      bool has_stable_map_value, Representation r, HType type,
   2208                      bool is_not_in_new_space, bool boolean_value,
   2209                      bool is_undetectable, InstanceType instance_type)
   2210     : HTemplateInstruction<0>(type),
   2211       object_(object),
   2212       object_map_(object_map),
   2213       bit_field_(HasStableMapValueField::encode(has_stable_map_value) |
   2214                  HasSmiValueField::encode(false) |
   2215                  HasInt32ValueField::encode(false) |
   2216                  HasDoubleValueField::encode(false) |
   2217                  HasExternalReferenceValueField::encode(false) |
   2218                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
   2219                  BooleanValueField::encode(boolean_value) |
   2220                  IsUndetectableField::encode(is_undetectable) |
   2221                  InstanceTypeField::encode(instance_type)) {
   2222   DCHECK(!object.handle().is_null());
   2223   DCHECK(!type.IsTaggedNumber() || type.IsNone());
   2224   Initialize(r);
   2225 }
   2226 
   2227 
   2228 HConstant::HConstant(int32_t integer_value, Representation r,
   2229                      bool is_not_in_new_space, Unique<Object> object)
   2230     : object_(object),
   2231       object_map_(Handle<Map>::null()),
   2232       bit_field_(HasStableMapValueField::encode(false) |
   2233                  HasSmiValueField::encode(Smi::IsValid(integer_value)) |
   2234                  HasInt32ValueField::encode(true) |
   2235                  HasDoubleValueField::encode(true) |
   2236                  HasExternalReferenceValueField::encode(false) |
   2237                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
   2238                  BooleanValueField::encode(integer_value != 0) |
   2239                  IsUndetectableField::encode(false) |
   2240                  InstanceTypeField::encode(kUnknownInstanceType)),
   2241       int32_value_(integer_value),
   2242       double_value_(FastI2D(integer_value)) {
   2243   // It's possible to create a constant with a value in Smi-range but stored
   2244   // in a (pre-existing) HeapNumber. See crbug.com/349878.
   2245   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
   2246   bool is_smi = HasSmiValue() && !could_be_heapobject;
   2247   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
   2248   Initialize(r);
   2249 }
   2250 
   2251 
   2252 HConstant::HConstant(double double_value, Representation r,
   2253                      bool is_not_in_new_space, Unique<Object> object)
   2254     : object_(object),
   2255       object_map_(Handle<Map>::null()),
   2256       bit_field_(HasStableMapValueField::encode(false) |
   2257                  HasInt32ValueField::encode(IsInteger32(double_value)) |
   2258                  HasDoubleValueField::encode(true) |
   2259                  HasExternalReferenceValueField::encode(false) |
   2260                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
   2261                  BooleanValueField::encode(double_value != 0 &&
   2262                                            !std::isnan(double_value)) |
   2263                  IsUndetectableField::encode(false) |
   2264                  InstanceTypeField::encode(kUnknownInstanceType)),
   2265       int32_value_(DoubleToInt32(double_value)),
   2266       double_value_(double_value) {
   2267   bit_field_ = HasSmiValueField::update(
   2268       bit_field_, HasInteger32Value() && Smi::IsValid(int32_value_));
   2269   // It's possible to create a constant with a value in Smi-range but stored
   2270   // in a (pre-existing) HeapNumber. See crbug.com/349878.
   2271   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
   2272   bool is_smi = HasSmiValue() && !could_be_heapobject;
   2273   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
   2274   Initialize(r);
   2275 }
   2276 
   2277 
   2278 HConstant::HConstant(ExternalReference reference)
   2279     : HTemplateInstruction<0>(HType::Any()),
   2280       object_(Unique<Object>(Handle<Object>::null())),
   2281       object_map_(Handle<Map>::null()),
   2282       bit_field_(
   2283           HasStableMapValueField::encode(false) |
   2284           HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
   2285           HasDoubleValueField::encode(false) |
   2286           HasExternalReferenceValueField::encode(true) |
   2287           IsNotInNewSpaceField::encode(true) | BooleanValueField::encode(true) |
   2288           IsUndetectableField::encode(false) |
   2289           InstanceTypeField::encode(kUnknownInstanceType)),
   2290       external_reference_value_(reference) {
   2291   Initialize(Representation::External());
   2292 }
   2293 
   2294 
   2295 void HConstant::Initialize(Representation r) {
   2296   if (r.IsNone()) {
   2297     if (HasSmiValue() && SmiValuesAre31Bits()) {
   2298       r = Representation::Smi();
   2299     } else if (HasInteger32Value()) {
   2300       r = Representation::Integer32();
   2301     } else if (HasDoubleValue()) {
   2302       r = Representation::Double();
   2303     } else if (HasExternalReferenceValue()) {
   2304       r = Representation::External();
   2305     } else {
   2306       Handle<Object> object = object_.handle();
   2307       if (object->IsJSObject()) {
   2308         // Try to eagerly migrate JSObjects that have deprecated maps.
   2309         Handle<JSObject> js_object = Handle<JSObject>::cast(object);
   2310         if (js_object->map()->is_deprecated()) {
   2311           JSObject::TryMigrateInstance(js_object);
   2312         }
   2313       }
   2314       r = Representation::Tagged();
   2315     }
   2316   }
   2317   if (r.IsSmi()) {
   2318     // If we have an existing handle, zap it, because it might be a heap
   2319     // number which we must not re-use when copying this HConstant to
   2320     // Tagged representation later, because having Smi representation now
   2321     // could cause heap object checks not to get emitted.
   2322     object_ = Unique<Object>(Handle<Object>::null());
   2323   }
   2324   if (r.IsSmiOrInteger32() && object_.handle().is_null()) {
   2325     // If it's not a heap object, it can't be in new space.
   2326     bit_field_ = IsNotInNewSpaceField::update(bit_field_, true);
   2327   }
   2328   set_representation(r);
   2329   SetFlag(kUseGVN);
   2330 }
   2331 
   2332 
   2333 bool HConstant::ImmortalImmovable() const {
   2334   if (HasInteger32Value()) {
   2335     return false;
   2336   }
   2337   if (HasDoubleValue()) {
   2338     if (IsSpecialDouble()) {
   2339       return true;
   2340     }
   2341     return false;
   2342   }
   2343   if (HasExternalReferenceValue()) {
   2344     return false;
   2345   }
   2346 
   2347   DCHECK(!object_.handle().is_null());
   2348   Heap* heap = isolate()->heap();
   2349   DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value()));
   2350   DCHECK(!object_.IsKnownGlobal(heap->nan_value()));
   2351   return
   2352 #define IMMORTAL_IMMOVABLE_ROOT(name) \
   2353   object_.IsKnownGlobal(heap->root(Heap::k##name##RootIndex)) ||
   2354       IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
   2355 #undef IMMORTAL_IMMOVABLE_ROOT
   2356 #define INTERNALIZED_STRING(name, value) \
   2357       object_.IsKnownGlobal(heap->name()) ||
   2358       INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
   2359 #undef INTERNALIZED_STRING
   2360 #define STRING_TYPE(NAME, size, name, Name) \
   2361       object_.IsKnownGlobal(heap->name##_map()) ||
   2362       STRING_TYPE_LIST(STRING_TYPE)
   2363 #undef STRING_TYPE
   2364       false;
   2365 }
   2366 
   2367 
   2368 bool HConstant::EmitAtUses() {
   2369   DCHECK(IsLinked());
   2370   if (block()->graph()->has_osr() &&
   2371       block()->graph()->IsStandardConstant(this)) {
   2372     return true;
   2373   }
   2374   if (HasNoUses()) return true;
   2375   if (IsCell()) return false;
   2376   if (representation().IsDouble()) return false;
   2377   if (representation().IsExternal()) return false;
   2378   return true;
   2379 }
   2380 
   2381 
   2382 HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
   2383   if (r.IsSmi() && !HasSmiValue()) return NULL;
   2384   if (r.IsInteger32() && !HasInteger32Value()) return NULL;
   2385   if (r.IsDouble() && !HasDoubleValue()) return NULL;
   2386   if (r.IsExternal() && !HasExternalReferenceValue()) return NULL;
   2387   if (HasInteger32Value()) {
   2388     return new (zone) HConstant(int32_value_, r, NotInNewSpace(), object_);
   2389   }
   2390   if (HasDoubleValue()) {
   2391     return new (zone) HConstant(double_value_, r, NotInNewSpace(), object_);
   2392   }
   2393   if (HasExternalReferenceValue()) {
   2394     return new(zone) HConstant(external_reference_value_);
   2395   }
   2396   DCHECK(!object_.handle().is_null());
   2397   return new (zone) HConstant(object_, object_map_, HasStableMapValue(), r,
   2398                               type_, NotInNewSpace(), BooleanValue(),
   2399                               IsUndetectable(), GetInstanceType());
   2400 }
   2401 
   2402 
   2403 Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
   2404   HConstant* res = NULL;
   2405   if (HasInteger32Value()) {
   2406     res = new (zone) HConstant(int32_value_, Representation::Integer32(),
   2407                                NotInNewSpace(), object_);
   2408   } else if (HasDoubleValue()) {
   2409     res = new (zone)
   2410         HConstant(DoubleToInt32(double_value_), Representation::Integer32(),
   2411                   NotInNewSpace(), object_);
   2412   }
   2413   return res != NULL ? Just(res) : Nothing<HConstant*>();
   2414 }
   2415 
   2416 
   2417 Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Isolate* isolate,
   2418                                                    Zone* zone) {
   2419   HConstant* res = NULL;
   2420   Handle<Object> handle = this->handle(isolate);
   2421   if (handle->IsBoolean()) {
   2422     res = handle->BooleanValue() ?
   2423       new(zone) HConstant(1) : new(zone) HConstant(0);
   2424   } else if (handle->IsUndefined(isolate)) {
   2425     res = new (zone) HConstant(std::numeric_limits<double>::quiet_NaN());
   2426   } else if (handle->IsNull(isolate)) {
   2427     res = new(zone) HConstant(0);
   2428   } else if (handle->IsString()) {
   2429     res = new(zone) HConstant(String::ToNumber(Handle<String>::cast(handle)));
   2430   }
   2431   return res != NULL ? Just(res) : Nothing<HConstant*>();
   2432 }
   2433 
   2434 
   2435 std::ostream& HConstant::PrintDataTo(std::ostream& os) const {  // NOLINT
   2436   if (HasInteger32Value()) {
   2437     os << int32_value_ << " ";
   2438   } else if (HasDoubleValue()) {
   2439     os << double_value_ << " ";
   2440   } else if (HasExternalReferenceValue()) {
   2441     os << reinterpret_cast<void*>(external_reference_value_.address()) << " ";
   2442   } else {
   2443     // The handle() method is silently and lazily mutating the object.
   2444     Handle<Object> h = const_cast<HConstant*>(this)->handle(isolate());
   2445     os << Brief(*h) << " ";
   2446     if (HasStableMapValue()) os << "[stable-map] ";
   2447     if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] ";
   2448   }
   2449   if (!NotInNewSpace()) os << "[new space] ";
   2450   return os;
   2451 }
   2452 
   2453 
   2454 std::ostream& HBinaryOperation::PrintDataTo(std::ostream& os) const {  // NOLINT
   2455   os << NameOf(left()) << " " << NameOf(right());
   2456   if (CheckFlag(kCanOverflow)) os << " !";
   2457   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
   2458   return os;
   2459 }
   2460 
   2461 
   2462 void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
   2463   DCHECK(CheckFlag(kFlexibleRepresentation));
   2464   Representation new_rep = RepresentationFromInputs();
   2465   UpdateRepresentation(new_rep, h_infer, "inputs");
   2466 
   2467   if (representation().IsSmi() && HasNonSmiUse()) {
   2468     UpdateRepresentation(
   2469         Representation::Integer32(), h_infer, "use requirements");
   2470   }
   2471 
   2472   if (observed_output_representation_.IsNone()) {
   2473     new_rep = RepresentationFromUses();
   2474     UpdateRepresentation(new_rep, h_infer, "uses");
   2475   } else {
   2476     new_rep = RepresentationFromOutput();
   2477     UpdateRepresentation(new_rep, h_infer, "output");
   2478   }
   2479 }
   2480 
   2481 
   2482 Representation HBinaryOperation::RepresentationFromInputs() {
   2483   // Determine the worst case of observed input representations and
   2484   // the currently assumed output representation.
   2485   Representation rep = representation();
   2486   for (int i = 1; i <= 2; ++i) {
   2487     rep = rep.generalize(observed_input_representation(i));
   2488   }
   2489   // If any of the actual input representation is more general than what we
   2490   // have so far but not Tagged, use that representation instead.
   2491   Representation left_rep = left()->representation();
   2492   Representation right_rep = right()->representation();
   2493   if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
   2494   if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
   2495 
   2496   return rep;
   2497 }
   2498 
   2499 
   2500 bool HBinaryOperation::IgnoreObservedOutputRepresentation(
   2501     Representation current_rep) {
   2502   return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
   2503           (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
   2504          // Mul in Integer32 mode would be too precise.
   2505          (!this->IsMul() || HMul::cast(this)->MulMinusOne());
   2506 }
   2507 
   2508 
   2509 Representation HBinaryOperation::RepresentationFromOutput() {
   2510   Representation rep = representation();
   2511   // Consider observed output representation, but ignore it if it's Double,
   2512   // this instruction is not a division, and all its uses are truncating
   2513   // to Integer32.
   2514   if (observed_output_representation_.is_more_general_than(rep) &&
   2515       !IgnoreObservedOutputRepresentation(rep)) {
   2516     return observed_output_representation_;
   2517   }
   2518   return Representation::None();
   2519 }
   2520 
   2521 
   2522 void HBinaryOperation::AssumeRepresentation(Representation r) {
   2523   set_observed_input_representation(1, r);
   2524   set_observed_input_representation(2, r);
   2525   HValue::AssumeRepresentation(r);
   2526 }
   2527 
   2528 
   2529 void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
   2530   DCHECK(CheckFlag(kFlexibleRepresentation));
   2531   Representation new_rep = RepresentationFromInputs();
   2532   UpdateRepresentation(new_rep, h_infer, "inputs");
   2533   // Do not care about uses.
   2534 }
   2535 
   2536 
   2537 Range* HBitwise::InferRange(Zone* zone) {
   2538   if (op() == Token::BIT_XOR) {
   2539     if (left()->HasRange() && right()->HasRange()) {
   2540       // The maximum value has the high bit, and all bits below, set:
   2541       // (1 << high) - 1.
   2542       // If the range can be negative, the minimum int is a negative number with
   2543       // the high bit, and all bits below, unset:
   2544       // -(1 << high).
   2545       // If it cannot be negative, conservatively choose 0 as minimum int.
   2546       int64_t left_upper = left()->range()->upper();
   2547       int64_t left_lower = left()->range()->lower();
   2548       int64_t right_upper = right()->range()->upper();
   2549       int64_t right_lower = right()->range()->lower();
   2550 
   2551       if (left_upper < 0) left_upper = ~left_upper;
   2552       if (left_lower < 0) left_lower = ~left_lower;
   2553       if (right_upper < 0) right_upper = ~right_upper;
   2554       if (right_lower < 0) right_lower = ~right_lower;
   2555 
   2556       int high = MostSignificantBit(
   2557           static_cast<uint32_t>(
   2558               left_upper | left_lower | right_upper | right_lower));
   2559 
   2560       int64_t limit = 1;
   2561       limit <<= high;
   2562       int32_t min = (left()->range()->CanBeNegative() ||
   2563                      right()->range()->CanBeNegative())
   2564                     ? static_cast<int32_t>(-limit) : 0;
   2565       return new(zone) Range(min, static_cast<int32_t>(limit - 1));
   2566     }
   2567     Range* result = HValue::InferRange(zone);
   2568     result->set_can_be_minus_zero(false);
   2569     return result;
   2570   }
   2571   const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
   2572   int32_t left_mask = (left()->range() != NULL)
   2573       ? left()->range()->Mask()
   2574       : kDefaultMask;
   2575   int32_t right_mask = (right()->range() != NULL)
   2576       ? right()->range()->Mask()
   2577       : kDefaultMask;
   2578   int32_t result_mask = (op() == Token::BIT_AND)
   2579       ? left_mask & right_mask
   2580       : left_mask | right_mask;
   2581   if (result_mask >= 0) return new(zone) Range(0, result_mask);
   2582 
   2583   Range* result = HValue::InferRange(zone);
   2584   result->set_can_be_minus_zero(false);
   2585   return result;
   2586 }
   2587 
   2588 
   2589 Range* HSar::InferRange(Zone* zone) {
   2590   if (right()->IsConstant()) {
   2591     HConstant* c = HConstant::cast(right());
   2592     if (c->HasInteger32Value()) {
   2593       Range* result = (left()->range() != NULL)
   2594           ? left()->range()->Copy(zone)
   2595           : new(zone) Range();
   2596       result->Sar(c->Integer32Value());
   2597       return result;
   2598     }
   2599   }
   2600   return HValue::InferRange(zone);
   2601 }
   2602 
   2603 
   2604 Range* HShr::InferRange(Zone* zone) {
   2605   if (right()->IsConstant()) {
   2606     HConstant* c = HConstant::cast(right());
   2607     if (c->HasInteger32Value()) {
   2608       int shift_count = c->Integer32Value() & 0x1f;
   2609       if (left()->range()->CanBeNegative()) {
   2610         // Only compute bounds if the result always fits into an int32.
   2611         return (shift_count >= 1)
   2612             ? new(zone) Range(0,
   2613                               static_cast<uint32_t>(0xffffffff) >> shift_count)
   2614             : new(zone) Range();
   2615       } else {
   2616         // For positive inputs we can use the >> operator.
   2617         Range* result = (left()->range() != NULL)
   2618             ? left()->range()->Copy(zone)
   2619             : new(zone) Range();
   2620         result->Sar(c->Integer32Value());
   2621         return result;
   2622       }
   2623     }
   2624   }
   2625   return HValue::InferRange(zone);
   2626 }
   2627 
   2628 
   2629 Range* HShl::InferRange(Zone* zone) {
   2630   if (right()->IsConstant()) {
   2631     HConstant* c = HConstant::cast(right());
   2632     if (c->HasInteger32Value()) {
   2633       Range* result = (left()->range() != NULL)
   2634           ? left()->range()->Copy(zone)
   2635           : new(zone) Range();
   2636       result->Shl(c->Integer32Value());
   2637       return result;
   2638     }
   2639   }
   2640   return HValue::InferRange(zone);
   2641 }
   2642 
   2643 
   2644 Range* HLoadNamedField::InferRange(Zone* zone) {
   2645   if (access().representation().IsInteger8()) {
   2646     return new(zone) Range(kMinInt8, kMaxInt8);
   2647   }
   2648   if (access().representation().IsUInteger8()) {
   2649     return new(zone) Range(kMinUInt8, kMaxUInt8);
   2650   }
   2651   if (access().representation().IsInteger16()) {
   2652     return new(zone) Range(kMinInt16, kMaxInt16);
   2653   }
   2654   if (access().representation().IsUInteger16()) {
   2655     return new(zone) Range(kMinUInt16, kMaxUInt16);
   2656   }
   2657   if (access().IsStringLength()) {
   2658     return new(zone) Range(0, String::kMaxLength);
   2659   }
   2660   return HValue::InferRange(zone);
   2661 }
   2662 
   2663 
   2664 Range* HLoadKeyed::InferRange(Zone* zone) {
   2665   switch (elements_kind()) {
   2666     case INT8_ELEMENTS:
   2667       return new(zone) Range(kMinInt8, kMaxInt8);
   2668     case UINT8_ELEMENTS:
   2669     case UINT8_CLAMPED_ELEMENTS:
   2670       return new(zone) Range(kMinUInt8, kMaxUInt8);
   2671     case INT16_ELEMENTS:
   2672       return new(zone) Range(kMinInt16, kMaxInt16);
   2673     case UINT16_ELEMENTS:
   2674       return new(zone) Range(kMinUInt16, kMaxUInt16);
   2675     default:
   2676       return HValue::InferRange(zone);
   2677   }
   2678 }
   2679 
   2680 
   2681 std::ostream& HCompareGeneric::PrintDataTo(std::ostream& os) const {  // NOLINT
   2682   os << Token::Name(token()) << " ";
   2683   return HBinaryOperation::PrintDataTo(os);
   2684 }
   2685 
   2686 
   2687 std::ostream& HStringCompareAndBranch::PrintDataTo(
   2688     std::ostream& os) const {  // NOLINT
   2689   os << Token::Name(token()) << " ";
   2690   return HControlInstruction::PrintDataTo(os);
   2691 }
   2692 
   2693 
   2694 std::ostream& HCompareNumericAndBranch::PrintDataTo(
   2695     std::ostream& os) const {  // NOLINT
   2696   os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right());
   2697   return HControlInstruction::PrintDataTo(os);
   2698 }
   2699 
   2700 
   2701 std::ostream& HCompareObjectEqAndBranch::PrintDataTo(
   2702     std::ostream& os) const {  // NOLINT
   2703   os << NameOf(left()) << " " << NameOf(right());
   2704   return HControlInstruction::PrintDataTo(os);
   2705 }
   2706 
   2707 
   2708 bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   2709   if (known_successor_index() != kNoKnownSuccessorIndex) {
   2710     *block = SuccessorAt(known_successor_index());
   2711     return true;
   2712   }
   2713   if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
   2714     *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
   2715         ? FirstSuccessor() : SecondSuccessor();
   2716     return true;
   2717   }
   2718   *block = NULL;
   2719   return false;
   2720 }
   2721 
   2722 
   2723 bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   2724   if (known_successor_index() != kNoKnownSuccessorIndex) {
   2725     *block = SuccessorAt(known_successor_index());
   2726     return true;
   2727   }
   2728   if (FLAG_fold_constants && value()->IsConstant()) {
   2729     *block = HConstant::cast(value())->HasStringValue()
   2730         ? FirstSuccessor() : SecondSuccessor();
   2731     return true;
   2732   }
   2733   if (value()->type().IsString()) {
   2734     *block = FirstSuccessor();
   2735     return true;
   2736   }
   2737   if (value()->type().IsSmi() ||
   2738       value()->type().IsNull() ||
   2739       value()->type().IsBoolean() ||
   2740       value()->type().IsUndefined() ||
   2741       value()->type().IsJSReceiver()) {
   2742     *block = SecondSuccessor();
   2743     return true;
   2744   }
   2745   *block = NULL;
   2746   return false;
   2747 }
   2748 
   2749 
   2750 bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   2751   if (FLAG_fold_constants && value()->IsConstant()) {
   2752     *block = HConstant::cast(value())->IsUndetectable()
   2753         ? FirstSuccessor() : SecondSuccessor();
   2754     return true;
   2755   }
   2756   if (value()->type().IsNull() || value()->type().IsUndefined()) {
   2757     *block = FirstSuccessor();
   2758     return true;
   2759   }
   2760   if (value()->type().IsBoolean() ||
   2761       value()->type().IsSmi() ||
   2762       value()->type().IsString() ||
   2763       value()->type().IsJSReceiver()) {
   2764     *block = SecondSuccessor();
   2765     return true;
   2766   }
   2767   *block = NULL;
   2768   return false;
   2769 }
   2770 
   2771 
   2772 bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   2773   if (FLAG_fold_constants && value()->IsConstant()) {
   2774     InstanceType type = HConstant::cast(value())->GetInstanceType();
   2775     *block = (from_ <= type) && (type <= to_)
   2776         ? FirstSuccessor() : SecondSuccessor();
   2777     return true;
   2778   }
   2779   *block = NULL;
   2780   return false;
   2781 }
   2782 
   2783 
   2784 void HCompareHoleAndBranch::InferRepresentation(
   2785     HInferRepresentationPhase* h_infer) {
   2786   ChangeRepresentation(value()->representation());
   2787 }
   2788 
   2789 
   2790 bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
   2791   if (left() == right() &&
   2792       left()->representation().IsSmiOrInteger32()) {
   2793     *block = (token() == Token::EQ ||
   2794               token() == Token::EQ_STRICT ||
   2795               token() == Token::LTE ||
   2796               token() == Token::GTE)
   2797         ? FirstSuccessor() : SecondSuccessor();
   2798     return true;
   2799   }
   2800   *block = NULL;
   2801   return false;
   2802 }
   2803 
   2804 
   2805 std::ostream& HGoto::PrintDataTo(std::ostream& os) const {  // NOLINT
   2806   return os << *SuccessorAt(0);
   2807 }
   2808 
   2809 
   2810 void HCompareNumericAndBranch::InferRepresentation(
   2811     HInferRepresentationPhase* h_infer) {
   2812   Representation left_rep = left()->representation();
   2813   Representation right_rep = right()->representation();
   2814   Representation observed_left = observed_input_representation(0);
   2815   Representation observed_right = observed_input_representation(1);
   2816 
   2817   Representation rep = Representation::None();
   2818   rep = rep.generalize(observed_left);
   2819   rep = rep.generalize(observed_right);
   2820   if (rep.IsNone() || rep.IsSmiOrInteger32()) {
   2821     if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
   2822     if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
   2823   } else {
   2824     rep = Representation::Double();
   2825   }
   2826 
   2827   if (rep.IsDouble()) {
   2828     // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
   2829     // and !=) have special handling of undefined, e.g. undefined == undefined
   2830     // is 'true'. Relational comparisons have a different semantic, first
   2831     // calling ToPrimitive() on their arguments.  The standard Crankshaft
   2832     // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
   2833     // inputs are doubles caused 'undefined' to be converted to NaN. That's
   2834     // compatible out-of-the box with ordered relational comparisons (<, >, <=,
   2835     // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
   2836     // it is not consistent with the spec. For example, it would cause undefined
   2837     // == undefined (should be true) to be evaluated as NaN == NaN
   2838     // (false). Therefore, any comparisons other than ordered relational
   2839     // comparisons must cause a deopt when one of their arguments is undefined.
   2840     // See also v8:1434
   2841     if (Token::IsOrderedRelationalCompareOp(token_)) {
   2842       SetFlag(kAllowUndefinedAsNaN);
   2843     }
   2844   }
   2845   ChangeRepresentation(rep);
   2846 }
   2847 
   2848 
   2849 std::ostream& HParameter::PrintDataTo(std::ostream& os) const {  // NOLINT
   2850   return os << index();
   2851 }
   2852 
   2853 
   2854 std::ostream& HLoadNamedField::PrintDataTo(std::ostream& os) const {  // NOLINT
   2855   os << NameOf(object()) << access_;
   2856 
   2857   if (maps() != NULL) {
   2858     os << " [" << *maps()->at(0).handle();
   2859     for (int i = 1; i < maps()->size(); ++i) {
   2860       os << "," << *maps()->at(i).handle();
   2861     }
   2862     os << "]";
   2863   }
   2864 
   2865   if (HasDependency()) os << " " << NameOf(dependency());
   2866   return os;
   2867 }
   2868 
   2869 
   2870 std::ostream& HLoadNamedGeneric::PrintDataTo(
   2871     std::ostream& os) const {  // NOLINT
   2872   Handle<String> n = Handle<String>::cast(name());
   2873   return os << NameOf(object()) << "." << n->ToCString().get();
   2874 }
   2875 
   2876 
   2877 std::ostream& HLoadKeyed::PrintDataTo(std::ostream& os) const {  // NOLINT
   2878   if (!is_fixed_typed_array()) {
   2879     os << NameOf(elements());
   2880   } else {
   2881     DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
   2882            elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
   2883     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
   2884   }
   2885 
   2886   os << "[" << NameOf(key());
   2887   if (IsDehoisted()) os << " + " << base_offset();
   2888   os << "]";
   2889 
   2890   if (HasDependency()) os << " " << NameOf(dependency());
   2891   if (RequiresHoleCheck()) os << " check_hole";
   2892   return os;
   2893 }
   2894 
   2895 
   2896 bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
   2897   // The base offset is usually simply the size of the array header, except
   2898   // with dehoisting adds an addition offset due to a array index key
   2899   // manipulation, in which case it becomes (array header size +
   2900   // constant-offset-from-key * kPointerSize)
   2901   uint32_t base_offset = BaseOffsetField::decode(bit_field_);
   2902   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset;
   2903   addition_result += increase_by_value;
   2904   if (!addition_result.IsValid()) return false;
   2905   base_offset = addition_result.ValueOrDie();
   2906   if (!BaseOffsetField::is_valid(base_offset)) return false;
   2907   bit_field_ = BaseOffsetField::update(bit_field_, base_offset);
   2908   return true;
   2909 }
   2910 
   2911 
   2912 bool HLoadKeyed::UsesMustHandleHole() const {
   2913   if (IsFastPackedElementsKind(elements_kind())) {
   2914     return false;
   2915   }
   2916 
   2917   if (IsFixedTypedArrayElementsKind(elements_kind())) {
   2918     return false;
   2919   }
   2920 
   2921   if (hole_mode() == ALLOW_RETURN_HOLE) {
   2922     if (IsFastDoubleElementsKind(elements_kind())) {
   2923       return AllUsesCanTreatHoleAsNaN();
   2924     }
   2925     return true;
   2926   }
   2927 
   2928   if (IsFastDoubleElementsKind(elements_kind())) {
   2929     return false;
   2930   }
   2931 
   2932   // Holes are only returned as tagged values.
   2933   if (!representation().IsTagged()) {
   2934     return false;
   2935   }
   2936 
   2937   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   2938     HValue* use = it.value();
   2939     if (!use->IsChange()) return false;
   2940   }
   2941 
   2942   return true;
   2943 }
   2944 
   2945 
   2946 bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
   2947   return IsFastDoubleElementsKind(elements_kind()) &&
   2948       CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
   2949 }
   2950 
   2951 
   2952 bool HLoadKeyed::RequiresHoleCheck() const {
   2953   if (IsFastPackedElementsKind(elements_kind())) {
   2954     return false;
   2955   }
   2956 
   2957   if (IsFixedTypedArrayElementsKind(elements_kind())) {
   2958     return false;
   2959   }
   2960 
   2961   if (hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
   2962     return false;
   2963   }
   2964 
   2965   return !UsesMustHandleHole();
   2966 }
   2967 
   2968 
   2969 std::ostream& HLoadKeyedGeneric::PrintDataTo(
   2970     std::ostream& os) const {  // NOLINT
   2971   return os << NameOf(object()) << "[" << NameOf(key()) << "]";
   2972 }
   2973 
   2974 
   2975 HValue* HLoadKeyedGeneric::Canonicalize() {
   2976   // Recognize generic keyed loads that use property name generated
   2977   // by for-in statement as a key and rewrite them into fast property load
   2978   // by index.
   2979   if (key()->IsLoadKeyed()) {
   2980     HLoadKeyed* key_load = HLoadKeyed::cast(key());
   2981     if (key_load->elements()->IsForInCacheArray()) {
   2982       HForInCacheArray* names_cache =
   2983           HForInCacheArray::cast(key_load->elements());
   2984 
   2985       if (names_cache->enumerable() == object()) {
   2986         HForInCacheArray* index_cache =
   2987             names_cache->index_cache();
   2988         HCheckMapValue* map_check = HCheckMapValue::New(
   2989             block()->graph()->isolate(), block()->graph()->zone(),
   2990             block()->graph()->GetInvalidContext(), object(),
   2991             names_cache->map());
   2992         HInstruction* index = HLoadKeyed::New(
   2993             block()->graph()->isolate(), block()->graph()->zone(),
   2994             block()->graph()->GetInvalidContext(), index_cache, key_load->key(),
   2995             key_load->key(), nullptr, key_load->elements_kind());
   2996         map_check->InsertBefore(this);
   2997         index->InsertBefore(this);
   2998         return Prepend(new(block()->zone()) HLoadFieldByIndex(
   2999             object(), index));
   3000       }
   3001     }
   3002   }
   3003 
   3004   return this;
   3005 }
   3006 
   3007 
   3008 std::ostream& HStoreNamedGeneric::PrintDataTo(
   3009     std::ostream& os) const {  // NOLINT
   3010   Handle<String> n = Handle<String>::cast(name());
   3011   return os << NameOf(object()) << "." << n->ToCString().get() << " = "
   3012             << NameOf(value());
   3013 }
   3014 
   3015 
   3016 std::ostream& HStoreNamedField::PrintDataTo(std::ostream& os) const {  // NOLINT
   3017   os << NameOf(object()) << access_ << " = " << NameOf(value());
   3018   if (NeedsWriteBarrier()) os << " (write-barrier)";
   3019   if (has_transition()) os << " (transition map " << *transition_map() << ")";
   3020   return os;
   3021 }
   3022 
   3023 
   3024 std::ostream& HStoreKeyed::PrintDataTo(std::ostream& os) const {  // NOLINT
   3025   if (!is_fixed_typed_array()) {
   3026     os << NameOf(elements());
   3027   } else {
   3028     DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
   3029            elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
   3030     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
   3031   }
   3032 
   3033   os << "[" << NameOf(key());
   3034   if (IsDehoisted()) os << " + " << base_offset();
   3035   return os << "] = " << NameOf(value());
   3036 }
   3037 
   3038 
   3039 std::ostream& HStoreKeyedGeneric::PrintDataTo(
   3040     std::ostream& os) const {  // NOLINT
   3041   return os << NameOf(object()) << "[" << NameOf(key())
   3042             << "] = " << NameOf(value());
   3043 }
   3044 
   3045 
   3046 std::ostream& HTransitionElementsKind::PrintDataTo(
   3047     std::ostream& os) const {  // NOLINT
   3048   os << NameOf(object());
   3049   ElementsKind from_kind = original_map().handle()->elements_kind();
   3050   ElementsKind to_kind = transitioned_map().handle()->elements_kind();
   3051   os << " " << *original_map().handle() << " ["
   3052      << ElementsAccessor::ForKind(from_kind)->name() << "] -> "
   3053      << *transitioned_map().handle() << " ["
   3054      << ElementsAccessor::ForKind(to_kind)->name() << "]";
   3055   if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)";
   3056   return os;
   3057 }
   3058 
   3059 
   3060 std::ostream& HLoadGlobalGeneric::PrintDataTo(
   3061     std::ostream& os) const {  // NOLINT
   3062   return os << name()->ToCString().get() << " ";
   3063 }
   3064 
   3065 
   3066 std::ostream& HInnerAllocatedObject::PrintDataTo(
   3067     std::ostream& os) const {  // NOLINT
   3068   os << NameOf(base_object()) << " offset ";
   3069   return offset()->PrintTo(os);
   3070 }
   3071 
   3072 
   3073 std::ostream& HLoadContextSlot::PrintDataTo(std::ostream& os) const {  // NOLINT
   3074   return os << NameOf(value()) << "[" << slot_index() << "]";
   3075 }
   3076 
   3077 
   3078 std::ostream& HStoreContextSlot::PrintDataTo(
   3079     std::ostream& os) const {  // NOLINT
   3080   return os << NameOf(context()) << "[" << slot_index()
   3081             << "] = " << NameOf(value());
   3082 }
   3083 
   3084 
   3085 // Implementation of type inference and type conversions. Calculates
   3086 // the inferred type of this instruction based on the input operands.
   3087 
   3088 HType HValue::CalculateInferredType() {
   3089   return type_;
   3090 }
   3091 
   3092 
   3093 HType HPhi::CalculateInferredType() {
   3094   if (OperandCount() == 0) return HType::Tagged();
   3095   HType result = OperandAt(0)->type();
   3096   for (int i = 1; i < OperandCount(); ++i) {
   3097     HType current = OperandAt(i)->type();
   3098     result = result.Combine(current);
   3099   }
   3100   return result;
   3101 }
   3102 
   3103 
   3104 HType HChange::CalculateInferredType() {
   3105   if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
   3106   return type();
   3107 }
   3108 
   3109 
   3110 Representation HUnaryMathOperation::RepresentationFromInputs() {
   3111   if (SupportsFlexibleFloorAndRound() &&
   3112       (op_ == kMathFloor || op_ == kMathRound)) {
   3113     // Floor and Round always take a double input. The integral result can be
   3114     // used as an integer or a double. Infer the representation from the uses.
   3115     return Representation::None();
   3116   }
   3117   Representation rep = representation();
   3118   // If any of the actual input representation is more general than what we
   3119   // have so far but not Tagged, use that representation instead.
   3120   Representation input_rep = value()->representation();
   3121   if (!input_rep.IsTagged()) {
   3122     rep = rep.generalize(input_rep);
   3123   }
   3124   return rep;
   3125 }
   3126 
   3127 
   3128 bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
   3129                                           HValue* dominator) {
   3130   DCHECK(side_effect == kNewSpacePromotion);
   3131   DCHECK(!IsAllocationFolded());
   3132   Zone* zone = block()->zone();
   3133   Isolate* isolate = block()->isolate();
   3134   if (!FLAG_use_allocation_folding) return false;
   3135 
   3136   // Try to fold allocations together with their dominating allocations.
   3137   if (!dominator->IsAllocate()) {
   3138     if (FLAG_trace_allocation_folding) {
   3139       PrintF("#%d (%s) cannot fold into #%d (%s)\n",
   3140           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3141     }
   3142     return false;
   3143   }
   3144 
   3145   // Check whether we are folding within the same block for local folding.
   3146   if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
   3147     if (FLAG_trace_allocation_folding) {
   3148       PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
   3149           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3150     }
   3151     return false;
   3152   }
   3153 
   3154   HAllocate* dominator_allocate = HAllocate::cast(dominator);
   3155   HValue* dominator_size = dominator_allocate->size();
   3156   HValue* current_size = size();
   3157 
   3158   // TODO(hpayer): Add support for non-constant allocation in dominator.
   3159   if (!current_size->IsInteger32Constant() ||
   3160       !dominator_size->IsInteger32Constant()) {
   3161     if (FLAG_trace_allocation_folding) {
   3162       PrintF("#%d (%s) cannot fold into #%d (%s), "
   3163              "dynamic allocation size in dominator\n",
   3164           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
   3165     }
   3166     return false;
   3167   }
   3168 
   3169 
   3170   if (!IsFoldable(dominator_allocate)) {
   3171     if (FLAG_trace_allocation_folding) {
   3172       PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n", id(),
   3173              Mnemonic(), dominator->id(), dominator->Mnemonic());
   3174     }
   3175     return false;
   3176   }
   3177 
   3178   DCHECK(
   3179       (IsNewSpaceAllocation() && dominator_allocate->IsNewSpaceAllocation()) ||
   3180       (IsOldSpaceAllocation() && dominator_allocate->IsOldSpaceAllocation()));
   3181 
   3182   // First update the size of the dominator allocate instruction.
   3183   dominator_size = dominator_allocate->size();
   3184   int32_t original_object_size =
   3185       HConstant::cast(dominator_size)->GetInteger32Constant();
   3186   int32_t dominator_size_constant = original_object_size;
   3187 
   3188   if (MustAllocateDoubleAligned()) {
   3189     if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
   3190       dominator_size_constant += kDoubleSize / 2;
   3191     }
   3192   }
   3193 
   3194   int32_t current_size_max_value = size()->GetInteger32Constant();
   3195   int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
   3196 
   3197   // Since we clear the first word after folded memory, we cannot use the
   3198   // whole Page::kMaxRegularHeapObjectSize memory.
   3199   if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
   3200     if (FLAG_trace_allocation_folding) {
   3201       PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
   3202           id(), Mnemonic(), dominator_allocate->id(),
   3203           dominator_allocate->Mnemonic(), new_dominator_size);
   3204     }
   3205     return false;
   3206   }
   3207 
   3208   HInstruction* new_dominator_size_value = HConstant::CreateAndInsertBefore(
   3209       isolate, zone, context(), new_dominator_size, Representation::None(),
   3210       dominator_allocate);
   3211 
   3212   dominator_allocate->UpdateSize(new_dominator_size_value);
   3213 
   3214   if (MustAllocateDoubleAligned()) {
   3215     if (!dominator_allocate->MustAllocateDoubleAligned()) {
   3216       dominator_allocate->MakeDoubleAligned();
   3217     }
   3218   }
   3219 
   3220   if (IsAllocationFoldingDominator()) {
   3221     DeleteAndReplaceWith(dominator_allocate);
   3222     if (FLAG_trace_allocation_folding) {
   3223       PrintF(
   3224           "#%d (%s) folded dominator into #%d (%s), new dominator size: %d\n",
   3225           id(), Mnemonic(), dominator_allocate->id(),
   3226           dominator_allocate->Mnemonic(), new_dominator_size);
   3227     }
   3228     return true;
   3229   }
   3230 
   3231   if (!dominator_allocate->IsAllocationFoldingDominator()) {
   3232     HAllocate* first_alloc =
   3233         HAllocate::New(isolate, zone, dominator_allocate->context(),
   3234                        dominator_size, dominator_allocate->type(),
   3235                        IsNewSpaceAllocation() ? NOT_TENURED : TENURED,
   3236                        JS_OBJECT_TYPE, block()->graph()->GetConstant0());
   3237     first_alloc->InsertAfter(dominator_allocate);
   3238     dominator_allocate->ReplaceAllUsesWith(first_alloc);
   3239     dominator_allocate->MakeAllocationFoldingDominator();
   3240     first_alloc->MakeFoldedAllocation(dominator_allocate);
   3241     if (FLAG_trace_allocation_folding) {
   3242       PrintF("#%d (%s) inserted for dominator #%d (%s)\n", first_alloc->id(),
   3243              first_alloc->Mnemonic(), dominator_allocate->id(),
   3244              dominator_allocate->Mnemonic());
   3245     }
   3246   }
   3247 
   3248   MakeFoldedAllocation(dominator_allocate);
   3249 
   3250   if (FLAG_trace_allocation_folding) {
   3251     PrintF("#%d (%s) folded into #%d (%s), new dominator size: %d\n", id(),
   3252            Mnemonic(), dominator_allocate->id(), dominator_allocate->Mnemonic(),
   3253            new_dominator_size);
   3254   }
   3255   return true;
   3256 }
   3257 
   3258 
   3259 std::ostream& HAllocate::PrintDataTo(std::ostream& os) const {  // NOLINT
   3260   os << NameOf(size()) << " (";
   3261   if (IsNewSpaceAllocation()) os << "N";
   3262   if (IsOldSpaceAllocation()) os << "P";
   3263   if (MustAllocateDoubleAligned()) os << "A";
   3264   if (MustPrefillWithFiller()) os << "F";
   3265   return os << ")";
   3266 }
   3267 
   3268 
   3269 bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
   3270   // The base offset is usually simply the size of the array header, except
   3271   // with dehoisting adds an addition offset due to a array index key
   3272   // manipulation, in which case it becomes (array header size +
   3273   // constant-offset-from-key * kPointerSize)
   3274   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_;
   3275   addition_result += increase_by_value;
   3276   if (!addition_result.IsValid()) return false;
   3277   base_offset_ = addition_result.ValueOrDie();
   3278   return true;
   3279 }
   3280 
   3281 
   3282 bool HStoreKeyed::NeedsCanonicalization() {
   3283   switch (value()->opcode()) {
   3284     case kLoadKeyed: {
   3285       ElementsKind load_kind = HLoadKeyed::cast(value())->elements_kind();
   3286       return IsFixedFloatElementsKind(load_kind);
   3287     }
   3288     case kChange: {
   3289       Representation from = HChange::cast(value())->from();
   3290       return from.IsTagged() || from.IsHeapObject();
   3291     }
   3292     case kLoadNamedField:
   3293     case kPhi: {
   3294       // Better safe than sorry...
   3295       return true;
   3296     }
   3297     default:
   3298       return false;
   3299   }
   3300 }
   3301 
   3302 
   3303 #define H_CONSTANT_INT(val) \
   3304   HConstant::New(isolate, zone, context, static_cast<int32_t>(val))
   3305 #define H_CONSTANT_DOUBLE(val) \
   3306   HConstant::New(isolate, zone, context, static_cast<double>(val))
   3307 
   3308 #define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op)                     \
   3309   HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context,   \
   3310                             HValue* left, HValue* right) {                   \
   3311     if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {  \
   3312       HConstant* c_left = HConstant::cast(left);                             \
   3313       HConstant* c_right = HConstant::cast(right);                           \
   3314       if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {         \
   3315         double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \
   3316         if (IsInt32Double(double_res)) {                                     \
   3317           return H_CONSTANT_INT(double_res);                                 \
   3318         }                                                                    \
   3319         return H_CONSTANT_DOUBLE(double_res);                                \
   3320       }                                                                      \
   3321     }                                                                        \
   3322     return new (zone) HInstr(context, left, right);                          \
   3323   }
   3324 
   3325 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
   3326 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
   3327 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
   3328 
   3329 #undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
   3330 
   3331 
   3332 HInstruction* HStringAdd::New(Isolate* isolate, Zone* zone, HValue* context,
   3333                               HValue* left, HValue* right,
   3334                               PretenureFlag pretenure_flag,
   3335                               StringAddFlags flags,
   3336                               Handle<AllocationSite> allocation_site) {
   3337   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   3338     HConstant* c_right = HConstant::cast(right);
   3339     HConstant* c_left = HConstant::cast(left);
   3340     if (c_left->HasStringValue() && c_right->HasStringValue()) {
   3341       Handle<String> left_string = c_left->StringValue();
   3342       Handle<String> right_string = c_right->StringValue();
   3343       // Prevent possible exception by invalid string length.
   3344       if (left_string->length() + right_string->length() < String::kMaxLength) {
   3345         MaybeHandle<String> concat = isolate->factory()->NewConsString(
   3346             c_left->StringValue(), c_right->StringValue());
   3347         return HConstant::New(isolate, zone, context, concat.ToHandleChecked());
   3348       }
   3349     }
   3350   }
   3351   return new (zone)
   3352       HStringAdd(context, left, right, pretenure_flag, flags, allocation_site);
   3353 }
   3354 
   3355 
   3356 std::ostream& HStringAdd::PrintDataTo(std::ostream& os) const {  // NOLINT
   3357   if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
   3358     os << "_CheckBoth";
   3359   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
   3360     os << "_CheckLeft";
   3361   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
   3362     os << "_CheckRight";
   3363   }
   3364   HBinaryOperation::PrintDataTo(os);
   3365   os << " (";
   3366   if (pretenure_flag() == NOT_TENURED)
   3367     os << "N";
   3368   else if (pretenure_flag() == TENURED)
   3369     os << "D";
   3370   return os << ")";
   3371 }
   3372 
   3373 
   3374 HInstruction* HStringCharFromCode::New(Isolate* isolate, Zone* zone,
   3375                                        HValue* context, HValue* char_code) {
   3376   if (FLAG_fold_constants && char_code->IsConstant()) {
   3377     HConstant* c_code = HConstant::cast(char_code);
   3378     if (c_code->HasNumberValue()) {
   3379       if (std::isfinite(c_code->DoubleValue())) {
   3380         uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
   3381         return HConstant::New(
   3382             isolate, zone, context,
   3383             isolate->factory()->LookupSingleCharacterStringFromCode(code));
   3384       }
   3385       return HConstant::New(isolate, zone, context,
   3386                             isolate->factory()->empty_string());
   3387     }
   3388   }
   3389   return new(zone) HStringCharFromCode(context, char_code);
   3390 }
   3391 
   3392 
   3393 HInstruction* HUnaryMathOperation::New(Isolate* isolate, Zone* zone,
   3394                                        HValue* context, HValue* value,
   3395                                        BuiltinFunctionId op) {
   3396   do {
   3397     if (!FLAG_fold_constants) break;
   3398     if (!value->IsConstant()) break;
   3399     HConstant* constant = HConstant::cast(value);
   3400     if (!constant->HasNumberValue()) break;
   3401     double d = constant->DoubleValue();
   3402     if (std::isnan(d)) {  // NaN poisons everything.
   3403       return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
   3404     }
   3405     if (std::isinf(d)) {  // +Infinity and -Infinity.
   3406       switch (op) {
   3407         case kMathCos:
   3408         case kMathSin:
   3409           return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
   3410         case kMathExp:
   3411           return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
   3412         case kMathLog:
   3413         case kMathSqrt:
   3414           return H_CONSTANT_DOUBLE(
   3415               (d > 0.0) ? d : std::numeric_limits<double>::quiet_NaN());
   3416         case kMathPowHalf:
   3417         case kMathAbs:
   3418           return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
   3419         case kMathRound:
   3420         case kMathFround:
   3421         case kMathFloor:
   3422           return H_CONSTANT_DOUBLE(d);
   3423         case kMathClz32:
   3424           return H_CONSTANT_INT(32);
   3425         default:
   3426           UNREACHABLE();
   3427           break;
   3428       }
   3429     }
   3430     switch (op) {
   3431       case kMathCos:
   3432         return H_CONSTANT_DOUBLE(base::ieee754::cos(d));
   3433       case kMathExp:
   3434         return H_CONSTANT_DOUBLE(base::ieee754::exp(d));
   3435       case kMathLog:
   3436         return H_CONSTANT_DOUBLE(base::ieee754::log(d));
   3437       case kMathSin:
   3438         return H_CONSTANT_DOUBLE(base::ieee754::sin(d));
   3439       case kMathSqrt:
   3440         lazily_initialize_fast_sqrt(isolate);
   3441         return H_CONSTANT_DOUBLE(fast_sqrt(d, isolate));
   3442       case kMathPowHalf:
   3443         return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
   3444       case kMathAbs:
   3445         return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
   3446       case kMathRound:
   3447         // -0.5 .. -0.0 round to -0.0.
   3448         if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
   3449         // Doubles are represented as Significant * 2 ^ Exponent. If the
   3450         // Exponent is not negative, the double value is already an integer.
   3451         if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
   3452         return H_CONSTANT_DOUBLE(Floor(d + 0.5));
   3453       case kMathFround:
   3454         return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d)));
   3455       case kMathFloor:
   3456         return H_CONSTANT_DOUBLE(Floor(d));
   3457       case kMathClz32: {
   3458         uint32_t i = DoubleToUint32(d);
   3459         return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i));
   3460       }
   3461       default:
   3462         UNREACHABLE();
   3463         break;
   3464     }
   3465   } while (false);
   3466   return new(zone) HUnaryMathOperation(context, value, op);
   3467 }
   3468 
   3469 
   3470 Representation HUnaryMathOperation::RepresentationFromUses() {
   3471   if (op_ != kMathFloor && op_ != kMathRound) {
   3472     return HValue::RepresentationFromUses();
   3473   }
   3474 
   3475   // The instruction can have an int32 or double output. Prefer a double
   3476   // representation if there are double uses.
   3477   bool use_double = false;
   3478 
   3479   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   3480     HValue* use = it.value();
   3481     int use_index = it.index();
   3482     Representation rep_observed = use->observed_input_representation(use_index);
   3483     Representation rep_required = use->RequiredInputRepresentation(use_index);
   3484     use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
   3485     if (use_double && !FLAG_trace_representation) {
   3486       // Having seen one double is enough.
   3487       break;
   3488     }
   3489     if (FLAG_trace_representation) {
   3490       if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
   3491         PrintF("#%d %s is used by #%d %s as %s%s\n",
   3492                id(), Mnemonic(), use->id(),
   3493                use->Mnemonic(), rep_observed.Mnemonic(),
   3494                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
   3495       } else {
   3496         PrintF("#%d %s is required by #%d %s as %s%s\n",
   3497                id(), Mnemonic(), use->id(),
   3498                use->Mnemonic(), rep_required.Mnemonic(),
   3499                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
   3500       }
   3501     }
   3502   }
   3503   return use_double ? Representation::Double() : Representation::Integer32();
   3504 }
   3505 
   3506 
   3507 HInstruction* HPower::New(Isolate* isolate, Zone* zone, HValue* context,
   3508                           HValue* left, HValue* right) {
   3509   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   3510     HConstant* c_left = HConstant::cast(left);
   3511     HConstant* c_right = HConstant::cast(right);
   3512     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
   3513       double result =
   3514           power_helper(isolate, c_left->DoubleValue(), c_right->DoubleValue());
   3515       return H_CONSTANT_DOUBLE(std::isnan(result)
   3516                                    ? std::numeric_limits<double>::quiet_NaN()
   3517                                    : result);
   3518     }
   3519   }
   3520   return new(zone) HPower(left, right);
   3521 }
   3522 
   3523 
   3524 HInstruction* HMathMinMax::New(Isolate* isolate, Zone* zone, HValue* context,
   3525                                HValue* left, HValue* right, Operation op) {
   3526   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   3527     HConstant* c_left = HConstant::cast(left);
   3528     HConstant* c_right = HConstant::cast(right);
   3529     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
   3530       double d_left = c_left->DoubleValue();
   3531       double d_right = c_right->DoubleValue();
   3532       if (op == kMathMin) {
   3533         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
   3534         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
   3535         if (d_left == d_right) {
   3536           // Handle +0 and -0.
   3537           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
   3538                                                                  : d_right);
   3539         }
   3540       } else {
   3541         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
   3542         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
   3543         if (d_left == d_right) {
   3544           // Handle +0 and -0.
   3545           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
   3546                                                                  : d_left);
   3547         }
   3548       }
   3549       // All comparisons failed, must be NaN.
   3550       return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
   3551     }
   3552   }
   3553   return new(zone) HMathMinMax(context, left, right, op);
   3554 }
   3555 
   3556 HInstruction* HMod::New(Isolate* isolate, Zone* zone, HValue* context,
   3557                         HValue* left, HValue* right) {
   3558   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   3559     HConstant* c_left = HConstant::cast(left);
   3560     HConstant* c_right = HConstant::cast(right);
   3561     if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
   3562       int32_t dividend = c_left->Integer32Value();
   3563       int32_t divisor = c_right->Integer32Value();
   3564       if (dividend == kMinInt && divisor == -1) {
   3565         return H_CONSTANT_DOUBLE(-0.0);
   3566       }
   3567       if (divisor != 0) {
   3568         int32_t res = dividend % divisor;
   3569         if ((res == 0) && (dividend < 0)) {
   3570           return H_CONSTANT_DOUBLE(-0.0);
   3571         }
   3572         return H_CONSTANT_INT(res);
   3573       }
   3574     }
   3575   }
   3576   return new (zone) HMod(context, left, right);
   3577 }
   3578 
   3579 HInstruction* HDiv::New(Isolate* isolate, Zone* zone, HValue* context,
   3580                         HValue* left, HValue* right) {
   3581   // If left and right are constant values, try to return a constant value.
   3582   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   3583     HConstant* c_left = HConstant::cast(left);
   3584     HConstant* c_right = HConstant::cast(right);
   3585     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
   3586       if (c_right->DoubleValue() != 0) {
   3587         double double_res = c_left->DoubleValue() / c_right->DoubleValue();
   3588         if (IsInt32Double(double_res)) {
   3589           return H_CONSTANT_INT(double_res);
   3590         }
   3591         return H_CONSTANT_DOUBLE(double_res);
   3592       } else {
   3593         int sign = Double(c_left->DoubleValue()).Sign() *
   3594                    Double(c_right->DoubleValue()).Sign();  // Right could be -0.
   3595         return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
   3596       }
   3597     }
   3598   }
   3599   return new (zone) HDiv(context, left, right);
   3600 }
   3601 
   3602 HInstruction* HBitwise::New(Isolate* isolate, Zone* zone, HValue* context,
   3603                             Token::Value op, HValue* left, HValue* right) {
   3604   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   3605     HConstant* c_left = HConstant::cast(left);
   3606     HConstant* c_right = HConstant::cast(right);
   3607     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
   3608       int32_t result;
   3609       int32_t v_left = c_left->NumberValueAsInteger32();
   3610       int32_t v_right = c_right->NumberValueAsInteger32();
   3611       switch (op) {
   3612         case Token::BIT_XOR:
   3613           result = v_left ^ v_right;
   3614           break;
   3615         case Token::BIT_AND:
   3616           result = v_left & v_right;
   3617           break;
   3618         case Token::BIT_OR:
   3619           result = v_left | v_right;
   3620           break;
   3621         default:
   3622           result = 0;  // Please the compiler.
   3623           UNREACHABLE();
   3624       }
   3625       return H_CONSTANT_INT(result);
   3626     }
   3627   }
   3628   return new (zone) HBitwise(context, op, left, right);
   3629 }
   3630 
   3631 #define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result)                          \
   3632   HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context,  \
   3633                             HValue* left, HValue* right) {                  \
   3634     if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
   3635       HConstant* c_left = HConstant::cast(left);                            \
   3636       HConstant* c_right = HConstant::cast(right);                          \
   3637       if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {        \
   3638         return H_CONSTANT_INT(result);                                      \
   3639       }                                                                     \
   3640     }                                                                       \
   3641     return new (zone) HInstr(context, left, right);                         \
   3642   }
   3643 
   3644 DEFINE_NEW_H_BITWISE_INSTR(HSar,
   3645 c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
   3646 DEFINE_NEW_H_BITWISE_INSTR(HShl,
   3647 c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
   3648 
   3649 #undef DEFINE_NEW_H_BITWISE_INSTR
   3650 
   3651 HInstruction* HShr::New(Isolate* isolate, Zone* zone, HValue* context,
   3652                         HValue* left, HValue* right) {
   3653   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
   3654     HConstant* c_left = HConstant::cast(left);
   3655     HConstant* c_right = HConstant::cast(right);
   3656     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
   3657       int32_t left_val = c_left->NumberValueAsInteger32();
   3658       int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
   3659       if ((right_val == 0) && (left_val < 0)) {
   3660         return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
   3661       }
   3662       return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
   3663     }
   3664   }
   3665   return new (zone) HShr(context, left, right);
   3666 }
   3667 
   3668 
   3669 HInstruction* HSeqStringGetChar::New(Isolate* isolate, Zone* zone,
   3670                                      HValue* context, String::Encoding encoding,
   3671                                      HValue* string, HValue* index) {
   3672   if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
   3673     HConstant* c_string = HConstant::cast(string);
   3674     HConstant* c_index = HConstant::cast(index);
   3675     if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
   3676       Handle<String> s = c_string->StringValue();
   3677       int32_t i = c_index->Integer32Value();
   3678       DCHECK_LE(0, i);
   3679       DCHECK_LT(i, s->length());
   3680       return H_CONSTANT_INT(s->Get(i));
   3681     }
   3682   }
   3683   return new(zone) HSeqStringGetChar(encoding, string, index);
   3684 }
   3685 
   3686 
   3687 #undef H_CONSTANT_INT
   3688 #undef H_CONSTANT_DOUBLE
   3689 
   3690 
   3691 std::ostream& HBitwise::PrintDataTo(std::ostream& os) const {  // NOLINT
   3692   os << Token::Name(op_) << " ";
   3693   return HBitwiseBinaryOperation::PrintDataTo(os);
   3694 }
   3695 
   3696 
   3697 void HPhi::SimplifyConstantInputs() {
   3698   // Convert constant inputs to integers when all uses are truncating.
   3699   // This must happen before representation inference takes place.
   3700   if (!CheckUsesForFlag(kTruncatingToInt32)) return;
   3701   for (int i = 0; i < OperandCount(); ++i) {
   3702     if (!OperandAt(i)->IsConstant()) return;
   3703   }
   3704   HGraph* graph = block()->graph();
   3705   for (int i = 0; i < OperandCount(); ++i) {
   3706     HConstant* operand = HConstant::cast(OperandAt(i));
   3707     if (operand->HasInteger32Value()) {
   3708       continue;
   3709     } else if (operand->HasDoubleValue()) {
   3710       HConstant* integer_input = HConstant::New(
   3711           graph->isolate(), graph->zone(), graph->GetInvalidContext(),
   3712           DoubleToInt32(operand->DoubleValue()));
   3713       integer_input->InsertAfter(operand);
   3714       SetOperandAt(i, integer_input);
   3715     } else if (operand->HasBooleanValue()) {
   3716       SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
   3717                                               : graph->GetConstant0());
   3718     } else if (operand->ImmortalImmovable()) {
   3719       SetOperandAt(i, graph->GetConstant0());
   3720     }
   3721   }
   3722   // Overwrite observed input representations because they are likely Tagged.
   3723   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   3724     HValue* use = it.value();
   3725     if (use->IsBinaryOperation()) {
   3726       HBinaryOperation::cast(use)->set_observed_input_representation(
   3727           it.index(), Representation::Smi());
   3728     }
   3729   }
   3730 }
   3731 
   3732 
   3733 void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
   3734   DCHECK(CheckFlag(kFlexibleRepresentation));
   3735   Representation new_rep = RepresentationFromUses();
   3736   UpdateRepresentation(new_rep, h_infer, "uses");
   3737   new_rep = RepresentationFromInputs();
   3738   UpdateRepresentation(new_rep, h_infer, "inputs");
   3739   new_rep = RepresentationFromUseRequirements();
   3740   UpdateRepresentation(new_rep, h_infer, "use requirements");
   3741 }
   3742 
   3743 
   3744 Representation HPhi::RepresentationFromInputs() {
   3745   Representation r = representation();
   3746   for (int i = 0; i < OperandCount(); ++i) {
   3747     // Ignore conservative Tagged assumption of parameters if we have
   3748     // reason to believe that it's too conservative.
   3749     if (has_type_feedback_from_uses() && OperandAt(i)->IsParameter()) {
   3750       continue;
   3751     }
   3752 
   3753     r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
   3754   }
   3755   return r;
   3756 }
   3757 
   3758 
   3759 // Returns a representation if all uses agree on the same representation.
   3760 // Integer32 is also returned when some uses are Smi but others are Integer32.
   3761 Representation HValue::RepresentationFromUseRequirements() {
   3762   Representation rep = Representation::None();
   3763   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   3764     // Ignore the use requirement from never run code
   3765     if (it.value()->block()->IsUnreachable()) continue;
   3766 
   3767     // We check for observed_input_representation elsewhere.
   3768     Representation use_rep =
   3769         it.value()->RequiredInputRepresentation(it.index());
   3770     if (rep.IsNone()) {
   3771       rep = use_rep;
   3772       continue;
   3773     }
   3774     if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
   3775     if (rep.generalize(use_rep).IsInteger32()) {
   3776       rep = Representation::Integer32();
   3777       continue;
   3778     }
   3779     return Representation::None();
   3780   }
   3781   return rep;
   3782 }
   3783 
   3784 
   3785 bool HValue::HasNonSmiUse() {
   3786   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
   3787     // We check for observed_input_representation elsewhere.
   3788     Representation use_rep =
   3789         it.value()->RequiredInputRepresentation(it.index());
   3790     if (!use_rep.IsNone() &&
   3791         !use_rep.IsSmi() &&
   3792         !use_rep.IsTagged()) {
   3793       return true;
   3794     }
   3795   }
   3796   return false;
   3797 }
   3798 
   3799 
   3800 // Node-specific verification code is only included in debug mode.
   3801 #ifdef DEBUG
   3802 
   3803 void HPhi::Verify() {
   3804   DCHECK(OperandCount() == block()->predecessors()->length());
   3805   for (int i = 0; i < OperandCount(); ++i) {
   3806     HValue* value = OperandAt(i);
   3807     HBasicBlock* defining_block = value->block();
   3808     HBasicBlock* predecessor_block = block()->predecessors()->at(i);
   3809     DCHECK(defining_block == predecessor_block ||
   3810            defining_block->Dominates(predecessor_block));
   3811   }
   3812 }
   3813 
   3814 
   3815 void HSimulate::Verify() {
   3816   HInstruction::Verify();
   3817   DCHECK(HasAstId() || next()->IsEnterInlined());
   3818 }
   3819 
   3820 
   3821 void HCheckHeapObject::Verify() {
   3822   HInstruction::Verify();
   3823   DCHECK(HasNoUses());
   3824 }
   3825 
   3826 
   3827 void HCheckValue::Verify() {
   3828   HInstruction::Verify();
   3829   DCHECK(HasNoUses());
   3830 }
   3831 
   3832 #endif
   3833 
   3834 
   3835 HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
   3836   DCHECK(offset >= 0);
   3837   DCHECK(offset < FixedArray::kHeaderSize);
   3838   if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
   3839   return HObjectAccess(kInobject, offset);
   3840 }
   3841 
   3842 
   3843 HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
   3844     Representation representation) {
   3845   DCHECK(offset >= 0);
   3846   Portion portion = kInobject;
   3847 
   3848   if (offset == JSObject::kElementsOffset) {
   3849     portion = kElementsPointer;
   3850   } else if (offset == JSObject::kMapOffset) {
   3851     portion = kMaps;
   3852   }
   3853   bool existing_inobject_property = true;
   3854   if (!map.is_null()) {
   3855     existing_inobject_property = (offset <
   3856         map->instance_size() - map->unused_property_fields() * kPointerSize);
   3857   }
   3858   return HObjectAccess(portion, offset, representation, Handle<String>::null(),
   3859                        false, existing_inobject_property);
   3860 }
   3861 
   3862 
   3863 HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
   3864   switch (offset) {
   3865     case AllocationSite::kTransitionInfoOffset:
   3866       return HObjectAccess(kInobject, offset, Representation::Tagged());
   3867     case AllocationSite::kNestedSiteOffset:
   3868       return HObjectAccess(kInobject, offset, Representation::Tagged());
   3869     case AllocationSite::kPretenureDataOffset:
   3870       return HObjectAccess(kInobject, offset, Representation::Smi());
   3871     case AllocationSite::kPretenureCreateCountOffset:
   3872       return HObjectAccess(kInobject, offset, Representation::Smi());
   3873     case AllocationSite::kDependentCodeOffset:
   3874       return HObjectAccess(kInobject, offset, Representation::Tagged());
   3875     case AllocationSite::kWeakNextOffset:
   3876       return HObjectAccess(kInobject, offset, Representation::Tagged());
   3877     default:
   3878       UNREACHABLE();
   3879   }
   3880   return HObjectAccess(kInobject, offset);
   3881 }
   3882 
   3883 
   3884 HObjectAccess HObjectAccess::ForContextSlot(int index) {
   3885   DCHECK(index >= 0);
   3886   Portion portion = kInobject;
   3887   int offset = Context::kHeaderSize + index * kPointerSize;
   3888   DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
   3889   return HObjectAccess(portion, offset, Representation::Tagged());
   3890 }
   3891 
   3892 
   3893 HObjectAccess HObjectAccess::ForScriptContext(int index) {
   3894   DCHECK(index >= 0);
   3895   Portion portion = kInobject;
   3896   int offset = ScriptContextTable::GetContextOffset(index);
   3897   return HObjectAccess(portion, offset, Representation::Tagged());
   3898 }
   3899 
   3900 
   3901 HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
   3902   DCHECK(offset >= 0);
   3903   Portion portion = kInobject;
   3904 
   3905   if (offset == JSObject::kElementsOffset) {
   3906     portion = kElementsPointer;
   3907   } else if (offset == JSArray::kLengthOffset) {
   3908     portion = kArrayLengths;
   3909   } else if (offset == JSObject::kMapOffset) {
   3910     portion = kMaps;
   3911   }
   3912   return HObjectAccess(portion, offset);
   3913 }
   3914 
   3915 
   3916 HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
   3917     Representation representation) {
   3918   DCHECK(offset >= 0);
   3919   return HObjectAccess(kBackingStore, offset, representation,
   3920                        Handle<String>::null(), false, false);
   3921 }
   3922 
   3923 
   3924 HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index,
   3925                                       Representation representation,
   3926                                       Handle<Name> name) {
   3927   if (index < 0) {
   3928     // Negative property indices are in-object properties, indexed
   3929     // from the end of the fixed part of the object.
   3930     int offset = (index * kPointerSize) + map->instance_size();
   3931     return HObjectAccess(kInobject, offset, representation, name, false, true);
   3932   } else {
   3933     // Non-negative property indices are in the properties array.
   3934     int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
   3935     return HObjectAccess(kBackingStore, offset, representation, name,
   3936                          false, false);
   3937   }
   3938 }
   3939 
   3940 
   3941 void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
   3942   // set the appropriate GVN flags for a given load or store instruction
   3943   if (access_type == STORE) {
   3944     // track dominating allocations in order to eliminate write barriers
   3945     instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
   3946     instr->SetFlag(HValue::kTrackSideEffectDominators);
   3947   } else {
   3948     // try to GVN loads, but don't hoist above map changes
   3949     instr->SetFlag(HValue::kUseGVN);
   3950     instr->SetDependsOnFlag(::v8::internal::kMaps);
   3951   }
   3952 
   3953   switch (portion()) {
   3954     case kArrayLengths:
   3955       if (access_type == STORE) {
   3956         instr->SetChangesFlag(::v8::internal::kArrayLengths);
   3957       } else {
   3958         instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
   3959       }
   3960       break;
   3961     case kStringLengths:
   3962       if (access_type == STORE) {
   3963         instr->SetChangesFlag(::v8::internal::kStringLengths);
   3964       } else {
   3965         instr->SetDependsOnFlag(::v8::internal::kStringLengths);
   3966       }
   3967       break;
   3968     case kInobject:
   3969       if (access_type == STORE) {
   3970         instr->SetChangesFlag(::v8::internal::kInobjectFields);
   3971       } else {
   3972         instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
   3973       }
   3974       break;
   3975     case kDouble:
   3976       if (access_type == STORE) {
   3977         instr->SetChangesFlag(::v8::internal::kDoubleFields);
   3978       } else {
   3979         instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
   3980       }
   3981       break;
   3982     case kBackingStore:
   3983       if (access_type == STORE) {
   3984         instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
   3985       } else {
   3986         instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
   3987       }
   3988       break;
   3989     case kElementsPointer:
   3990       if (access_type == STORE) {
   3991         instr->SetChangesFlag(::v8::internal::kElementsPointer);
   3992       } else {
   3993         instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
   3994       }
   3995       break;
   3996     case kMaps:
   3997       if (access_type == STORE) {
   3998         instr->SetChangesFlag(::v8::internal::kMaps);
   3999       } else {
   4000         instr->SetDependsOnFlag(::v8::internal::kMaps);
   4001       }
   4002       break;
   4003     case kExternalMemory:
   4004       if (access_type == STORE) {
   4005         instr->SetChangesFlag(::v8::internal::kExternalMemory);
   4006       } else {
   4007         instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
   4008       }
   4009       break;
   4010   }
   4011 }
   4012 
   4013 
   4014 std::ostream& operator<<(std::ostream& os, const HObjectAccess& access) {
   4015   os << ".";
   4016 
   4017   switch (access.portion()) {
   4018     case HObjectAccess::kArrayLengths:
   4019     case HObjectAccess::kStringLengths:
   4020       os << "%length";
   4021       break;
   4022     case HObjectAccess::kElementsPointer:
   4023       os << "%elements";
   4024       break;
   4025     case HObjectAccess::kMaps:
   4026       os << "%map";
   4027       break;
   4028     case HObjectAccess::kDouble:  // fall through
   4029     case HObjectAccess::kInobject:
   4030       if (!access.name().is_null() && access.name()->IsString()) {
   4031         os << Handle<String>::cast(access.name())->ToCString().get();
   4032       }
   4033       os << "[in-object]";
   4034       break;
   4035     case HObjectAccess::kBackingStore:
   4036       if (!access.name().is_null() && access.name()->IsString()) {
   4037         os << Handle<String>::cast(access.name())->ToCString().get();
   4038       }
   4039       os << "[backing-store]";
   4040       break;
   4041     case HObjectAccess::kExternalMemory:
   4042       os << "[external-memory]";
   4043       break;
   4044   }
   4045 
   4046   return os << "@" << access.offset();
   4047 }
   4048 
   4049 }  // namespace internal
   4050 }  // namespace v8
   4051